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INVENTORY POLICIES 
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Managing product variety is a widely recognized challenge. Several approaches to this rely on the "pooling 

effect", the reduction of uncertainty that occurs when individual demands are aggregated. This can occur 

through reduction of number of products orSKUs, through postponement of differentiation, or in other ways. 

These approaches are by now well-known and widely applied in practice. However, theoretical analyses of the 

pooling effect always assume that one has an optimal inventory policy before and after pooling. If this is not 

the case, how does that affect the value of pooling? This paper analyses the benefits of pooling in terms of 

costs and service level under optimal and suboptimal policies and proposes a simple framework to analyze the 

trade-off between implementing pooling and improving inventory policy. We show there is always a range of 

current inventory levels within which pooling is better and beyond whichoptimizing inventory policy is better. 

We analyze how this range varies with the problem parameters and illustrate these findings using highly erratic 

empirical demand data. 
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1. INTRODUCTION 

The complexity of supply chains can be quite staggering, entailing high costs combined 

with incessant customer service problems. Increasing variety is' a critical ingredient of this 

complexity, and managing this variety is becoming a field of research in its own right, as 

witnessed by (among others) the recent book edited by Ho and Tang (1998). Roughly 

speaking, variety can be induced by having to serve multiple geographic locations, or 

stocking multiple products or SKUs (stock keeping units). A growing body of literature 

exists on how to deal with both of these, sometimes focusing on reducing lead times, 

sometimes on various types of aggregation of uncertainty. This in turn can occur through 

geographical "pooling" of inventories or through some form of rationalization of product 

lines. In both cases, the general mechanism underlying pooling or SKU rationalization is 

the ability to exploit "statistical economies of scale" by aggregating uncertainties, which 

reduces the total uncertainty one needs to deal with. The analysis and discussion here is 

presented in terms of SKU rationalization, but the arguments are highly similar in the case 

of geographical pooling; we use the term pooling to refer to both. 

Sometimes, pooling inventories is easy to do and (almost) costless; in such situations, little 

discussion is needed, and companies should seek and exploit such opportunities. A typical 

example would be shipping kits with a single set of assembly instructions in multiple 

languages rather than have to distinguish between kits intended for different markets. Often, 

however, the costs involved are more significant. Some people will argue that reducing 

product variety, for instance by limiting the number of sizes in which toothpaste is sold, 
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leads to marketing disadvantage. In other cases, rationalizing product lines may directly • increase unit manufacturing costs, if mUltipurpose and more costly components or process 

changes are required. A well-known example of this is the HP DeskJet printer (Lee, 

Billington and Carter 1993): the redesigned product could be localized at DCs across the 

world, but final assembly of the power supply had to be made easier as it would no longer 

be performed at HP's central facility in Vancouver, leading to higher component and 

assembly costs. However, these added costs were easily outweighed by the inventory and 

customer service advantages HP gained. Lee and Tang (1997) develop models to assist in 

the trade-off between such delayed differentiation and increased manufacturing costs. In 

such cases, more careful evaluation of the benefits of pooling and of possible alternative 

strategies is needed. That is precisely the aim of this paper. 

Typically, a company's interest in the various types of pooling available is sparked by 

excessive inventory costs andlor constant customer service problems. Although pooling 

should benefit such a company in most cases, these may merely be symptoms of poor 

inventory management to begin with. Indeed, inventory policies in practice are often 

suboptimal, sometimes dramatically so. Should such a company even consider pooling, or 

should they get their inventory management sorted out first? In this paper, we address this 

dilemma by asking and answering the following questions: 

• Does having a suboptimal inventory policy increase or reduce the value of pooling? 

• Should a company suffering high inventory costs and low service level start by 

improving its inventory policy, or by implementing pooling? Ideally, obviously, one 
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would do both, but given that practitioners are often hard-pressed to find enough time to 

even implement one of the two, it is important to know where to start. 

• How can these questions be answered in a context where demand does not follow any 

recognizable distribution? 

Much of the literature related to the pooling effect assumes either identical or independent 

demand distributions (or both). We use a simple reformulation of the general multivariate 

normal demand case from which the identically and/or independently distributed cases 

follow easily as special cases, thus allowing us to dispense with the i.i.d. assumption for 

part of our analysis. We show how the level of concentration of uncertainty among SKUs, 

defined later, is a key driver of the value of pooling. 

In many supply chains, pooling is implemented as much in order to improve customer 

service as to reduce costs; therefore, we also evaluate the effects on fill rate and service 

level. Throughout, we focus explicitly on the inventory issues; benefits of pooling due to, 

e.g., manufacturing simplification can be (as) significant, but we do not consider those here. 

Section 2 reviews a selection of relevant literature on various types of pooling. Section 3 

presents the framework and basic model for analysis. In Section 4 we characterize the value 

of pooling under optimal and suboptimal inventory policies and the value of improving the 

inventory policy before and after pooling. We compare these effects in Section 5 and find 

that although improving a SUboptimal policy is always beneficial, there is a wide range of 

cases in which it may be better to focus on pooling instead. Section 6 provides a practical 

illustration of how to determine the value of pooling, using highly erratic but characteristic 

demand data from a chemical manufacturer. Section 7 contains our conclusions. 
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2. LITERATURE REVIEW 

The number of stock keeping units (SKUs) is the standard measure of product variety in a 

company. Each of these SKUs may be stored in multiple locations, leading to geographical 

variety. Reducing either product variety or geographical variety will generally allow a 

company to maintain current customer service at lower cost (or improve service without 

incurring extra costs). The fundamental mechanism underlying both approaches is 

equivalent, even if there are significant differences between them. In both cases, pooling 

can be defined as a business strategy that consists of aggregating independent demands 

(Gerchak and Mossman, 1992). Below we first review the geographical context, where the 

concept of the pooling effect originated, then various approaches and models for SKU 

rationalization and postponement of differentiation. 

Geographical variety 

The concept of pooling originated with Eppen's (1979) and Eppen and Schrage's (1981) 

work on multi-echelon inventory systems with geographically dispersed stocking locations. 

A typical scenario includes a central depot which supplies N locations (or retailers or 

warehouses) where exogenous, random demands for a single commodity must be filled. 

The assumptions made there and in much subsequent work include that demand at each 

location i in period t is assumed to be independent and normally distributed over time; that 

all locations have identical linear holding and penalty costs; that the coefficient of variation 
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is negligible so that the probability of negative demand can be ignored; that items are 

allocated to locations so as to equalize probability of stockout; that unsatisfied demand is 

backlogged; and that material is non-perishable. Eppen (1979) was the first to show how 

centralization of inventory could reduce expected costs in a multi-location single-period 

newsboy problem. He called this "statistical economies of scale", and concludes that the 

expected holding and penalty costs in a decentralized system exceed those in a centralized 

system. If demands are identical and uncorrelated, costs increase as the square root of the 

number oflocations; as demand correlation increases, this effect is reduced. Schwarz (1989) 

defines this as the "risk pooling incentive" for centralizing inventories. 

Eppen and Schrage (1981) develop a depot-warehouse system, in which the depot orders 

from the supplier and allocates products to the warehouse each period or every m periods. 

They show that the reduction of total inventory from pooling is greater as the depot's 

review period increases and is proportional to the number of products. Erkip et al. (1990) 

analyze the effects of correlation among products and among successive time periods, 

assuming the coefficient of variation is equal for all products. They conclude that high 

positive correlation (around 0.7) results in significantly higher safety stock than the no­

correlation case. Schwarz (1989) focuses on lead times and defines the price of risk pooling 

as cost ofthe pipeline inventory caused by the intemallead-time. Jonsson and Silver (1987) 

present an exhaustive study of the impact of changing input parameters on system 

performance; the redistribution system is more advantageous in situations with high 

demand variability, a long planning horizon, many locations and short lead times. Jackson 

and Muckstadt (1989) show that allocating a centrally held inventory to retailers leads to a 
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more balanced distribution of stock in the system. Tagaras (1992) shows that allowing • transshipments between retailers leads to similar results as including a distribution center as 

in Eppen and Schrage's (1981) model. Gerchak and Mossman (1992) show how the order 

quantity and associated costs depend on the randomness parameter in a simple and highly 

interpretable manner. Federgruen and Zipkin (1984) extend Eppen and Schrage's (1981) 

model in three important ways: finite horizon, other-than-normal demand distributions 

(including exponential and gamma), and non-identical retailers. To summarize, the pooling 

effect yields a reduction in expected costs, but might increase inventory level. 

Product variety 

The benefits of delayed product differentiation are quite similar to those of the pooling 

effect in multi-echelon inventory systems. In fact, most work on postponement has drawn 

upon this body of research (Garg and Lee, 1999), referring to multiple products instead of 

multiple locations. Empirical research suggests that appropriate policies can facilitate 

absorption of higher levels of product variety without significant detrimental effects on 

costs (Kekre and Srinivasan, 1990 and McDuffie et aI., 1996). Figure 1 displays the main 

strategies that have been developed to reduce the effects of SKU proliferation. Product 

variety strategies can be categorized into two broad classes (Garg and Lee, 1999): those that 

do not reduce total lead time but delay or eliminate product differentiation and thus reduce 

complexity, and those that reduce lead times and thus reduce uncertainty. Detailed surveys 

of these strategies can be found in Garg and Lee (1999) and Aviv and Federgruen (1999). 
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Early research studied standardization of components. Collier (1982) and Baker et al. 

(1986) designed models to minimize aggregate safety stock levels by using component 

standardization, subject to a service level constraint. Lately research has focused more on 

various types of postponement. Lee and Tang (1997) define two policies: while modular 

design refers to decomposing the complete product into submodules that can be easily 

assembled, process sequencing refers to resequencing process steps, either through 

operations reversal or postponement of an operation. Lee and Tang (1998) and Kapuscinski 

and Tayur (1999) show that reversing two consecutive stages of the process could lead to 

reduction in variance or standard deviation, thereby improving the performance of the 

process. Swaminathan and Tayur (1998) propose an integer programming approach to 

determining the optimal configurations and inventory levels for submodules. 

Postponement of an operation consists of delaying it until a later stage in the process, thus 

delaying the point of differentiation (Aviv and Federgruen, 1999). Lee (1996) describes two 

models that capture the inventory reduction of delayed product differentiation, assuming 

that no buffer stocks are held until the end of production process. It shows the savings are 

greater when demands for the different products are negatively correlated. Lee and Tang 

(1997) extend this scenario in two ways: allowing for inventories at different points of the 

process and adding other factors that are normally affected by delayed product 

differentiation, such as lead times and design cost, processing cost and inventory cost at 

intermediate stages. Initially, all operations are independent for the two products, but with 

delayed differentiation the first k operations become common. 
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This is just a selection of the extensive theoretical literature on reducing product variety, 

showing how pooling can be implemented in different ways and can be beneficial in a wide 

range of cases. From a practical perspective, this literature suggests several questions. First, 

what is the impact of pooling on service level, rather than on inventory and cost? Tagaras 

(1992) is one of the few to explicitly address this. Second, if a company's inventory policy 

is not optimal to begin with, how does that affect the value of pooling? There are papers on 

practical applications of pooling (such as Lee et al. 1993), but this effect of suboptimal 

inventory policies on the value of pooling has not yet been studied. 

3. FRAMEWORK AND BASIC MODEL 

The literature on the various manifestations of the pooling effect makes the assumption that 

the underlying inventory policy is optimal, i.e. that it minimizes total cost. However, in 

practice, an "optimal" inventory policy can be very hard to determine, partly because the 

exact costs and demand distributions are not known with certainty. A practitioner, faced 

with high variety and a suboptimal inventory policy, may well ask how useful pooling will 

be in such a context. Figure 2 summarizes the situation: starting from the upper-left 

scenario 1, should the practitioner first improve his inventory policy (scenario 3), or should 

he first implement pooling (scenario 2)? Of course, scenario 4 is always the most desirable, 

but it is not clear which of the two paths (1-3-4 or 1-2-4) is preferable. Within this 

framework, one can ask the questions already posed in the introduction: 

1) How does the value of pooling change when the company does not follow an optimal 

inventory policy, i.e. how does path (1-2) compare with (3-4)? 
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2) Starting in scenario 1, which is more desirable, pooling (scenario 2) or improved 

inventory policy (scenario 3)? 

In this section we examine each of the four scenarios, largely following Eppen (1979). 

Assume the company initially produces N SKUs; pooling means consolidating all products 

into one, whose total demand is the sum of all the original SKUs. We keep the theoretical 

models relatively simple in order to focus on the qualitative insights; in Section 6 we 

investigate how one can apply the concepts studied here when most of these assumptions, 

notably those concerning demand pattern, are violated. Notation is standard and 

summarized in Table 1. We consider a single planning period. There are initially N SKUs, 

whose demands Zi follow a multivariate normal distribution F(z) ~ N(p,~). Write 

Jl = ~ I:l Jlj and a = ~ I:l a j , the "average" mean and standard deviation, and define a 

vector x of Xi such that ai=xia for all i and I:l Xj = N . If Xi = 1 for all i, then all SKUs 

contribute equally to total uncertainty. Covariances are aij = aiOjPij = XiXjPija2, so that 

I=a2 x'Rx with R the correlation matrix. Assume the coefficients of variation of demand 

(ai / Jl J are small so that the probability of negative demand can be ignored. Unsatisfied 

demand is backlogged. Correlation over time is negligible. 

We analyze the effect of SKU rationalization on total expected inventory cost TC and on 

two measures of customer service. Given initial inventory Yi for product i, total expected 

cost is given by: 

Yj Yj 

TC(Yj) = Jh(Yj - z;)dF(zj) + Jp(Zj - y;)dF(z;) (1) 
o 0 
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This can be expressed as: 

00 

TC(y;) = hey; - p;) + (p + h) fez; - y;)dF(z;) = (hk; + (p + h)In (k;))a; (2) 
y 

where k; = y; - Pi and where In is the unit normal loss function (Eppen and Schrage, 
(J; 

2 k2 
00 1 2- 1--

1991): In(k) = fez -k) ~ e 2 dz = ~ e 2 - k[1- <D(k)] 
k v21C v 21C 

(3) 

In(k) is convex decreasing in k, and lim In (k) = 00 and lim In (k) = O. For service level, we 
k,1.-oo kt +00 

. . E[ min {y. , z . } ] 
use fill rate and probabIlIty of no stock outs. Define fill rate as Pi = I I • The 

E[z;] 

probability of no stockouts is given by Yi = P{z; :::; y;} . 

4. THE VALUE OF POOLING AND OF IMPROVING INVENTORY POLICY 

In this section, we analyze the three performance measures under the four scenarios in 

Figure 2, i.e. before pooling and after pooling and with a sUboptimal and an optimal 

inventory policy. Total expected cost before pooling (BP) is minimized at Yi=Yi*, defined by 

F; (y;) = P:h = a or y; = F; -I (P:h)' Here, a is the critical fractile and represents the 

optimal probability of not stocking out. The optimal inventory level can be expressed as 

y; = P; + k;* (J; where k;' = <D-1 (a) is the optimal safety factor of product i, with <D the 

cumulative standard normal distribution. We define suboptimal policies in terms of kr the 

larger the deviation from ki *, the more sUboptimal the policy. Any inventory level Yi can be 
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expressed as Yi=Pi + kiO"i for some ki, so ki gives us a normalized measure of • 
suboptimality. At optimum, total expected costs for product i are: 

(4) 

The optimal safety factor is the same for each product: k;* = k * . Lemma 1 is well-known: 

Lemma 1: after pooling N SKUs into 1, demand for the consolidated product is 

N(p AP'O"~P)' where PAP =Np and, letting I be the N-dimensional vector with all elements 

equal to one, 

N N-I N 

O"AP = LO";2 +2L LO";O"jPij =.Jt'~t =O".Jx'Rx. (5) 
;=1 ;=1 j=;+1 

Two special cases help us interpret this expression: 

• When Pi}=O for all non-diagonal elements, so that R=/ (the N-dimensional unit matrix), 

measure of the concentration of uncertainty: the lower 0";, the more evenly total 

uncertainty is spread out among all SKUs. Clearly, O"AP increases in a 2
• it is 

x ' 

minimized at x = t, in which case 0"; = 0 and 0" AP = O".JN . 

• If all SKUs are identically distributed, i.e. x=t, then O"AP =O"~N+ L;"jPij. Now, 

O"AP is increasing in all Pi} as expected, and R=/ gives 0" AP = O".JN . 
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In general, 0 ~ 0" AP ~ NO". Later, when discussing sensitivity with respect to N, we will • 
have to assume R=/ and x = t, as otherwise .Jx'Rx could increase or decrease in N. 

Lemma 2: for any safety factor k, total inventory level, expected cost, fill rate and non-

stockout probability for the system with N SKUs before pooling are given by: 

YBP = NJl + NkO" (6) 

(7) 

I N [ . { }] Emm .,Z. 

fJ = i;1 Y, I = 1 _ 0" I (k) 
BP ,",N n 

~i;1 E[Zi] Jl 
(8) 

(9) 

Tofind system performance in optimum, substitute ki* = <1>-1 (a) = <1>-1 (P:h) for k. 

I:IJli = NJl; the other statements are well-known. 

Lemma 3: for any safety factor k, total inventory level, expected cost, fill rate and non-

stockout probability for the system after pooling N SKUs into 1 are given by: 

YAP = NJl + kO".Jx'Rx (10) 

(11) 
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(12) • 
(13) 

System performance in optimum is found by substituting k j* = <1>-1 (a) = <1> -1 (p:h) for k. 

We can now quantify the effects of pooling under an optimal or sUboptimal inventory 

policy, and of improving inventory policy before and after pooling. Actually arriving at the 

optimal policy is hard to do in practice, so using the optimal policy as a benchmark gives an 

upper bound on the benefits of improving inventory policy. 

Proposition 1: the effects of optimizing inventory policy before and after pooling (going 

from scenario 1 to 3 and from scenario 2 to 4 in Figure 2) are given by: 

(14) 

(15) 

Proposition 1 shows that the effects of improving inventory policy depend primarily on the 

differences (k-k*) and I (k)-In(k*), where k* itself depends on -L. Due to the 
n p+h 

- 13 -



-
convexity of TC we know that the cost of suboptimality is convex increasing in I k - k· I . 

The value of improving inventory policy before pooling is also increasing in N and a, as 

expected. PBP can increase or decrease after improving inventory policy; the change in fill 

rate P;P - P BP is concave increasing in (k - k·), and the absolute value I P;P - P BP I 

increases with a, decreases with but does not depend on N. After pooling, however, the 

effect on fill rate depends on N through ~,Jx'Rx which for R=/ and x = 1 is equal to 

1/ IN. In this case, as N increases, fill rate after pooling tends to 1. Service level r can 

also increase or decrease: the differences I r;p - r BP I and I r:p - rAP I increase with 

I k - k· I· The effect of pooling is ambiguous, as I r:p - rAP I-I r;p - r BP I may be greater 

or smaller than O. For N sufficiently large, the difference is always positive. In other words, 

if avoiding stockouts is a key criterion and N is large, the benefits of improving inventory 

policy can be significantly increased by also implementing pooling. 

Proposition 2: the effects of pooling under a suboptimal inventory policy (going from 

scenario 1 to 2 in Figure 2) are given by: 

(18) 

(19) 

(20) 

If R=/ , then rAP - r BP = <l>(k) - <l>(k)N (21) 
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The effects of pooling under an optimal policy (going from scenario 3 to 4) can be found by 

substituting k* for k in (18)-(21). 

Returning to the two special cases earlier confirms what is known (intuitively or explicitly) 

about the effects of pooling. If R=I, then the cost reduction depends on 

(N - -Jx'x 'p = (N - ~ N(cr~ + 1))cr , which is decreasing in crx2, and maximized at crx2=O, 

or x = 1. The more evenly uncertainty is spread out among the SKUs, the greater the 

benefits of pooling. Similarly, if x = 1, the cost reduction depends on 

(N - ~ N + L;" j Pij )cr, which is decreasing in Pi}. The more positive correlation among 

demands, the lower the value of pooling. Table 2 summarizes sensitivity analyses for all 

parameters and all performance measures, which agree with results obtained elsewhere 

(Jonsson and Silver, 1987, and Gerchak and Mossman, 1992). 

5. COMPARING POOLING AND IMPROVING INVENTORY POLICY 

Returning to the framework in Figure 2, we asked whether, starting with no pooling and a 

suboptimal inventory policy (scenario 1), it was better to implement pooling (scenario 2) or 

to improve inventory policy (scenario 3). The initial costs are given by TCBP(k) , the two 

alternatives carry costs of TCAP(k) and TC;p = TCBP(k*) respectively, given in 

Propositions 1 and 2. Comparing these, we get: 

- 15 -
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Proposition 3: in a system with N SKUs and suboptimal safety factor k, pooling without 

improving inventory policy is better than improving inventory policy without poolingfor all 

kin [kj,k2J, where the ki are the two solutions to TCAP(k) = TCBP(k*), i.e. 

(22) 

k j and k2 do not depend on 0'; if R=/ and x = 1, then k j decreases and k2 increases in N 

Proof: for any k, we know that TCBP >= TCAP, and because both costs are convex in k and 

will grow without limit as k tends to plus or minus infinity, we know there must be unique 

increases linearly in N, so the same is true for TC;p, and TCAP increases linearly in 

,.jx'Rx = IN when R=/ and x = 1. So, let kj and k2 satisfy TC;p = TCAP(kJ, for some 

given N. Now take some other N'>N It is easy to verify that: 

(23) 

This implies that for this new N', the solution to TC;p = TC'AP (k2) must be some k2' > kb 

as TC'AP(k) is increasing for k> k* and therefore also at k2. Similarly, one can show that k j ' 

< k j, so that the "pooling" range [kj ',k2 '] for N' fully contains the range [kj,k2] with the 

original N. In the limit, as Ntends to infinity, k j goes to -et:) and k2 goes to +00. 

This is graphically illustrated in Figure 3, which shows total expected cost before and after 

pooling when R=/ and x = 1. To study the effect of p and h, we set p=h=2 in the upper 
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graph, p=20 and h=2 in the middle graph, and p=2 and h=20 in the lower graph. In all • three cases, N= j 0 and (Y = j O. The graphs immediately illustrate that for k in the range 

[kj,k21 , it is better to implement pooling without improving inventory policy, whereas for 

k outside that range it is better to implement an optimal inventory policy with no pooling. 

Analyzing sensitivity of the range [kj,k21 with respect to p and h is more complex. 

Fortunately, though, we only need analyze one of these parameters, due to some easily 

verifiable symmetry properties. 

Lemma 3: if we exchange p and h, then TC(k; p,h) = TC(-k; h,p) for all k. With 

k* =<D-l(~h)' TC(k*) issymmetricinpandh, i.e. TC(k*;p,h) = TC(k*;h,p). 
p+ 

k 2 k 2 

1 --- 1 ---
Proof: use In (-k) = ~e 2 +k[l-<D(-k)]= ~e 2 +k<D(k)=In(k)+k. 

~2~ ~2~ 

The following lemma is then immediate: 

Lemma 4: if [kj,k21 is the "pooling" range associated with parameters (P,h), then [-k2,-

kjl is the pooling range associated with (h,p). 

This is borne out by Figure 3: the middle case withp=20 and h=2 is symmetric to the lower 

case with p=2 and h=20. Therefore, we need only examine the effect of p, by comparing 

the upper and middle graphs. In the upper graph, the "pooling" range [kj,k21 covers a broad 

area on both sides of the optimal k*. In this case, improving inventory policy rather than 
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pooling should be recommended only to companIes with excessively high or low 

inventories. As p increases, a tends to 1, and the penalty associated with a safety factor that 

is too low grows faster than the penalty associated with too high a safety factor. Now, the 

"pooling" range [kj,k21 seems to shift to the right relative to the upper graph, meaning that 

inventory need be less far below optimal before improving inventory policy becomes better 

than pooling. In this particular case, pooling is better for all k between approximately 0 and 

4, which spans most situations one might expect to find in practice; this range will increase 

further if we increase N above 10. Only for k negative or very large should this company be 

more concerned about improving inventory policy than about pooling. 

Table 3 computes k j and k2 for a range of parameter values for R=/ and x = 1. Tentatively, 

these analyses and examples suggest that inventory policies need to be seriously suboptimal 

before improving inventory policy should be preferred above pooling. That this is true for 

large N is no surprise, given that [kj,k21 grows without bound as N goes to infinity. More 

surprising is how large this range is for small N. Even for N=5, current safety factor needs 

to be more than 1 more or less than optimal before pooling becomes less attractive than 

optimizing inventory policy. At N= 1 0 and beyond, the range is already wide enough that it 

seems unlikely that a company with even a vague sense of the relative importance of 

stockout and holding costs would find itself outside that range. Though the table assumes 

R=/ and x = 1, it is easy to compute the [k j , k21-ranges for any other R and x. In Section 

6, we compute these ranges for a case where x =I; 1 . 
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6. SKU RATIONALIZATION IN PRACTICE 

So far, in comparing the value of pooling relative to the value of improving a suboptimal 

inventory policy, we have assumed (multivariate) normal demand. Federgruen and Zipkin 

(1984) show how their approximations are still valid under a considerably broader class of 

distribution functions. Especially in industrial settings further upstream in supply chains, 

though, demand patterns can become truly erratic, due to the collection of mechanisms 

known as the bullwhip effect (Lee, Padmanabhan and Whang, 1997). The question 

naturally arises: how does the usefulness of the concepts and results derived above and 

elsewhere in the literature on the pooling effect change as a result? How can a practitioner 

construct a quick and rough estimate of the value of pooling, before spending too much 

time on feasibility and implementation studies? Though such questions are clearly 

impossible to answer in general, we illustrate how one can perform simple analyses to 

arrive at an initial estimate of the expected benefits of SKU rationalization even when 

demand distributions for each product do not follow any recognizable distribution. To do 

so, we use two years of demand data (from 1993-1994) from Pellton International, a 

chemical manufacturer acting as a supplier to automotive suppliers. Below, we first briefly 

describe the context and the demand structure, then the analyses and experiments we did 

using those data, and compare our findings with the theoretical results derived earlier. For 

reasons of confidentiality, the true company name is disguised; we have also omitted details 

of lead times in these illustrations. Overall, the analysis has been kept simple, and should be 

thought of as the first step beyond a "back-of-the-envelope" estimate rather than a final, 

accurate prediction; for that, a simulation model with more detail would be needed. 
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Pellton International 

A more detailed description ofPellton International can be found in Corbett, Blackburn and 

Van Wassenhove (1997,1999). Pellton supplies rolls of plastic to automotive suppliers, 

ranging in width from 60 to 130cm wide, in lcm increments; moreover, there are several 

different chemical formulations, colors, etc, leading to a total of over 2000 SKUs. We focus 

on their two main formulations, grade SI and S2, and only on the clear (uncolored) plastic. 

Within grade S2, there is a special formulation for a key customer, grade S21P. The plastic 

is produced in rolls of 320cm wide, and slit into rolls of the desired width; this slitting is an 

integrated part of the production line. Due to the inflexibility of the process, Pellton needs 

to make to stock. They constantly experienced stockouts and excessive inventory costs, and 

were interested in applying some form ofSKU rationalization. There were three options: 

• A program called "mastersizes", in which rolls would only be produced in 5cm 

increments; the customers would then have to trim the excess material themselves. 

(This was not a problem, as the customers have to trim the plastic to shape anyway.) 

This would potentially reduce the number of SKUs by approximately a factor 5. 

• Eliminating the special grade S21P by helping that one customer to switch to the 

standard grade S2; this would eliminate all sizes of S21P currently produced. 

• Postponement, separating the slitting operation from the production line. This would 

allow Pellton to produce rolls of 320cm and to postpone slitting to size until firm orders 

were received. This option would clearly be preferable but also required more capital 

investment, whereas the other two options were relatively easy to implement. 
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How does one go about constructing an initial estimate of the value of these options? We 

should emphasize that it is not our intention to provide an estimate of the value to Pellton of 

pooling, as more specifics of their processes would need to be taken into account. Rather, 

we merely use the demand patterns observed by Pellton for illustrative purposes. 

Demand structure 

Table 4 lists the number of SKUs produced and shipped in the two-year period considered 

for each grade, and several measures of concentration of demand and of uncertainty. Some 

individual SKUs represented over 15% of total demand for that grade, others were ordered 

only a few times. However, for studying the value of pooling, concentration of uncertainty 

is more relevant than that of demand. Recall that if the SKUs are closer to having identical 

standard deviations, O"~ will decrease to O. The result of this concentration of uncertainty is 

clear from rows 4 and 5: 0" AP = O",J x' x is between 50 and 100% larger than if x = 1 . Figure 

4 shows weekly orders for the highest-volume SI SKU, and the corresponding frequency 

distribution; aggregate weekly demand is similarly erratic. Incidentally, this is an excellent 

illustration of the bullwhip effect: automotive assembly schedules do not vary drastically 

from week to week, but the graphs show that demand two levels upstream in the supply 

chain can be totally distorted. For almost all SKUs, correlation between weekly demands is 

in the (-0.1, +0.1) interval, so we can ignore it. The demand data could not be adequately 

explained by any reasonable distribution, after extensive goodness-of-fit tests (using Crystal 

Ball and Maple). We used three standard tests: the chi-squared (X2) and the empirical 
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distribution function-based (EDF) tests, the Kolmogorov-Smimov (K-S) and Anderson­

Darling (A-D) tests. Stephens (1984) concludes that A-D is the recommended omnibus test 

statistic for an EDF with unknown parameters, especially when tail behavior of the 

distribution is important, as when studying inventory policies. The A-D statistic is a 

variation on the standard Kolmogorov-Smimov test, and for n observations is defined as 

(Anderson and Darling, 1954): 

(24) 

We also decomposed observed demand into two components: a Bemoulli distribution with 

empirically determined probability Pi for each SKU i of having positive demand in any 

given week, followed by a continuous distribution of that demand. We fitted a wide range 

of distributions, and found that gamma, Weibull, and lognormal performed the best, but 

even they were more often rejected than accepted and none performed well for a large 

number of SKU s. The Pellton data meet our requirement of being truly poorly behaved, so 

we have to use the empirical distribution functions for our analyses. In fact, for a simple 

initial estimate of the value of various types of pooling, a retrospective analysis using the 

empirical demand data is also far more convenient. 

Pooling or improving inventory policy with empirical demand distributions 

The stockout and holding costs were estimated by Pellton to be p=O.0769 and h=O.00278 

ECU/m2 per week respectively, leading to a critical fractile a=O.965. (At that time, 1 ECU 

was US $ 1.3.) Using these costs, we simulated total holding and shortage costs over the 
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two-year period using the empirical demand data for a range of hypothetical inventory 

policies specified by Yi = Pi + k cri for each SKU i. We repeated this exercise after 

aggregating weekly demand for all SKUs of the same grade into 5cm increments (the 

"mastersizes" program), and after aggregating weekly demand for all SKUs into a single 

SKU (slitting to order, or postponement of customization). Table 4 shows how the 

mastersizes and postponement strategies reduce the number of SKUs. 

Because the demand distributions are poorly behaved, the optimal policy can not be 

expressed in the form Yi = Pi + k( a) cri for all i. We first calculated how total costs depend 

on k, as shown in Figure 5, the empirical counterpart to Figure 3. Because p»h, the graphs 

most closely resemble the middle graph in Figure 3. We also constructed [kj,k21 ranges as 

before, for the mastersizes and postponement strategies, as shown in Table 5. If Pellton's 

current safety factor k lies within [kj,k21, pooling (mastersizes or postponement 

respectively) is better than improving inventory policy; for k outside that range, the reverse 

is true. Table 5 provides an interesting counterpart to the theoretically derived Table 3. To 

compare them, note that Pellton's cost structure with a=O.965 corresponds to p=O.965 and 

h=O.035 in Table 3. Mastersizes applied to grade SI would reduce SKU count from 35 to 

11, equivalent to N:::::3 in Table 3; for postponement, one would compare with N=35. Even 

though the empirical demand underlying Table 5 bears no resemblance to the i.i.d. normal 

demand assumed in Table 3, the ranges [kj,k21 increase in N in both cases, and 

interpolating the theoretical values in Table 3 sometimes gets us quite close to the empirical 

ones in Table 5. The worse the inventory policy gets, the bigger the benefits of pooling, but 
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at the same time, the more likely it will be better to focus on improving the inventory policy 

instead. Table 5 goes beyond Table 3 by illustrating the impact of concentration of 

uncertainty: SI and S21P have almost the same number of SKUs (N=35 and N=34 

respectively), but S21P has higher concentration of uncertainty (o-x2=1.65 against o-x2=1.39 

for SI), and the corresponding [kj,k2i ranges are indeed somewhat smaller for S21P, so that 

the value of pooling is lower. 

For any gIven current inventory level, the expected benefits of mastersizes and of 

postponement are easy to determine from Figure 5. (Of course, in practice one would not 

construct this graph; we only do so here to compare it with Figure 3). If their current safety 

factor is k=2, the cost savings of master sizes are approximately 77% for grade SI and 75% 

for grade S2. Eliminating grade S2/P altogether, however, only gives an 11 % reduction; 

upon inspection, this is (partly) because the SKUs of grade S21P hardly overlap with those 

ofS2, so combining them (without pooling) does little to reduce uncertainty. 

6. CONCLUSIONS 

In this paper we have provided a simple framework for comparing the relative value of 

implementing some form of pooling against that of improving a suboptimal inventory 

policy. We study the general multivariate normal case and show how the combination of 

correlation and concentration of uncertainty affects the value of pooling. We find that the 

value of pooling increases as current inventory policy is more suboptimal, but obviously the 

value of improving that policy also increases. There is always a uniquely defined interval 
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within which pooling leads to greater cost reduction than optimizing inventory policy; 

outside that range, the reverse is true. If demands are LLd., this range expands with the 

number of SKUs N; we also show how it depends on stockout and holding costs, and 

conclude the range is generally (very) large, so that in most practical circumstances, 

pooling, even under a distinctly suboptimal inventory policy, can be preferred over 

improving that inventory policy. We illustrate how one might construct an initial estimate 

of the value of pooling using highly erratic demand data from a chemical manufacturer, and 

find that the theoretical results are corroborated. 

The managerial implications are significant. The paper delves more deeply into how and 

when might expect benefits, either in terms of cost or service level, to result from pooling. 

Above all, this work adds strength to the argument in favour of implementing some form of 

SKU rationalization, even when one is fully aware that the inventory policy in place is 

poor: the benefits will generally outweigh those of optimizing the inventory policy. 

Moreover, an optimal policy is normally impossible to find, as the demand distributions and 

cost parameters are not known with any precision. Pooling can reduce the complexity to the 

point that this suboptimality becomes far less costly. The estimates in Section 6 are very 

easy to perform in any spreadsheet such as Excel using historical demand data; before 

implementing pooling, one should at the very least conduct an analysis of this type to 

construct a rough estimate of the potential benefits. 

This work also poses several important questions for future research. We provide a 

framework for gaining better understanding of how the value of pooling varies with the 
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structure of demand, for instance the concentration of uncertainty among a limited set of -
SKUs. This needs to be studied further, as does the impact of the type of distribution • 
involved, etc. Both theoretical and extensive numerical analysis would help in this respect. 

Similar studies looking at other potential costs and benefits of pooling, in manufacturing 

and elsewhere, would complement this one. 
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Table 1: Summary of notation • 

TC expected total cost 

fJ fill rate 

r probability of no stockout 

p,h unit shortage and holding cost per period 

a critical fractile, a=p/(p+h) 

y stock level after ordering 

Zi demand, normally distributed with c.d.f. F(zJ, with mean 

Jli and standard deviation (ji 

Xi constants such that Jli=XiJl and (ji=Xi(j for all i 

l N-dimensional vector with all elements equal to one 

cP,f/J unit normal c.d.f. and p.d.f. 

I,R covariance and correlation matrix of the demands Zi with 

elements (ji} and Pi} respectively 

k safety factor; k* is the optimal safety factor k· = <l>-I(a) 

In(k) unit normal loss function 

N number of SKUs before pooling 
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Table 2: sensitivity analysis of the effects of pooling 

h (1) p (1) (J f.l N (2) 

YBP 

.j.. T IT k >O,.j.. k <0 T T k >O,.j.. k <0 

YAP 

.j.. T T k >O,.j.. k <0 T T k >O,.j.. k <0 

.j.. T T k >O,.j.. k <0 - T k >O,.j.. k <0 
YBP - YAP 

TCBP 
T T T - T 

TCAP 
'I T T - -I 

TCBP -TCAP 
'I T T - T 

PBP 
.J, 'I .J, T = 

PAP 
.J, T .j.. T T 

PAP - PBP 
T .j.. T .j.. T 

rBP 
.j.. T - - .j.. 

rAP 
.j.. T - - -

rAP -rBP 
'I (3) .j.. (3) - - 'I 

Note: the table shows how the performance measures and the differences between the 

before- and after-pooling situations vary with the problem parameters, assuming no 

correlation and equal distributions for all SKUs. 

(l) The results for hand p only apply in optimum, those for the other parameters apply for 

any k. For suboptimal policies, r, P and Y do not depend on p and h, and TC is 

increasing in both p and h. 

(2) The results for N assume R=/ and x = 1. In fact, more general results can be obtained 

for other R but we omit these here as they are not particularly insightful. 

(3) rAP - r BP is increasing in h and decreasing in p if and only if Np N-I ~ (p + h) N-I . 
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Table 3: ranges within which pooling is better than optimizing inventory policy, for given values of p , It, and N 

N 
2 5 10 25 100 1000 

P h k* k1 k2 k1 k2 k1 k2 k1 k2 k1 k2 k1 k2 
0.999 0.001 3.090 1.142 3.540 1.109 5.324 1.076 7.529 1.018 11.904 0.896 23.809 0.583 75.290 
0.995 0.005 2.576 1.038 3.051 0.940 4.573 0.854 6.467 0.722 10.225 0.480 20.449 -0.080 64.666 
0.990 0.010 2.326 0.950 2.815 0.809 4.215 0.693 5.960 0.523 9.423 0.215 18.846 -0.509 59.596 
0.950 0.050 1.645 0.588 2.177 0.324 3.270 0.123 4.612 -0.167 7.293 -0.717 14.586 -2.431 46.124 
0.900 0.100 1.282 0.340 1.841 0.012 2.791 -0.239 3.925 -0.614 6.205 -1.387 12.410 -4.360 39.243 
0.800 0.200 0.842 0.007 1.439 -0.400 2.239 -0.723 3.133 -1.240 4.949 -2.479 9.898 -7.825 31.301 
0.750 0.250 0.674 -0.126 1.288 -0.565 2.038 -0.920 2.848 -1.510 4.494 -2.997 8.988 -9.474 28.423 
0.667 0.333 0.431 -0.326 1.070 -0.812 1.752 -1.222 2.450 -1.940 3.857 -3.857 7.713 -12.196 24.391 
0.600 0.400 0.253 -0.475 0.913 -0.997 1.550 -1.453 2.174 -2.284 3.415 -4.553 6.830 -14.398 21.597 
0.500 0.500 0.000 -0.692 0.692 -1.269 1.269 -1.802 1.802 -2.824 2.824 -5.642 5.642 -17.841 17.841 

Note: the values for k 1 and k2 are the solutions to equation (22) with i.i.d. demand in Proposition 3 in the text, computed using Maple, 

the symbolic manipulation language. As the pooling range does not depend on Ji or a, it is sufficient to calculate the range for values of 

p and h normalized such that p+h= 1. Moreover, as explained in the text, the "pooling ranges" are symmetric with respect to k=O if one 

exchanges p and h. 
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Table 4: number of SKUs and concentration of demand and uncertainty at Pellton 

SI S2 S2/P 
# of SKUs before pooling 35 80 34 
# of SKUs accounting for 13 19 10 

90% of demand 

O"x2 1.39 2.70 1.65 

.Jx'x 9.15 17.16 9.49 

IN 5.92 8.94 5.83 

# of SKUs with mastersizes 11 34 9 
# of SKU s after postponement 1 1 1 

Table 5: ranges for which pooling is better than optimizing inventory policy at Pellton 

kJ k2 k'" 
S 1- mastersizes 0.7 4 2.1 

SI - postponement -0.1 8.5 2.1 
S2- mastersizes 0.9 5.2 2.4 

S2 - postponement 0.1 10.5 2.4 
S21P- mastersizes 1.1 4.1 2.2 

S21P - postponement 0.6 5.4 2.2 

Note: k * is the safety factor at which total costs before pooling would be minimized for the 

given empirical demand data, assuming a common safety factor for all SKUs. As the 

empirical demand distributions are far from symmtric, the implied optimal k * will generally 

not be equal for all SKUs. We did also calculate k* for each SKU independently and, in 

most cases, found values close to those in the Table. 
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Figure 1: Strategies to reduce uncertainty in product variety 

Note: adapted from Garg and Lee (1999). SKU rationalization refers to reducing the 

number of finished goods SKU s; several of the other strategies can of course lead to 

reduction of the number of component SKUs kept in stock. Product variety strategies in 

practice are often combinations of complexity reduction and lead-time reduction. 
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Figure 2: Approaches to managing variety through pooling or inventory policy 

Note: many companies have a broad product line and a suboptimal inventory policy, 

putting them in scenario 1. To improve matters they can either improve their inventory 

policy (to get to scenario 3) or implement pooling (to get to scenario 2). Obviously, 

scenario 4 is the most desirable. 
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Figure 3: Analysis of pooling and optimal strategies 
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Figure 4: weekly demand pattern and frequency distribution for major product 

Note: the top graph shows weekly demand for the highest-volume SKU, accounting for 

17.4% of total demand for grade SI. The lower graph gives the frequency distribution. 
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