
AN AUGMENTED LAGRANGIAN 
INTERIOR-POINT METHOD 

USING DIRECTIONS OF 
NEGATIVE CURVATURE 

]a\,ler 1\1.l\fogllerza 
and Francisco]. Prieto 

OO-Jo 

Universidad Caries III de Madrid 

(f) 
0::: 
w 
0.... « 
0.... 

I 



Working Paper 00-36 

Economics Series 14 

May 2000 

Departamento de Estadfstica y Econometrfa 

Universidad Carlos III de Madrid 

Calle Madrid, 126 

28903 Getafe (Spain) 

Fax (34) 91 624-98-49 

AN AUGMENTED LAGRANGIAN INTERIOR-POINT METHOD USING 
DIRECTIONS OF NEGATIVE CURVATURE 

Javier M. Moguerza and Francisco J. Prieto * 

Abskact------------------------------------------------------------­
We describe an efficient implementation of an interior-point algorithm for non-convex problems that 

uses directions of negative curvature. These directions should ensure convergence to second-order 

KKT points and improve the computational efficiency of the procedure. Some relevant aspects of 

the implementation are the strategy to combine a direction of negative curvature and a modified 

Newton direction, and the conditions to ensure feasibility of the iterates with respect to the simple 

bounds. The use of multivariate barrier and penalty parameters is also discussed, as well as the 

update rules for these parameters. Finally, numerical results on a set oftest problems are presented. 

Keywords: Primal-dual methods; nonconvex optimization; line searches 

* Moguerza, Dept. of Statistics and Econometrics, Univ. Carlos III de Madrid, Spain, E-mail: 
moguerza@est-econ.uc3m.es; Prieto, Dept. of Statistics and Econometrics, Univ. Carlos III de 
Madrid, Spain. E-mail: fjp@est-econ.uc3m.es. AMS: 49M37, 65K05, 90C30 

I 
I 

I 



An augmented Lagrangian interior-point method using 
directions of negative curvature 

Javier M. Moguerza1 Francisco J. Prieto1 

Dept. of Statistics and Econometrics 
Univ. Carlos III de Madrid, Spain 

E-mail: moguerza(Qest-econ. uc3m. es E-mail: fjp(Qest-econ.uc3m.es 

ABSTRACT 

We describe an efficient implementation of an interior-point algorithm for non­
convex problems that uses directions of negative curvature. These directions 
should ensure convergence to second-order KKT points and improve the com­
putational efficiency of the procedure. Some relevant aspects of the imple­
mentation are the strategy to combine a direction of negative curvature and 
a modified Newton direction, and the conditions to ensure feasibility of the 
iterates with respect to the simple bounds. The use of multivariate barrier 
and penalty parameters is also discussed, as well as the update rules for these 
parameters. Finally, numerical results on a set of test problems are presented. 
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1 Introduction 

We are interested in developing an algorithm to compute local solutions for non linear , and possibly 
non-convex, problems of the form 

minx 
s.t. 

f(x) 
c(x) = 0 

x 20, 
(1) 

where f : ffi.n H ffi. and c : ffi.n H ffi.m • More specifically, we wish to compute second-order KKT points 
for problem (1), that is, points that can be assured to satisfy both the first-order necessary conditions 
and the second-order condition. 

The use of directions of negative curvature plays a crucial role in this context; only by using this second­
order information it is possible to ensure convergence to such points. Trust-region methods are able to 
take negative curvature implicitly into account when computing the update direction, if exact second 
derivatives are used to form the corresponding subproblems. Line search procedures, while presenting 
interesting properties from a practical point of view, must take second-order information into account by 
explicitly computing some direction of negative curvature, if it is available. The idea of using directions of 
negative curvature was proposed by Fiacco and McCormick [5]. Later, More and Sorensen [15] described 
how to modify Newton's method using these ideas. 

The explicit computation of these directions can be carried out with limited cost, by taking advantage 
of a factorization of the coefficient matrix in the system of Newton equations, if exact second derivatives 
are used, see [10] for example. Nevertheless, the requirement to obtain both descent and negative curva­
ture directions from the Newton system of equations limits the choice of numerical procedures that can 
be used to compute the search direction. 

In this paper we will be concerned with deriving a line search algorithm that uses negative curvature. 
The directions required to update the iterates will be generated using an interior-point approach. In this 
setting, problem (1) is transformed into a sequence of equality constrained problems of the form (see [5]) 

minx 
s.t. 

f(x) - Li J.tdog Xi 

c(x) = O. 

lThis research was supported by nGrCYT grant PB96-0111. 

1 

(2) 

-• 



The search directions are computed to approximate the solutions of these barrier problems. For com­
putational efficiency reasons we have chosen to use a vector of barrier parameters J.L E ~n, one for each 
simple bound x 2:: O. 

Interior-point methods have proved to be very successful for the solution of linear and general convex 
problems. More recently, a significant amount of effort has been devoted to extending these procedures 
to non-convex problems. Among the several proposals in the literature, we could mention those of El­
Bakry et al. [3], Gajulapalli [7], Gay et al. [8], Vanderbei and Shanno [18], Yamashita and Yabe [23], 
etc. Nevertheless, very few of these proposals have taken into consideration the use of negative curvature 
directions. 

Once negative curvature directions have been obtained, it is still necessary to combine them with 
traditional descent directions. Iterates in general will fail to satisfy both first-order and second-order 
conditions, and it is important to make use of both types of information simultaneously to ensure the 
efficiency of the procedure. The combination of descent and negative curvature directions has been con­
sidered by McCormick [13], More and Sorensen [15] or Forsgren and Murray [6], among others. Designing 
an efficient procedure to obtain a satisfactory combination of these directions poses considerable difficul­
ties, as the Newton direction is well-scaled in general, and particularly so near a stationary point, while 
directions of negative curvature have no inherent scale. 

A line search has been introduced in our algorithm as a mechanism to ensure global convergence. We 
will compute the iterates in such a manner that the value of an augmented Lagrangian merit function is 
decreased in each iteration. For problem (2) this merit function takes the form 

(3) 

The penalty term in the merit function makes use of a vector of penalty parameters, one for each 
constraint, p E ~m. This function has been extensively studied by Bertsekas [1] among others. It has the 
advantage of being differentiable at all points where it is defined (the interior of the positive orthant). 
Also, under suitable assumptions the local minimizers for problem (2) are minimizers for this merit 
function, if all components of p are large enough. 

This merit function introduces parameters and variables, >. and p, that have to be updated through 
successive iterations to ensure convergence. Analogously, the barrier problems (2) also include parameters 
J.L that must be updated. The choice of updating strategies may affect significantly the efficiency of the 
overall procedure and will be considered in some detail in the following sections. 

The aim of this paper is to address the three issues discussed in the preceding paragraphs: the 
definition of the search directions, their combination and the updating of the parameters, in a manner that 
produces an efficient and robust procedure. We are also interested in determining from computational 
experiments the impact that using negative curvature information may have on the efficiency of the 
algorithm. In this regard, we will present and discuss some computational results on a test problem set. 

The paper is organized as follows: In Section 2 we describe the procedure to compute the search 
directions in the algorithm. In Section 3 we indicate how to combine the directions to obtain the next 
iterate. In Section 4 we present the rules for updating the algorithm parameters. In Section 5 we discuss 
some implementation issues and list the general structure of the algorithm. Finally, in Section 6 we 
present and comment some computational results on a set of small test problems. 

2 Computation of the search directions 

2.1 Definitions and notation 

The first-order Karush-Kuhn-Tucker (KKT) conditions for problem (1) are: 

'\lxf(x) - '\lxcT(x)>. - (J 
c(x) 
~x 

x,(J 

2 

0, 
0, 
0, 

> 0, 
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where ~ denotes a diagonal matrix having as entries the elements of 17, ~ = diag(I7). 
In the proposed algorithm, instead of considering directly the preceding conditions, we solve a sequence 

of problems (2) such that Pi -+ ° for all i, following [5]. The first-order KKT conditions for (2) are: 

"Vxf(X)-"VxCT(X) .. -X-1p = 0, 
c(x) 0, 

(5) 

where X = diag(x). Replacing 

17 = X-1p, (6) 

in the first equation of (5), the first-order KKT conditions for the barrier problem can be rewritten as: 

"V xf(x) - "VcT (x) .. - 17 

c(x) 
~x 

0, 
0, 
p. 

(7) 

The set of equations (7) is known as the primal-dual equations for problem (2). Initially implemented by 
Mehrotra [14], the search directions obtained from them have been shown in practice to be computation­
ally more efficient than those computed from (5). The algorithm will compute search directions based 
on these primal-dual KKT equations. In addition to trying to satisfy these conditions, the algorithm 
should also ensure that the variables Xi remain strictly positive, as the logarithmic terms in the objective 
function of (2) are only defined on this set. From the comparison of these conditions and (4), we also 
need to ensure that 17 ~ ° in all iterations of the algorithm. 

We will also want to satisfy the necessary second-order condition. For problem (2) this condition 
requires 

(8) 

where L denotes the Lagrangian function for (2), L(x,)..) = f(x) - Li Pi IOgXi - )..Tc(x), M is a diagonal 
matrix with entries those of p, M = diag(p) and ZA has columns that form a basis for the null-space of 
"Vc(x). 

The algorithm we propose must carry out the following tasks in each iteration: 

• The computation of search directions, both to improve the satisfaction of the first-order KKT 
conditions (7) using Newton's method, and the satisfaction of the second-order condition (8) using 
directions of negative curvature. 

• The combination of these directions to compute the next iterate, ensuring sufficient descent for the 
augmented Lagrangian merit function (3). 

• Finally, the updating of the multipliers).. and penalty parameters p in the merit function, and the 
barrier parameters p associated with problem (2). 

In the following paragraphs we indicate how to conduct these tasks in an efficient manner. We start 
by considering the computation of a descent direction for the variables x, dx , based on a modified Newton 
method applied to the primal-dual equations (7). 

2.2 The descent direction 

Newton's method provides search directions dx , d). and d,y, corresponding to update directions for the 
variables x, ).. and 17 respectively. From the first-order Taylor series expansion for the primal-dual KKT 
conditions (7) about the values x, ).. and 17, the resulting system of linear equations defining the search 
directions is: 

-"Vxf + "VxcT ).. + 17 

-c 
p-~x 

). (9) 
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where H = 'V;xL(x, A), ~ = diag(o-), I denotes the identity matrix and X = diag(x). 
From the last set of equations in (9), we have 

d" = X-I J-L - 0- - X-I~dx. (10) 

Substituting (10) in the first two sets of equations in (9), the movement direction dx can be computed as 
the solution of the symmetric system 

(11) 

where K is defined as 

K= ( G 
'Vxc 

(12) 

for G = H + X-I~. 

2.3 Solving the system of equations 

The direction obtained from (11) may fail to provide descent for any reasonable merit function, for 
example when the iterates are close to a stationary point that is not a minimizer. To ensure good global 
convergence properties for the algorithm it is important that the direction dx should provide sufficient 
descent for the merit function (3), and this requires adapting the solution of system (11). 

The gradient of the merit function is given by 

where R = diag(p). The Hessian of LA with respect to x will be given by 

'V;xi + M X- 2 
- 2: j (Aj - PjCj )'V;xCj + 'V xcT R'V xC 

'V;xL(x, A - Rc) + M X- 2 + 'V xcT R'V xC. 

(13) 

(14) 

Considering the Newton direction for the merit function (3), defined as 'V;xLAdx = - 'V xLA, or equiva­
lently 

As the merit function is not very efficient at ensuring the satisfaction of the constraints, we impose the 
additional condition that 'Vxc(x)dx = -c(x), already included in (11). Condition (15) now becomes 

(16) 

To ensure that dx is a direction of descent for (3), we may replace the coefficient matrix Gp = 'V;xL(x, A­
Rc) + M X- 2 in the preceding condition with a matrix Gp = fI + X-I ~ that is positive definite on the 
null space of the constraints 'Vxc(x), that is, Gp should be such that Z!GpZA is positive definite. 

The modified system used to define the search directions is then 

(17) 

where the coefficient matrix is computed from a modification of 

(18) 

for Gp = 'V;xL(x, A - Rc) + X-I~. 
The matrix Gp in (17) can be generated in the process of factorizing Kp. A modified Choleski 

factorization of the reduced Hessian Z!GpZA could be used, as in [8]. This approach requires forming 

4 

-• 



-------------~-- -------

explicitly the reduced Hessian, and as a consequence it is limited to problems in which this reduced 
Hessian is small. We have chosen to use a version of the symmetric indefinite factorization, see [2] for 
example, incorporating the modifications proposed in [6]. This alternative is able to obtain the desired 
modification for the reduced Hessian directly from system (17), it allows the computation of appropriate 
directions of negative curvature, as we will describe in Section 4, and it can be applied to medium-sized 
and large problems. 

The details of the factorization used in the algorithm can be found in [6], but we now state its 
basic result. Assume that the LDLT factorization of Kp, defined in (18), has been computed using the 
factorization algorithm described in [6], and that the matrix D in the factorization is partitioned into 

(19) 

where Dl and D2 are block-diagonal matrices with 1 x 1 and 2 x 2 blocks, Dl includes all the pivots 
suitably chosen from elements of V'c(x) and D2 = U AUT. The precise rules to choose these pivots can 
be found in [6]. Also, for a given c > 0, define a diagonal matrix A having as its i-th diagonal element 
the value 5.i = max(\Ai\,c). Construct D2 as D2 = UAUT and define D as: 

D-- (Dl - 0 

Let d be the solution of 

(20) 

for P an appropriate permutation matrix, and b the right-hand side of (17). Finally let d = pd, the 
vector of unknowns in system (17), 

It holds that Adx = -c and Z;;' G pZA is positive definite, where Gp is the submatrix corresponding to 
the appropriate rows and columns of LDLT. 

The factorization in [6] requires that the matrix V' xC should have full row rank. This cannot be 
guaranteed in practice, but our algorithm detects this rank deficiency within the factorization procedure 
and takes into account those rows of V' xC that seem to be linearly independent. This modification 
introduces errors in the solution of the system, but seems to behave reasonably well in practice. 

2.4 Second-order directions 

If we wish to avoid convergence to points not satisfying the second-order necessary condition (8), we 
must make use of negative curvature directions. For an unconstrained problem minx f(x), we will look 
for directions satisfying the classical definition, see [15], that is, we will require a direction of negative 
curvature d at an iterate x to satisfy 

and (21) 

For equality constrained problems these conditions can be easily generalized: as negative curvature 
information is only relevant on the subspace spanned by ZA, see (8), we consider only those negative 
curvature directions that lie in this subspace, d = ZAV. However, for nonlinearly constrained problems 
it is not clear how to define these directions, or how to use them, as now negative information will 
depend on the current estimate of the active set, and it may also be relevant when moving away from 
active constraints. We will follow the proposal by Murray and Prieto in [16], by building directions of 
negative curvature for the merit function based on the preceding unconstrained conditions, under certain 
conditions on the infeasibility of the current iterate. 

We now give a more precise statement of the conditions we will impose. The gradient of the merit 
function (3) and its Hessian matrix with respect to x are given by (13) and (14), respectively. Analogously 
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to the case of the descent direction, and due to the limitations of the merit function regarding the 
satisfaction of the constraints, we will impose the additional condition that the direction of negative 
curvature should lie in the null-space of the matrix \1 xC, a reasonable requirement given that these 
constraints must hold with equality at the solution, and the descent direction is computed to satisfy these 
constraints. From the definition (21) and this additional condition, a direction of negative curvature dn 
for our algorithm should satisfy 

(22) 

At each iterate we need to determine if negative curvature is present, and if that is the case we also 
need to compute a direction satisfying the preceding conditions. We would conduct this analysis and 
compute this direction from system (11), used to define the descent direction, to reduce as much as 
possible the computational cost within the algorithm. However, the Hessian matrix that appears in that 
system has the form H + X- l 1;, and it may differ from H + MX-2, the matrix used in the definition 
(22). Both matrices will be close if (6) is approximately satisfied. As a consequence, we will compute the 
direction of negative curvature from (11), but we will check if conditions (22) are satisfied before using 
it in the search. Note that close to a stationary point for the barrier problem (2), condition (6) will be 
approximately satisfied and directions of negative curvature, if they exist, will eventually be accepted. 

Another theoretical issue must be considered. The definition (22) has been made for the barrier 
problem (2), but the problem of interest is (1). It would be important to ensure that by computing 
second-order KKT points for problem (2), we are in fact solving problem (1). This issue has been treated 
in detail in (19) and (8); we now present the basic result that justifies the validity of our approach. 

A second-order KKT point (x*, >'*) for problem (1) will satisfy the first-order necessary conditions 
(4), and the matrix zj\12 L(x*, >'*)ZJ will be positive semidefinite. Here, ZJ denotes a matrix whose 
columns form a basis for the null-space of the Jacobian of the active constraints at the solution of (1). If 
j E jRPxn denotes the p rows of the identity associated with the components of x* that are equal to zero 
(the active constraints in x ~ 0), then ZJ corresponds to a basis for the null-space of the matrix 

For ZA, a basis for the null-space of \1c(x*), we can always assume that ZA and ZJ are chosen so that 
Z A = (R Z J ). Let v* = (x*, >. * , a*) denote the corresponding values at a second-order KKT point of 
(1). We will use the notation Hp = \12 L(x, >. - Rc) and Gp = Hp + X-l1;. In Theorem 3.3 of (20) and 
Theorem V.2.7 of (17) it is shown that given v = (x, >., a) such that Ilv - v* 11 < E for some small enough 
E, for the matrix zI G p Z A evaluated at v and Z A = (R Z J ), as indicated above, it holds that 

• The largest (in magnitude) p eigenvalues of ZIGpZA are positive and unbounded as v -+ v*. 

• The remaining n - m - p eigenvalues are within O(E) of the eigenvalues of zj HpZJ. 

• Gp has invariant subspaces for which there exist bases R and Z such that 

IIR - RII = O(E) 

and in particular 

As a consequence of this result, the information of interest to our algorithm regarding the eigenvalues 
of zj HpZJ, the ones entering the definition of second-order KKT points for problem (1), can be derived 
by observing the finite eigenvalues of ZIGpZA from system (11). Moreover, if we are close enough 
to a second-order KKT point of (1), the (finite) negative eigenvalues of ZIGpZA and their associated 
eigenvectors will provide good approximations to the corresponding ones in zj HpZJ. As a consequence, 
we will be able to compute directions of negative curvature from (11) in an efficient manner, while ensuring 
convergence to second-order KKT points of (1). 
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2.5 Computation of directions of negative curvature 

We compute a direction of negative curvature dn (assuming that it exists) from the same symmetric 
indefinite factorization used to obtain the descent direction dx in (20). If no negative curvature is 
available at the current iterate, we set dn = O. Let Kp be the matrix defined in (18), and assume that its 
symmetric indefinite factorization Kp = LDLT has been computed using the algorithm in [6]. Assume 
that from the factorization it has been determined that this matrix has more than m negative eigenvalues, 
implying that ZIGpZA has at least one negative eigenvalue. 

We will compute dn in the following manner: Let w be defined as w = PiU, where P is the permutation 
matrix in (20) and iU satisfies 

(23) 

where Am in(D2 ) denotes the most negative eigenvalue of D2, defined in (19), and u.\ is a unit eigenvector 
corresponding to this smallest eigenvalue. The negative curvature direction dn is defined as the first n 
components of w. In [6] it is shown that 'Vc(x)dn = 0, so that dn lies in the correct subspace, and there 
exist positive constants Cl and C2 such that 

and 

Nevertheless, this scaling may not be adequate for the search procedure. We rescale this negative curva­
ture direction using the norm of the descent direction dx , to ensure that both directions are comparable 
in size. 

If condition (6) is approximately satisfied, the direction dn computed using the preceding procedure 
will be a direction of negative curvature for the merit function LA(x, >.; p). In this case, to satisfy (22) it 
will be enough to choose the sign of dn so that 

(24) 

As in general (6) may not be satisfied, each time a direction of negative curvature is computed we will 
also check if 

is satisfied. If this is not the case, the negative curvature direction dn will not be used. 

3 The curvilinear search 

For a given iterate (x, A), classical line search methods applied to problem (2) compute a direction of 
movement 

d _ ( dx ) 
- d.\ ' 

and then determine a scalar 0: ensuring that the next iterate (x+o:dx , A+o:d.\) provides sufficient decrease 
for an appropriate merit function. The role of the merit function is to ensure, through the proper choice 
of 0:, the convergence to a minimizer ofthis merit function, that should correspond to a minimizer of (2). 
The computation of 0: is usually referred to as a line search (see [10], for example). 

This approach works quite well in practice whenever there is a single search direction dx . In our 
case we may have a pair of search directions at a given iteration, dx and dn . In this case, the preceding 
procedure must be modified to take into account that the next iterate must be found by searching on a 
subspace of dimension two, instead of dimension one as was the case for the classical approach. We have 
chosen to use a curvilinear search, defined on the subs pace generated by both directions. This curvilinear 
search will be applied to the augmented Lagrangian merit function (3). 

This curvilinear search will be applied to the directions dx computed from (17) and dn obtained as 
described in the preceding section from (23). The search will also be carried out on the multipliers. Their 
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search direction will be defined from dA, obtained from (17), but it will be modified to take into account 
the right-hand side used in (17) and the Newton condition for the merit function given in (16). The 
actual search direction is defined as 

dAP = dA - Rc(x). (25) 

To combine the preceding directions we will follow the proposals in [15] and [16]. Given an iterate 
(x, >.) and directions dx , dn and dA, the next iterate will be obtained as a point on the curves 

x(a) 

>.(a) 

x + a 2 dx + adn , 

>. + a 2dAP ' 

(26) 

(27) 

The value of a is determined to ensure (x(a), >.(a)) provides sufficient descent for the augmented La­
grangian merit function (3). Let 

4>(a) = LA(x(a), >.(a)j p), 

where p is the penalty parameter vector. For an initial value a max , defined later on, we will check if 

If this condition is satisfied, we choose a = a max . Otherwise, we apply a backtracking procedure from 
a max to find a value a E (0, a max) satisfying 

-2 

4>(a) < 4>(0) + l' ~ 4>"(0), 

4>' (a) > 1)(4)' (0) + a 4>" (0)), 

where l' and 1) are scalar parameters satisfying 0 < l' < ~ and ~ < 1) < 1. 

(28) 

(29) 

In addition to the sufficient descent conditions (28)-(29), we also force the iterates to remain on the set 
where the merit function is defined, that is, a is chosen so that x(a) > 0 by defining a max appropriately, 
that is, we choose a max so that all a E [0, a max] satisfy 

(30) 

If ai denotes the smallest positive root of Pi(a), if it exists, or 00 otherwise, the preceding condition is 
satisfied for a given i and all a E [0, ai), as Xi > O. As a consequence, we must choose a max < mini ai. 

On the other hand, to take advantage of the good local convergence properties of the Newton direction 
we would like to accept the step to this Newton direction (a = 1) whenever it is reasonable, that is, 
whenever the Newton step lies within the positive orthant and there is no negative curvature available. 
Consequently, the initial step a max is defined as 

a max = min(8 min(ai)' 1), (31) , 

where the parameter 8, introduced to ensure the strict positivity of the iterates, has been defined as 

8 = max(0.995, 1 - 11J-t112)' (32) 

Near the solution (when J-t ~ 0), the term 1 - 11J-t112 guarantees that a step of one will not be prevented 
by the positivity requirement. This is relevant to ensure adequate local convergence properties. 

Finally, we impose an additional condition that helps to ensure that the iterates remain in a compact 
set throughout the algorithm. The next iterate is computed as x(aP), where aP = a if a, satisfying 
(28)-(29), also satisfies 

Ilc(x(a))11 :S f3c. (33) 

Otherwise, a value a P is determined by applying a backtracking procedure from a until conditions (28) 
and (33) are both satisfied. 
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4 Parameter updates 

A complete specification of the algorithm should indicate how to update the different parameters that 
appear in the computation of the search directions and the curvilinear search. In the following paragraphs 
we specify the procedures used to update the multiplier estimates, the penalty parameters and the barrier 
parameters. 

4.1 The multipliers 

Two sets of dual variables are generated by the algorithm, the equality constraint multipliers A and the 
approximations to the multipliers for the bound constraints (J. The multipliers A are updated within 
the curvilinear search using (27) and the value a P chosen for the variables x according to the procedure 
described in the preceding section. 

The solution of Newtons system of equations (9) provides a search direction for the multipliers (J, d(J) 
defined as (10). These dual variables will be updated from 

dad) = (J + add(J) 

using an adequate value of ad. The only condition on the values of the dual variables is their non­
negativity. The scalar ad is chosen as the largest reasonable value that satisfies this condition, as follows. 
Let 

(id = min (5min C~:)i I(du)i < 0),1), 

where {) is defined as in (32). For () = (aP / amax)Z, ad is defined as 

(34) 

The value () is introduced to scale ad so that its value is related to the value of a P obtained from the line 
search. 

4.2 The penalty parameters 

The penalty parameters Pi are used in the algorithm to ensure the convergence to points satisfying the 
constraints c(x) = O. The Newton direction should provide iterates able to satisfy this condition, but if 
the penalty parameters are not sufficiently large, this Newton direction may not be a descent direction 
for the merit function and will not be accepted. As a consequence, the penalty parameters are chosen 
so that the sufficient decrease condition given by inequality (28) can be satisfied. The updating of these 
parameters is relevant in other ways related to the computational efficiency of the procedure. A very 
large value of these parameters may cause numerical problems in the computation of the search directions 
from (17). Also, these parameters have an impact on the updating of the A multiplier estimates. 

The update formula will be derived in terms of condition (28). This condition includes the initial 
derivatives of the merit function along the curve x(a) defined in (26), 

4>'(0) d;'(\lxl - X-IfJ. - AT(A - Rc)), 

4>"(0) d;'(H(x, A - Rc) + M X-Z)dn + 2d;C'v xl - X-I fJ. - AT(A - Rc)) - 2dIpC. 

If negative curvature is available in the current iteration, that is, if dn =J 0, from (24) and \lc(x)dn = 0 
it follows that 4>'(0) :S o. We still need to have 4>"(0) < o. If the current values of dx, dn , dAp and pare 
such that this condition is not satisfied, we set dn = 0 for the search. 

If no negative curvature has been detected or the preceding condition has resulted in having dn = 0, 
then 4>' (0) = 0 and conditions (28) and (29) become equivalent to 

4>(a) < 4>(0) + ,aZ(d;(\l I - X-I fJ. - AT(A - Rc)) - dIpC) 

4>' (a) > rya(d;(\ll - X-IfJ. - AT(A - Rc)) - dIpc). 
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For the curvilinear search to be well defined we need to have (see [15]): 

(35) 

This condition is a slightly stronger version of the classical descent requirement dr"V ",LA ~ 0, but (35) 
must take into account that the multiplier update A(a) (27) is also included in the curvilinear search. 

Condition (35) can always be satisfied for an adequate choice of the penalty parameter vector p. If 
at the current iterate the equality constraints are satisfied, e(x) = 0, (35) can be rewritten as 

but from (17) and the positive definiteness of Gp in the appropriate subspaces, 

and (35) is satisfied. 
If e(x) :I 0, (35) may not hold for the current value of the penalty parameter p, and it must be 

modified. We can rewrite (35) as 

(36) 

for B defined as 

From (17), (36) is equivalent to 

Define z E ]Rm as Zj = e;, and note that eT Rc = zT p. Following the procedure used in code NPSOL [9], 
the update of the penalty parameter vector p is obtained from the following problem: 

mm ~pT P 

s.t. zTp?B (37) 

P? o. 

The solution of this problem is given by p. = WZ, where w is defined as w = B / (zT z). 

The j-th component of p will be updated to I5pPj (for some I5p > 1), if (35) does not hold and 
Pj < I5p pj. In practice, it will also be necessary to ensure that p does not become too large (see [10]) 
to avoid ill-conditioning. If Pj is much larger than Pj, we will reduce its value while ensuring that (35) 
is still satisfied. The strategy we will follow to update p is similar to the one described in [4]. We will 
compute a trial value Pj: 

where Jp ? 1, and the new value of p at iteration k will be defined as 

·f J:. k 
1 UPPj > Pj' 
·f A < 1 k 
1 Pj _ 2,Pj' (38) 
otherwise. 

To avoid having to modify p too often, the parameter Jp is increased at each iteration where p is modified. 
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4.3 The barrier parameters 

The vector of barrier parameters in (2) is also updated in each iteration. The updating rule is based 
on the relationship between the complementarity conditions and the values of the barrier parameters. 
Let F(x, >., 0") be a measure of the satisfaction of the first-order KKT conditions for problem (1) at the 
current iterate, that is, 

set 

( 

\l xf(x) - \lc(X)T>. - 0" ) 

F(x,>.,O") = c(x) , 
~x 

{ 
IIF(x,>',0")112 

()-
- IIF(x,>',O")II~ 

if IIF(x, >., 0")112 2:: 1, 

otherwise, 

(39) 

( 40) 

and define y = X 0". Vector Jl is updated in a similar manner to the penalty parameter p. The problem 

min ~Jl T Jl 
s.t. yT Jl = () ( 41) 

Jl2::O 

is solved to obtain Jl* = wy, where w is a scalar defined as w = (}/(yTy ). Definition (40) has been 
introduced to prevent Jli from becoming too large when far from a KKT point. On the other hand, if Yi 
is small then Jli may become too small. To avoid this situation we compute a reference value p" similar 
to the one used in [3], 

xT 
0" p,--- n ' 

and define the new value of Jl at iteration k as 

k+l . (J:k (*. ) k) Jli = mm u max Jli, Jl , Jli , (42) 

where 8k = min(0.25, exp( _(l/(}k))). Note that Jli will not be decreased in every iteration, but only when 
a sufficient reduction in the satisfaction of the KKT conditions has been achieved. This definition of Jl 
ensures that Jl -+ 0 if problem (2) has a solution. The preceding definition of Jli can be shown to be 
O(IIF(x, >., 0") II~) near a KKT point, that is one of the conditions required to attain quadratic convergence 
(see [3] or [23]). 

5 Implementation issues 

The algorithm described in the preceding sections includes certain parameters and conditions that have 
not been completely specified yet. In the following paragraphs we indicate how to carry out some of these 
computations. 

5.1 Use of negative curvature directions 

After the factorization process has detected the presence of negative curvature in a given iteration, several 
additional conditions are checked before using this negative curvature direction in the curvilinear search. 
These conditions are: 

d~\l;xLAdn < -Cl, (43) 

d~\l;xLAdn < d~Gpdn + C2, ( 44) 

Ilc(x)11 < c3, ( 45) 
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where cl, c2 and C3 are positive constants. Condition (43) guarantees that dn is a direction of negative 
curvature for the augmented Lagrangian merit function. Condition (44) discards those cases when (6) 
is far from being satisfied. Finally, (45) guarantees that we only use negative curvature when we are 
close enough to feasibility. If any of these conditions is not satisfied, the algorithm sets dn = O. In our 
implementation we have defined Cl = 10-7 and C2 = 10-3 . The parameter C3 is defined in each iteration 
as: 

where f is the objective function of (1). 

5.2 Convergence criterion 

The stopping criterion for the algorithm will be related to the satisfaction of the first and second-order 
KKT conditions for problem (1). The algorithm will stop if no negative curvature has been detected at 
the current iteration and the condition 

IIF(x, A, 0")112 ::; c(l + 11\7 xf(x)ll) 

is satisfied at the current iterate. In this condition F(x, A, 0") denotes the measure of optimality defined 
in (39) and f(x) is the objective function for problem (1). We have taken C = 10-8 • 

5.3 Initial values of parameters and variables 

Let xo denote the starting point for the algorithm, assumed to be specified by the user. The only 
restriction on the values of xo will be the satisfaction of the simple bounds. The remaining initial values 
for the variables and parameters will be defined from xo. The initial value of the dual variables 0"0 will be 
defined as 0"0 = (XO)-le. The initial Lagrange multiplier estimate AO will be chosen as an approximation 
to the least-squares solution of the linear system 

The penalty parameter vector po is initially taken to be zero. The initial barrier vector J.L0 is defined 
using (42) evaluated at the preceding values. 

5.4 Other parameters 

The constant f3c in (33) is updated recursively. In iteration k + 1 it is defined to be 

where K > 1 is a constant (in our implementation we use K = 7.5). The initial value of f3c is defined as 

f3~ = max ( JKllc(xO)II, 1) . 

5.5 Numerical difficulties 

If a variable gets very close to its corresponding bound at a given iteration, it is possible that due to 
roundoff errors its value may be considered to be equal to the bound and the logarithmic function will 
not be defined in subsequent iterations. A possible solution is given in [7], where the variables are forced 
to remain apart from their bounds by a fixed distance, chosen as 10-9 . However, this strategy presents 
a clear disadvantage: the solution of a particular problem, for a sufficiently small value of J.L, might be 
closer to the bound than the previous tolerance. In our numerical experience, this option may delay 
convergence by a significant number of iterations. 
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In our strategy, the information on the distance to the bounds will be kept in a vector r, that will be 
updated separately from the values of the variables, using the same information. The independent term 
in inequality (30) will also be defined in terms of this vector. 

Another numerical problem that might arise is the ill-conditioning of the symmetric system (17) to 
solve in each iteration, due to the terms X-I~. Under reasonable conditions, it can be shown that this 
ill-conditioning is benign (see [19] and [21]). 

5.6 The algorithm 

We present a scheme of the proposed interior point algorithm (Curvilinear Search Interior Point Method 
- CSIPM), summarizing the aspects described in the previous sections. 

Algorithm CSIP M 

Choose initial values for xo, ).0 and 0"0. 

Choose initial values for vectors po and pP 
Set k = 0 
repeat 

Compute d~, d~ and d~ from (17) using the factorization described in [6} 
Compute d~p from (25) 

Compute, if it exists, d~, a direction of negative curvature from (23) 
Compute pHI from (38) 
Set d~ = 0 if anyone of the conditions (43), (44) or (45) is not satisfied 
Compute a P using the curvilinear search procedure satisfying (28), (29) and (33) 
Compute ad from (34) 
X k+1 = xk + (aP)2d~ + aPd~ 
).k+1 = ).k + (aP)2d~p 
O"k+1 = O"k + addk 

(I 

Compute the updated barrier vector pHI from (42) 
k=k+l 

until convergence 

6 Numerical results 

We have conducted a set numerical experiments on a collection of test problems using algorithm CSIPM. 
The algorithm has been implemented, and the tests have been carried out, on MATLAB 4.3. 

In the preceding description of the algorithm we have considered only simple bounds of the form 
x ~ 0, to simplify the resulting expressions. The implementation of the algorithm used for the tests is 
able to handle simple bounds of the form l ~ x ~ u, where some of the entries in l could be equal to -00, 

and some of those in u could be 00. These bounds are included in the objective function via logarithmic 
barrier terms. 

6.1 Small sized problems (less than 100 variables) 

The first subset we have considered is composed of 36 small problems from the Hock and Schittkowski 
collection, [11]. We have selected all problems with more than 6 variables and a sparse Hessian of the 
Lagrangian function (note that exact first and second derivatives have been used). Moreover, some 
strongly nonconvex problems have also been selected (HS64 and HS72, see [8]), as well as problem HS13 
whose Jacobian is rank deficient at the solution. Whenever possible, the initial points proposed in [11] 
have been taken. Sometimes these initial points do not satisfy the bound constraints. Such points have 
been transformed following a strategy similar to that described in [18]. Table 1 shows the results obtained 
by CSIPM for these small problems. The columns in the table correspond to: 

• Prob.: problem name. 
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• Const.: norm for the constraint vector including slacks. 

• KKT: norm for the first-order KKT conditions including slacks. 

• Iter.: iteration count (number of factorizations of the primal-dual system). 

• Eval.: number of evaluations of the objective function and the constraints .. 

• NC: number of iterations where directions of negative curvature were used. 

Table 1: Results for small-size problems 

I Prob. 11 Obj. I Const. I KKT I Iter. I Eval. NC 

HS13 -- -- -- -- -- --
HS32 1.00000001 7.ge-13 7.0e-08 14 14 0 
HS53 4.0930232 1. 8e-15 6.2e-14 4 4 0 
HS64 6299.84243 1.2e-16 2.5e-14 26 30 0 
HS65 0.95352886 9.8e-32 1. 4e-15 15 26 2 

0.95352886 2.1e-08 2.8e-11 17 31 0 
HS71 17.0140173 2.2e-14 3.7e-14 8 8 0 
HS72 727.67936 1.7e-18 7.3e-12 24 24 0 
HS73 29.894378 8.0e-15 1. 2e-13 16 16 0 
HS74 5126.4981 1.4e-ll 6.5e-09 8 8 0 
HS75 5174.4127 2.5e-13 4.3e-10 9 9 0 
HS80 0.0539498 9.3e-09 9.ge-09 9 9 0 
HS81 0.0539498 1.5e-10 1. 6e-10 9 9 0 
HS83 -30665.539 3.4e-09 1. 2e-12 19 19 0 
HS84 -5280335.13 1.0e-08 1.8e-07 36 43 0 
HS86 -32.348679 1.0e-14 1.0e-08 14 14 0 
HS93 135.075963 3.2e-15 1.5e-07 9 9 0 
HS95 0.0156195 6.ge-12 2.7e-10 11 11 0 
HS96 0.0156195 2.6e-11 8.3e-10 11 11 0 
HS97 4.0712463 6.2e-12 2.0e-09 13 13 0 
HS98 4.0712463 9.7e-15 1.2e-12 16 19 1 

4.0712463 1.0e-10 2.0e-08 16 17 0 
HS99 -8.3108e8 4.4e-11 0.49945913 6 6 0 
HS100 680.630057 9.0e-10 2.3e-09 9 13 1 

680.630057 1.ge-09 5.1e-09 10 15 0 
HS104 3.9511634 1.5e-13 1.0e-12 12 12 0 
HS106 7049.24802 4.1e-ll 4.1e-11 13 14 0 
HS107 4797.98185 5.2e-14 7.5e-09 9 13 0 
HS108 -0.8660254 3.2e-10 5.3e-10 19 24 0 
HS109 -- -- -- -- -- --
HS110 -45.7784697 -- 4.8e-13 5 5 0 
HS111 -47.7610917 5.0e-08 9.0e-08 12 18 0 
HS112 -47.7610908 2.5e-06 1.8e-08 12 18 0 
HS113 24.306209 1.4e-ll 2.3e-11 18 25 3 

24.306209 5.1e-09 5.8e-08 41 54 0 
HS114 -1768.80696 3.1e-11 1.0e-10 17 18 0 
HS116 97.5875096 2.ge-13 8.4e-ll 32 36 0 
HS117 32.3486790 1. 2e-10 5.7e-10 23 27 0 
HS118 664.820450 2.0e-14 3.1e-10 14 14 0 
HS119 244.899697 2.2e-16 2.ge-08 12 12 0 

In those cases were negative curvature was detected (HS65, HS98, HS100 and HS1l3) the problem 
was solved a second time, without using negative curvature. An improvement was noticed for most of the 
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problems when negative curvature was usedj this improvement was particularly remarkable for problem 
HS113. The algorithm is able to solve 34 problems, but it fails to solve two of them, problems HS13 
(with a rank-deficient Jacobian at the solution) and HS109 (after exceeding 250 iterations no solution 
was reached). For four problems the code finds better local minimizers than those given in [11] (problems 
HS106, HS107, HS112 and HS116), while for two of the problems the local minimizers found are worse 
(HS97 and HS98). Problem HS99 is an example of a badly scaled problem. The termination tolerance 
is satisfied when the norm of the first-order KKT conditions is 0.4994. Introducing a more demanding 
stopping criterion (a tolerance of 10-14 ), the norm of the KKT conditions goes down to 10-6 after 3 
additional iterations, but the value of the merit function remains basically unaltered. 

6.2 Medium sized problems (100 to 400 variables) 

We have also tested the algorithm on two medium sized problems, instances of multi-area AC Optimal 
Power Flow (OPF) problems. These problems are OPF24 and OPF24-3j Table 2 provides some informa­
tion on their properties and a more detailed description can be found in [12] and [22], respectively. The 
columns in this table correspond to: 

• Prob.: problem name. 

• Var.: number of variables. 

• EC: number of equality constraints. 

• rc: number of inequality constraints (bounds not included). 

• LB: number of lower bound constraints. 

• UC: number of upper bound constraints. 

• rc: total number of constraints (bounds included). 

• Sis.: size of the primal-dual system (17). 

Table 2: Description of medium-size problems 

Prob. Var. EC IC LB UB TC Sis. 

Table 3 shows the results obtained for these problems. The algorithm is able to solve both problems 
in a reduced number of iterations. Note that the number of iterations required by the procedure using 
negative curvature is larger than that required when no negative curvature is used, for problem OPF24-3. 
The reason is that the minimizers computed in both cases are different. This is a consequence of the 
non convexity of the problems, and the existence of several local minimizers. 

Table 3: Results for medium-size problems 

Prob. 11 Obj. I Const. I KKT I Iter. I Eval. NC 

OPF24 4344.8315 6.3e-13 1.0e-07 28 32 0 
OPF24-3 110.53257 1. ge-l0 2.8e-08 31 32 9 

110.46529 9.0e-11 2.1e-l0 26 26 0 
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7 Conclusions 

In this paper we have described an efficient procedure to compute local solutions of nonconvex problems. 
The procedure is based on a primal-dual method to define the search directions, and a curvilinear search 
to combine them. 

The implemented version of the algorithm has been tested on a set of small and medium test problems. 
The results show that the procedure works quite well on these problems, compared to other proposals 
in the literature. The use of vector penalty and barrier parameters is in part responsible for this good 
behavior. 

The impact of the negative curvature is not very significant on these small problems, but it can be quite 
significant in those few cases when it is used. As would be expected, there is an increasing tendency to use 
negative curvature information as the problems get larger. Given the limited cost of computing a direction 
of negative curvature whenever an appropriate factorization is used to obtain the movement directions, 
it would seem that any reasonable algorithm should allow the use of this second-order information. 
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