
Multi-objective evolution for car setup optimization

Jorge Muñoz, German Gutierrez, Araceli Sanchis

Abstract— This paper describes the winner algorithm of the
Car Setup Optimization Competition that took place in EvoStar
(2010). The aim of this competition is to create an optimization
algorithm to fine tune the parameters of a car in the The
Open Racing Car Simulator (TORCS) video game. There were
five participants of the competition plus the two algorithms
presented by the organizers (that do not take part in the
competition). Our algorithm is a Multi-Objective Evolution-
ary Algorithm (MOEA) based on the Non-Dominated Sorting
Genetic Algorithm (NSGAII) adapted to the constraints of the
competition, that focus its fitness function in the lap time. Our
results are also compared with other evolutionary algorithms
and with the results of the other competition participants.

I. INTRODUCTION

Video games are growing day by day as a popular bench-

mark to develop and research new algorithms. And with

them, competitions are being created to compare the results

of different algorithms in different domains. One of the video

games that is being used actively during the last years is The

Open Racing Car Simulator (TORCS). This is a very realistic

open source simulator with a sophisticated physics engine

that takes into account many aspects as the wheels pressure

and their angle with the road, the fuel consumption, the grip

of the road, aerodynamic coefficient of the car, the wings

angle, collisions, etc. The game provides several different

cars, lot of tracks and also tools to create new ones. For these

reasons TORCS has being used actively in the last years to

create new competitions like the 2010 Simulated Car Racing

Championship 1 [1], Demolition Derby Competition 2 or the

Car Setup Optimization Competition 3 we describe in this

paper.

Focusing in the Car Setup Optimization Competition,

TORCS is a perfectly scenario for an optimization compe-

tition due to its sophisticated physics engine. Notice that a

physics engine is able to describe what is going to happen

given some variables by means of complex equations ,

but it is usually very difficult to determine which are the

appropriate values of the variables that lead to a concrete

situation. That is, solving the equations is a really hard

problem. Here is where the artificial intelligence comes in

developing algorithms to find, not the optimal parameters

but the suboptimal parameters which best match with the

solution of the problem. Specifically, in the Car Setup

Optimization Competition the aim is to find the best car

setup in order the achieve the maximum distance in a specific

J. Muñoz, G. Gutierrez, A. Sanchis are with the Computer Science
Department, Universidad Carlos III de Madrid, Avda. de la Universidad 30,
28911 Leganés, Spain (emails: { jmfuente, ggutierr, masm }@inf.uc3m.es).

1http://cig.dei.polimi.it/?page id=134
2http://www.coboslab.psychologie.uni-wuerzburg.de/competitions/
3http://cig.dei.polimi.it/?page id=103

period of time. The algorithm developed should be able to

find the appropriate wings angles, wheel pressures, gearbox

ratios and other parameters that will be explained latter. The

optimization algorithms have a maximum of 1000000 game

ticks, around five hours and half of time TORCS, that can use

to simulate. This means that each algorithm must decide how

much time spends in each simulation to check the parameters

and get the fitness value. Each simulation starts where the

last one ends, so there are not two simulations equal and this

leads to new problems that need to be solve. For example, if

the simulation time is too short the car only run in a small

portion of the track and the parameters are not generalize

for a complete lap, but if the simulation time is too long

the algorithm will only check very few combinations of

parameters.

Fig. 1. Screenshot of TORCS

We decided to use a Multi-Objective Evolutionary Algo-

rithm (MOEA) for the competition because of two main

reasons. The first one is that with a multi-objective algorithm

we can improve the individuals in more than one objective,

for example we can reduce the lap time at the same time

we increase the top speed and decrease the damage. And the

second one, is because we observed that a multi-objective

algorithm converges faster in the first generations than other

evolutionary algorithms like a single genetic algorithm, even

that ones that combine more than one objective in the fitness

[2]. Due to the simulation time is not long enough to run a

proper number of generations to get a good individual the

convergence in the first generations is an important aspect to

bear in mind.

The next section, Section II, covers a detailed description

of the competition. In Section III the algorithms we used in

the competition are described. Next, Section IV, the results

Nota adhesiva
Published in: 2010 UK Workshop on Computational Intelligence (UKCI). IEEE, 2010, pp. 1-5



of our evolutionary algorithms are shown and compared with

the results of the competition. Finally, in Section V, we

expose the conclusions and the future works.

II. CAR SETUP OPTIMIZATION COMPETITION

A complete description of the Car Setup Optimization

Competition is located in [3]. We describe in this section

the most important aspects of this competition in order to

understand the algorithms we describe in Section III.

In the competition the algorithm proposed has to find the

best car setup for three tracks. These tracks were unknown

for the participants, we know now that these three tracks were

poli-track, dirt 3 and CG track 3 (see Figure 2) For each

track, the competition is divided in two phases: optimization

and evaluation. In the optimization phase the optimization

algorithms proposed runs during one million of game ticks,

around five and a half hours of game time simulation, and

sent to the server the best parameters it finds. During the

evaluation the best car setup found is evaluated during 10000

game ticks and the distance covered in that time is the score

of the algorithm. The higher this value is the better it is.

(a) CG track 2 (b) poli-track

(c) dirt 3

Fig. 2. Tracks used in the car setup optimization competition

The parameters the algorithm has to optimize are 22:

• gearbox ratios (5 parameters)

• angle of front and rear wing (2 parameters)

• brake system (4 parameters)

• front and rear anti-roll bar (2 parameters)

• wheels camber, ride height and toe (5 parameters)

• suspension course and spring (4 parameters)

These parameters are represented in the system as a vector

of real numbers in the interval [0,1]. The parameters suffers a

random mapping for each execution, there is no fixed position

of each parameter in the vector. Therefore, the optimization

algorithm can not assume any prior knowledge about the

parameters to optimize.

The competition software provides an application program

interface (API) that allows the algorithms to evaluate a

parameters vector. The algorithm sends the parameters to the

game server and the number of game ticks of the simulation,

then the game server returns to the algorithm the best lap

time, the top speed, the distance raced and the damage

suffered.

III. OPTIMIZATION ALGORITHMS

In this section we describe the two algorithms we tested

before the competition. The first one is a new evolutionary

algorithm developed from the concepts of the genetic al-

gorithms and ideas from the artificial immune systems [4],

[5]. The second one is a multi-objective algorithm based on

the Non-Dominated Sorting Genetic Algorithm (NSGA-II)

[6]. For both algorithms one individual of the population is

the parameters vector we mentioned before and the initial

population is randomly created with a normal distribution.

Before we explain the algorithms we are going to explain

first the common policy followed to determine the simulation

time for each evaluation.

A. Simulation time

One important aspect of the competition is the amount of

simulation time. We need to decrease as much as possible

this value to increase the number of evaluations the algorithm

can perfom. But, we have to bear in mind that the simulation

time have to be longer enough to get proper values from the

simulation. We think that a good value for the simulation

is the one that allows the car complete a lap. Although the

objective in the competition is to reach the biggest distance

in a fixed amount of time, this simulation time is longer than

a lap in the most of the tracks, so we have to reduce the lap

time as much as possible. We also know that in the first

evaluations the lap time is going to be longer than in the last

evaluations, with better car setups. So we need a simulation

time that also evolves with the car setups, starting long and

decreasing at the same time the cars improve their setup. We

set the simulation time as:

simulation ticks =
α · best lap time

rate simulation tick
(1)

where α is a number close to 2 , best lap time is the best

lap time ever and rate simulation tick is the relation between

a game tick and a second. The reason why α must be close

to 2 is because not two consecutive evaluations start in the

same point of the track, indeed, each evaluation starts in the

point of the track where the last evaluation ends. So if a

simulation starts just after the car pass the start line it needs

almost 2 laps to get one proper lap time. So, to avoid to lose

setups faster than our current best setup we have to allow the

car completes a lap regardless of in which point of the track



the simulation starts. We set α to 1.7 for the competition

because we observed better results than with other values.

B. Evolutionary Algorithm (EA)

The evolutionary algorithm we developed is a genetic al-

gorithm with some ideas from the artificial immune systems

[4], [5]. We started with the Artificial Immune Evolutionary

Algorithm (AIEA) used in [7] for a constraint satisfaction

problem, and added crossover. So, instead of applying mu-

tation in all the generations we used randomly mutation

and crossover. We presented this algorithm in the Car Setup

Optimization Competition in 2009. The pseudo-code of the

final algorithm is described in Algorithm 1.

Algorithm 1 Evolutionary Algorithm

Require: population size, tournament size, stop criterion,

crossover operator

1: generate the initial population

2: for each individual in population do

3: calculate fitness of the individual

4: end for

5: maxfit ⇐ maximum fitness in the population

6: minfit ⇐ minimum fitness in the population

7: repeat

8: if randomly with probability 0.5 then

9: {mutation:}
10: individual to clone ⇐ select the best of a tourna-

ment

11: ind ⇐ clone individual to clone

12: fit ⇐ ind → fitness

13: mutation range ⇐ fit−minfit
maxfit−minfit

14: mutate ind proportional to mutationRange

15: else

16: {crossover:}
17: parent 1 ⇐ select the best of a tournament

18: parent 2 ⇐ select the best of a tournament

19: ind ⇐ crossover parent 1 and parent 2
20: end if

21: individual to remove ⇐ select the worst of a tour-

nament

22: remove individual to remove from population

23: add ind to population

24: maxfit ⇐ maximum fitness in the population

25: minfit ⇐ minimum fitness in the population

26: until stop criterion

The mutation operator selects between 1 and 3 positions in

the parameters vector and modify those numbers an amount

that is variable between 0.001 and 0.2. When we say in

Algorithm 1 the individual is mutated proportional to the

mutationRange (line 14) this means that we apply between

10 and 100 times the mutation operator to the same individual

proportional to the mutationRange value. The better the

individual is, the less times we apply mutation to that individ-

ual. Good individuals relatively to the population will suffer

a small mutation, small variation in their chromosome, while

bad individuals will suffer a big mutation, big difference in

their chromosomes..

As crossover for the algorithm we used a very simple one

that only mix the values of the vectors of the parents. First

two parents are selected by tournament of size 3, then each

position of the vector of parameters in the offspring is filled

with the value of that parameter in one of the parents. The

parent is choosen randomly with the same probability for

each position in the vector.

We use as fitness the lap time (note that the algorithm

tries to minimize the fitness value). As we said before this is

for us the most important value we get from the simulation.

When the controller does not perform a complete lap (cross

the start line twice) we do not have a lap time, which happens

frequently in the first evaluations. So, we set as lap time the

simulation time multiplied by 10 plus a value that depends on

the top speed and other that depends of the distance covered,

as in Equation 4 (β is equals to 0.2 to give more relevance to

the speed value than to the distance covered value). With this

fitness we give more relevance to the lap time and when we

do not have lap time we give more relevance to the distance

covered and the top speed.

speed value =1−
top speed

maximum speed
(2)

distance value =1−
distance raced

maximum distance
(3)

fitness = best lap time · 10 + β · speed value

+ (1− β) · distance value (4)

In Equation 2 top speed is the maximum speed the car

reach in the evaluation while maximum speed is the maxi-

mum speed the car can reach. In Equation 3 distance raced is

the distanced covered by the car during the simulation while

maximum distance is the distanced the car will cover if it

would drive at the maximum speed.

The damage is taken into account, when it is greater than

10 we multiply the fitness by 1.1 to increase it, and penalize

these individuals.

C. Multi-Objective Evolutionary Algorithm (MOEA)

The multi-objective algorithm developed is an adaptation

of NSGA-II [6]. NSGA-II is an algorithm created with the

ability to find multiple solutions in the pareto front that

have good results in different objectives. This is done by

the concept of dominance and the crowding distance.

The crossover and mutation operators are the same as

in the evolutionary algorithm we explained before. The

objectives used for the evaluation of each individual are four,

all of them normalized between 0 and 1 where 0 is the best

possible value and 1 the worst. The objectives are:

• the lap time (see Equation 5)

• the top speed (see Equation 6)

• the distanced raced (see Equation 7)

• the damage (see Equation 8)



objective 1 =
lap time

simulation ticks · rate simulation tick
(5)

objective 2 = 1−
top speed

maximum speed
(6)

objective 3 = 1−
distance raced

maximum distance
(7)

objective 4 = 1−
1

damage
10

+ 1
(8)

The aim to use a multi-objective algorithm is to increase

the convergence of the algorithm in the first generations. As

we said before the total simulation time we can use is not

enough for a big number of generations, it is around 6 o 7

generations with populations of 30 individuals in an average

length track. The idea is not to lose individuals that can

reach very high speeds or suffer very few damage while the

algorithm is trying to find the best car setup to complete a

lap in the less possible time. If you cross an individual with

high top speed and other with a normal lap time you can

get a very fast driver, much more than if you only take into

account the lap times and you cross two individuals with

normal lap times.

IV. RESULTS

All the experiments were run 10 times per each track and

the average distance covered in 10000 game tics is the score

of the algorithms. The higher this value is the better.

In the competition 3 tracks were used: poli-track, dirt 3

and CG track 3 (see Figure 2) . As poli-track is not available

in the game we omit this track for our experiments, although

this track is used in the competition.

The experiments of our algorithms were run after the

competition with the idea of comparing our results with the

competition results.

A. Algorithms results

For both evolutionary algorithms we use populations of 30

individuals. Table I shows the results of the algorithms, EA

and MOEA, for two of the tracks. This is the average distance

covered in 10000 game ticks for 10 runs. The standard

deviation (Std. Dev.) is also shown.

In the first track, CG track 2, the MOEA gets better

results, even the standard deviation is smaller than in the

other algorithm. However in the second track, Dirt-3, there

is no difference in both algorithms, although MOEA still gets

better standard deviation. The reason why this happens in the

second track is because this tracks has wall in the edgeds and

the cars never go out of the track. So the evolution process

leads the most of the times to create faster car setups that

nevers steer and are always crashing with these walls. This

is less frequently in the MOEA because of the objective that

take into account the damage.

B. Competition results

Table II and Table III shows the distance covered in 10000

game ticks. Table II shows the results the participants achieve

in average for 10 runs in each of the three tracks while Table

III show the results the organizers achieve with their own

algorithms.

We do not know all the algorithms used by the other

participants, there is not any publication related with

them yet. Two of them used particle swarm optimization

(Garcia/Saez-PSO and Walz-PSO) other an evolutionary al-

gorithm (Munoz/Martin/Saez-EA) we do not know and the

last one is completely unknown (Fernandez/Cotta/Fuentes).

Our MOEA algorithm is Munoz-MOEA. For each track the

winner was a different algorithm. In CG track 2 our MOEA

was the best algorithm with a difference of more than 14%

of the distance raced over the second best result. While in

the other two tracks where our algorithm is not the best the

difference between our algorithm and the best one is less

than 4% of the maximum distance raced.

If we compare the results of the competition (Table II)

with our previous results (Table I), we can see as our previous

results are better than in the competition. This does not mean

any result is wrong but the process we follow to get the

results, using the API we have, maybe diffiers in the process

followed in the competition 4. The reason lead us to think this

is that the difference is around 8% of the maximum distance

covered in both common tracks.

If we compare our MOEA with the algorithms developed

by the organizers of the competition (see Table III) we

can see that the difference with a simple genetic algorithm

(Cardamone-SimpleGA) is not really significant. Our algo-

rithm reach better distances in all the tracks but the difference

rounds the 4% of the total distance raced. But if we compare

MOEA with CMA-ES [8] our algorithm is worse for all

the tracks, with a difference of the 5% of the total distance

raced. The Kemmerling-CMA ES organizer is clearly the best

algorithm of all.

V. CONCLUSIONS AND FUTURE WORK

We are glad to say that the results in the competition

were better than we expected. The multi-objective algorithm

gets better results than the other algorithms presented in

the competition. However, when we compare our algorithm

with a simple genetic algorithm developed by one of the

organizers the difference does not look really significant. We

have to notice that this simple genetic algorithm is also better

than the most participants of the competition in two of the

tracks. If we compare our best algorithm with CMA-ES [8],

the other algorithm presented by the organizers, our results

are worse in all the tracks. This means that there is still more

room for improvement in the algorithms.

CMA-ES is an evolutionary strategy based on the covari-

ance matrix adaptation that looks like has a fast convergence

to good solutions in the first steps of the evolutionary

4there is not any technical report that detailed the process follow to run
the experiments in the competition



TABLE I

RESULTS OF OUR TWO EVOLUTIONARY ALGORITHMS

CG track 2 Dirt-3 Overall

Algorithm Distance Std.Dev. Distance Std.Dev. Distance

EA 10202.16 916.56 6572.12 347.54 16774.28

MOEA 10932.40 429.61 6572.44 272.37 17504.85

TABLE II

RESULTS OF THE CAR SETUP OPTIMIZATION COMPETITION

Competitor CG track 2 Poli-track Dirt-3 Overall

Munoz-MOEA 9831.83 7654.01 6128.29 23614.13

Garcia/Saez-PSO 8386.77 7979.86 5021.41 21388.04

Walz-PSO 8408.35 7304.54 5336.88 21049.77

Fernandez/Cotta/Fuentes 7553.21 5931.47 6263.40 19748.08

Munoz/Martin/Saez-EA 8167.60 7718.36 4629.33 20515.29

TABLE III

ORGANIZERS RESULTS

Organizer CG track 2 Poli-track Dirt-3 Overall

Cardamone-SimpleGA 9563.08 7273.06 5932.09 22768.23

Kemmerling-CMA ES 10410.13 8392.49 6415.87 25218.49

process. And, although this algorithms has beat the rest

of the algorithms presented in this paper, we still believe

that a multi-objective algorithm is the best one to get the

best results in a domain like the Car Setup Optimization

Competition. There is variant of CMA-ES for multi-objective

problems called MO-CMA-ES [9] which is our next line of

research for the competition, with a lot of possibilities to

improve the results of this year.

ACKNOWLEDGMENT

This work was supported in part by the University Carlos

III of Madrid under grant PIF UC3M01-0809 and by the

Ministry of Science and Innovation under project TRA2007-

67374-C02-02.

REFERENCES

[1] D. Loiacono, J. Togelius, P. Lanzi, L. Kinnaird-Heether, S. Lucas,
M. Simmerson, D. Perez, R. Reynolds, and Y. Saez, “The WCCI 2008
simulated car racing competition,” in Computational Intelligence and

Games, 2008. CIG ’09. IEEE Symposium On, Dec. 2008, pp. 119–126.
[2] J. Muñoz, G. Gutierrez, and A. Sanchis, “Evolutionary genetic al-

gorithms in a constraint satisfaction problem: Puzzle eternity ii,” in
Proceedings 10th International Work-Conference on Artificial Neural

Networks, June 2009, pp. 220–227.
[3] L. Cardamone, D. Loiacono, and P. L. Lanzi, “Car Setup Optimization.

Competition Software Manual,” Dipartimento di Elettronica e Infor-
mazione, Politecnico di Milano, Italy, Tech. Rep., 2010.1.

[4] L. de Castro and F. Von Zuben, “Artificial Immune Systems: Part I–
Basic Theory and Applications,” Universidade Estadual de Campinas,
Dezembro de, Tech. Rep., 1999.

[5] L. de Castro and F. V. Zuben, “Artificial Immune Systems: Part II
A Survey Of Applications,” Department of Computer Engineering and
Industrial, Tech. Rep., 2000.

[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE transactions on

evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.
[7] J. Muñoz, G. Gutierrez, and A. Sanchis, “Controller for torcs created

by imitation,” in IEEE Symposium on Computational Intelligence and

Games., September 2009, pp. 271–278.
[8] N. Hansen, “The CMA evolution strategy: a comparing review,” To-

wards a new evolutionary computation, pp. 75–102, 2006.
[9] C. Igel, N. Hansen, and S. Roth, “Covariance matrix adaptation for

multi-objective optimization,” Evolutionary Computation, vol. 15, no. 1,
pp. 1–28, 2007.




