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1 Introduction and Motivation 

The nonhomogeneous Poisson process arises naturally in many applications of probability. 

For example, the epoch times of a nonhomogeneous Poisson process are the times of repair of 

an item which is being continuously minimally repaired. Also, the epoch times of a nonhomo­

geneous Poisson process are the consecutive record values of a sequence of independent and 

identically distributed nonnegative random variables. Therefore, results which give stochas­

tic comparisons of the epoch times or of the inter-epoch times of different nonhomogeneous 

Poisson processes can be useful in reliability theory and in the studies of progressive records. 

Other applications of nonhomogeneous Poisson processes are described later in Section 5. 

Roughly speaking, the intensity of a jump of a nonhomogeneous Poisson process at any 

time t depends only on t, and not on any other information about the past or the present of 

the process. A relatively simple extension of this idea gives rise to a large number of other 

useful processes. These processes will be called below nonhomogeneous birth processes. In a 

nonhomogeneous birth process the intensity of a jump at any time t depends only on t and 

on the state (that is, the number of previous jumps) of the process, but not on any other 

information about the past or the present of the process. 

The purpose of this paper is to describe various conditions on the parameters of pairs of 

non homogeneous Poisson or birth processes under which the corresponding epoch or inter­

epoch times are stochastically ordered in various senses. 

This paper may be contrasted with the paper of Shaked and Szekli [20, (1995)]. The 

work [20] focused on the usual stochastic ordering of epoch times and inter-epoch intervals 

of two point processes, whereas here we derive many results that give finer comparisons in 

other stochastic ordering senses. However, whereas the results of [20] apply to general point 

processes, here we derive results only for non homogeneous Poisson and birth processes. The 

results in [20] wer~ mainly applied to comparisons of replacement policies in reliability theory; 

here we indicate also some other areas of applications of the new results. In fact, we show 

that the new results here provide useful bounds in almost any area where birth processes 

are used. Finally, the methods of proof of the present paper differ from the methods of [20]: 

whereas in [20] most of the basic results were essentially proven using coupling, here we use 

more analytical methods since most of the stochastic orderings that we derive are stronger 

than the usual stochastic order, and the tool of coupling does not suffice for their derivation. 

In this paper "increasing" and "decreasing" mean "nondecreasing" and "nonincreasing," 

respectively. For any distribution function F we denote by F = 1 - F the corresponding 

1 



survival function. Any inverse function that we use below is understood to be the right 

continuous one. 

2 Nonhomogeneous Poisson and Birth Processes 

A nonhomogeneous Poisson process is parameterized by its intensity (or rate) function r. 

We assume that 

100 r(t) dt = 00; (2.1) 

this ensures that with probability 1 the process has a jump after any time point t. A 

nonnegative function r which satisfies (2.1) can be interpreted as the hazard rate function 

of a lifetime of an item. More explicitly, if r satisfies (2.1) and we define f by 

f(t) = r(t)e-f:r(u)du = r(t)e-R(t), t ;::: 0, (2.2) 

where R( t) = J~ r( u) du, then f is a probability density function of a lifetime; in fact, f is the 

probability density function of the time of the first epoch of the underlying nonhomogeneous 

Poisson process. For convenience, if r(to) = 00 for some to then we define r(t) = 00 for 

t ;::: to. 

Let ° = To :::; TI :::; T2 :::; ... be the epoch times of the nonhomogeneous Poisson process. 

Denote by fn the density function of Tn, n ;::: 1. Then 

(R(t))n-l 
fn(t) = f(t) (n _ I)! ' t 2 0, n > 1· - , (2.3) 

this is (3) in Baxter (1982). Note, in particular, that h = f. It is worthwhile to mention 

that in the monograph by Kamps (1995) the definition of the epoch times is extended to the 

so called generalized order statistics; various extensions of (2.3) can be found there. 

Let Xn = Tn - Tn- l , n 2 1, be the inter-~poch intervals of the nonhomogeneous Poisson 

process. Denote by 9n the density function of X n, n ;::: 1. Then 91 = f and 

100 Rn-2(s) 
9n(t) = 0 r(s) (n _ 2)/(s + t) ds, t;::: 0, n;::: 2; (2.4) 

this is (7) in Baxter (1982). 

The nonhomogeneous Poisson process can be generalized to what can be called a non­

homogeneous birth process. Let {Yn, n = 1,2, ... } be a sequence of independent absolutely 
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continuous non negative random variables with density, distribution, and hazard rate func­

tions kn, Kn, and rn, respectively. Define 

TI =st YI, 

Tn =st [Yn IYn > Tn- I], n ~ 2, 

(2.5) 

(2.6) 

where =st denotes equality in law, and for any event A the notation [YnIA] stands for 

any random variable whose distribution is the conditional distribution of Yn given A. The 

corresponding nonhomogeneous birth process is the process {N(t), t 2:: O}, with the Tn's as 

epoch times, defined by 

N(t) = sup{n: Tn ~ t}, t 2:: o. 

A non homogeneous birth process is parameterized by a sequence {Kn' n = 1,2, ... } of life 

distributions, or, equivalently, by a sequence {rn, n = 1,2, ... } of hazard rate functions. 

Note that the jump intensity of a nonhomogeneous birth process at time t is rn(t) where 

n - 1 is the number of epochs before time t. Nonhomogeneous birth processes are called 

'relevation counting processes' in Pellerey, Shaked and Zinn (1999). When all the rn's are 

identical, a nonhomogeneous birth process reduces to a non homogeneous Poisson process. 

Let in denote the probability density function of Tn defined in (2.5) and (2.6). Then 

t > O' - , 

t ~ 0, n ~ 2. 

(2.7) 

(2.8) 

Now let Xn = Tn - Tn- I, n ~ 1, be the inter-epoch intervals of the nonhomogeneous 

birth process, that is, 

Xl =st YI , 

Xn =st [Yn - Tn-IIYn > Tn-d, 

Then the probability density function 9n of Xn is given by 

t > O' - , 

i t ( ) i n-I ( U ) 9n(t) = knu+t du, 
o Kn(u) 

t ~ 0, n ~ 2, 

where the in's are defined in (2.7) and (2.8). 

3 

~~~~.""-""-~~--

I 

I 



3 Stochastic Comparisons of Epoch Times 

3.1 Nonhomogeneous Poisson processes 

Consider two non homogeneous Poisson processes with intensity functions rand s, respec­

tively, and with associated density functions (see (2.2)) f and g, respectively, and associated 

distribution functions F and G, respectively, and associated cumulative hazard functions R 

and S, respectively. Let the epoch times of the first nonhomogeneous Poisson process be 

denoted by TI,1 :s T I ,2 :s ... , and let the epoch times of the other nonhomogeneous Poisson 

process be denoted by T2,1 :s T2,2 :s .... 
In this subsection we derive some results which stochastically compare vectors of TI,/s 

with vectors of T2,j's. 

The first result gives conditions under which the epoch times of the first process are 

smaller than the epoch times of the other process in the usual stochastic order sense. Recall 

that a random variable or vector X is smaller in the usual stochastic order than the random 

variable or vector Y (of the same dimension) if 

EcP(X) :s EcP(Y) 

for all increasing functions cP for which the above expectations exist. This relationship is 

usually denoted by X :Sst Y. If the distribution functions of X and Y are Fx and Fy , 

respectively, then this relation will sometimes be denoted below by Fx :Sst Fy . The following 

result is essentially not new. 

Theorem 3.1. Let F and G be distribution functions associated with two nonhomogeneous 

Poisson processes as described above. Then F :Sst G if, and only if, 

n;:::l. (3.1) 

Note that F :Sst G in Theorem 3.1 is equivalent to R ;::: S. Thus Theorem 3.1 is essentially 

the same as Proposition 3.9 in Shaked and Siekli (1995). Roughly speaking, inequality (3.1) 

for n = 00 is denoted in Shaked and Szekli (1995) as NI ;:::st-2) N 2 , where NI and N2 are the 

underlying nonhomogeneous Poisson processes. 

The next result gives conditions under which the epoch times of the first process are 

smaller than the epoch times of the other process in the multivariate hazard rate order. 

Shaked and Shanthikumar have given a few equivalent definitions of this order in different 

papers; see references in page 148 of Shaked and Shanthikumar [19, (1994)]. For the purpose 
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of this paper we will use the definition given in (4.D.1) of [19]. There is a mistake there. I 

The equation there should be 

1]i IIUJ(uISI, sJ) ~ ).iII(ultI) whenever In J = 0,0:::; SI :::; tI :::; ue, and 0 :::; SJ :::; ue, 

(3.2) 

where i E I U J, and (SI, sJ) and tI are possible realizations of the underlying random 

vectors. Here SI denotes a vector of dimension Ill, and similarly SJ and tI are defined; e 

denotes a vector of 1's of a proper dimension. The functions 1]+(·1·) and ).+(·1·) are the 

multivariate conditional hazard rate functions of the two random vectors that are compared; 

these are defined in (4.C.2) of [19]. When the multivariate conditional hazard rate functions 

of two random vectors X and Y satisfy (3.2) we will denote this by X :::;hr Y. If the 

distribution functions of X and Y are Fx and Fy , respectively, then this relation will 

sometimes be denoted below by Fx :::;hr Fy . In the univariate case the relation Fx :::;hr Fy is 

equivalent to the requirement that F y / F x is an increasing function, and if the corresponding 

hazard rate functions rx and ry exist then the relation Fx :::;hr Fy is equivalent to the 

requirement that rx ~ ry. It is known (see Theorems 4.C.1 and 4.D.1 in [19]) that X :::;hr 

Y ==} X :::;st Y. Thus, the next result gives a stronger conclusion than Theorem 3.1, but 

under a stronger assumption. 

Theorem 3.2. Let F and G be distribution functions associated with two nonhomogeneous 

Poisson processes as described above. Then F :::;hr G if, and only if, 

n~1. 

Proof. Fix an n ~ 1. Let 1].1.(·1·) be the multivariate conditional hazard rate functions 

associated with (TI,l, TI ,2, ..• , Tl,n) and let )..1.(·1·) be the multivariate conditional hazard 

rate functions assQciated with (T2,1, T2,2, • .• ,T2,n). 

First let us obtain an explicit expression for the right hand side of (3.2). Since T2,1 :::; 

T2 ,2 :::; ... :::; T2,n a.s., it follows that tI in (3.2) can be a realization ('history') of observations 

up to time u only if I is of the form I = {1, 2, ... , m} for some m ~ 1, or I = 0 (that is, 

m = 0). Then we have 

if i = m + 1; 

if i > m + 1; 

here s is the hazard rate function associated with G. 
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Next, let us obtain an explicit expression for the left hand side of (3.2). Since TI,I ::; 

TI,2:S '" :S TI,n a.s., we see that when I = {1,2, ... ,m} then (SI,SJ) in (3.2) can be a 

realization of observations up to time u only if J is of the form J = {m + 1, m + 2, ... , k} 

for some k ~ m + 1, or J = 0 (that is, k = m). Then we have 

if i = k + 1; 

if i > k + 1; 

where 1= {1, 2, ... , m} and J = {m + 1, m + 2, ... , k}; 

here r is the hazard rate function associated with F. 

Suppose that F :Shr G. Since i in (3.2) must satisfy i E I U J (that is, i > k), we see 

that if k > m then 

1JiIIUJ(uISI, sJ) = r(u) ~ 0 = Aill(ultl) if i = k + 1; 

1JiIIUJ(ulsl, sJ) = 0 = Aill(ultl) if i > k + 1; 

so (3.2) holds. If k = m (that is, J = 0) then, using F :Shr G, we get 

1JilluAuISI,SJ) = r(u) ~ s(u) = Aill(ultl) ifi = k + 1; 

1JiIIUJ(ulsl, sJ) = 0 = Aill(ultl) if i > k + 1; 

so (3.2) holds in this case too. 

The necessity part follows from (3.2) with i = 1 (then 1= J = 0). o 

The order :Shr is not closed under marginalization (though it is closed under the dynamic 

conditional marginalization described in Shaked and Shanthikumar (1993)). Thus it does 

not follow from Theorem 3.2 that TI,n :Shr T2 ,n for n ~ 2 under the conditions stated there. 

However, in the fQllowing result it is shown that this is indeed the case. 

Theorem 3.3. Let F and G be distribution functions associated with two nonhomogeneous 

Poisson processes as described above. Then' F ::;hr G if, and only if, TI,n ::;hr T2,n for all 

n~l. 

Proof. The survival function FI,n of TI,n is given by 

n-l . 
- ) ~ (R(t))J -R(t) - )) FI,n(t = P(TI,n > t) = ~ ., e = r n(R(t , 

j=O J. 
t ~ 0, (3.3) 
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where r n is the survival function of the gamma distribution with scale parameter 1 and 

shape parameter nj see, for example, Gupta and Kirmani (1988) or Kochar (1996b). The 

corresponding density function fl,n is given by 

h,n(t) = In(R(t))r(t), t ~ 0, 

where In is the density function associated with rn. The corresponding hazard rate function 

rp1 n is given by 

t ~ 0, 

where rr n is the hazard rate function associated with r n' Similarly, 

t ~ 0. 

If F :::;hr G then 

t ~ 0, 

where the inequality follows from r(t) ~ s(t), R(t) ~ S(t), and the fact that the hazard rate 

function of the gamma( n) distribution is increasing. 

The necessity part follows from the fact that F is the distribution function of TI,1 and G 

is the distribution function of T2,1' 0 

The next result (Theorem 3.5) gives conditions under which the epoch times of the first 

process are smaller than the epoch times of the other process in the multivariate likelihood 

ratio order. This order is defined as follows (see, for example, Section 4.E in [19]). Let X 

and Y be two n-dimensional random vectors with density functions fx and fy, respectively. 

If 

fX(XI !\ Yll X2!\ Y2,···, Xn !\ Yn)fY(Xl V Yll X2 V Y2,···, Xn V Yn) 

~ fX(Xl,X2, ... ,xn)fY(YI,Y2,···,Yn) 

for all (x II X2, ... , xn) and (Yh Y2, ... , Yn) in IR n, then we denote X :::;Ir Y. If the distribution 

functions of X and Y are Fx and Fy , respectively, then this relation will sometimes be 

denoted below by Fx :::;Ir Fy . In the univariate case the relation Fx :::;Ir Fy is equivalent 

to the requirement that fy / fx is an increasing function. It is known (see Theorems 4.Eo4 

in [19]) that X :::;Ir Y ==> X :::;hr Y. Thus Theorem 3.5 gives a stronger conclusion than 

Theorem 3.2, but under the additional assumption (304). The following lemma is used in 

the proof of Theorem 3.5 below. The proof of the lemma is straightforward and is therefore 

omitted. 
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Lemma 3.4. Let F and G be two distribution functions with associated hazard rate functions 

rand s. If F :S;hr G, and if 

then F :S;lr G. 

s(t) 
r(t) 

is increasing in t ~ 0, (3.4) 

Theorem 3.5. Let F and G be distribution functions associated with two nonhomogeneous 

Poisson processes as described above. If F :S;hr G, and if the hazard rate functions rand s 

satisfy (3.4), then 

Proof. First note that by Lemma 3.4 we have F :S;lr G. 

Now, the stated result is obvious for n = 1. So let n ~ 2. The density function of 

(TI,I, TI,2, ... ,TI,n) is 

Similarly, the density function of (T2,1, T2,2, ... ,T2,n) is 

Consider now (Xl, X2, ... ,xn) and (YI, Y2, . .. ,Yn) such that Xl :s; X2 :s; ... :s; Xn and 

YI :s; Y2 :s; ... :s; Yn. We want to prove that 

r( Xl 1\ yt)r( X2 1\ Y2) ... r( Xn-l 1\ Yn-df( Xn 1\ Yn) 

x S(XI V YI)S(X2 V Y2)··· S(Xn-1 V Yn-dg(x n V Yn) 

~ r(xdr(X2)··· r(xn-df(xn)s(YI)s(Y2)··· s(Yn-dg(Yn). (3.5) 

Let E = {i :s; n -1 : Xi ~ Yi}. Then (3.5) reduces to 

(IT r(Yi)s(xi))f(xn 1\ Yn)g(x n VYn) ~ (IT r(xi)s(Yi))f(xn)g(Yn), 
iEE . iEE 

and this follows from (3.4) and F :S;lr G. o 

Since the order :S;lr is closed under marginalization (see Theorem 4.E.3(b) in [19]) we 

get, as a corollary, that if F :S;hr G and if (3.4) holds then TI,n :S;lr T2,n for all n ~ 1. The 

following theorem is a variation of this corollary. When one compares the following theorem 

to the above stated corollary, it should be noticed that (3.4) implies (3.6); see a discussion 

following the proof of Theorem 3.6. It should also be noticed that F :S;lr G implies F :S;hr G. 
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Theorem 3.6. Let F and G be distribution functions associated with two nonhomogeneous 

Poisson processes as described above. If F :::;lr G, and if the cumulative hazard functions R 

and S satisfy 

S(t) 
R(t) 

is increasing in t ~ 0, 

then 

n~1. 

Conversely, if (3.7) holds then F :::;lr G and (3.6) holds. 

Proof. By (2.3) the density function of T1,n is given by 

(R(t))n-l 
fl,n(t) = f(t) (n _ I)! ' 

and the density function of T2,n is given by 

t ~ 0, n> 1· - , 

(S(t))n-l 
h,n(t) = g(t) (n -I)! ' t ~ 0, n ~ 1. 

Thus, 

f2,n(t) = g(t) (S(t)) n-l 

fl,n(t) f(t) R(t) 

(3.6) 

(3.7) 

Now, if F :::;lr G and (3.6) holds then h,n/ ft,n is increasing and we get (3.7). 

Conversely, suppose that (3.7) holds. Applying (3.7) with n = 1 we obtain F :::;lr G. In 

order to obtain (3.6), denote H = ~, h = 7, and hn = t. First suppose that the hn's are 

differentiable. Then, when n ~ 2 we have 

h~(t) = Hn- 2(t)[h'(t)H(t) + (n -l)h(t)H'(t)], t ~ 0. 

If H is not increasing then H' (to) < ° for some to. Therefore, for large enough n we have 

that h~ (to) < 0, and this contradicts (3.7). If the hn's are not differentiable, then the above 

argument can be easily modified to obtain the same result. 0 

Sengupta and Deshpande (1994) and Rowell and Siegrist (1998) have shown that (3.4)==> 

(3.6) (in fact, they treated (3.4) and (3.6) as notions of relative aging of two life distributions). 

Thus the assumptions in Theorem 3.6 are weaker than the assumptions in Theorem 3.5. It 

is of interest to note that (3.4) does not imply that F :::;lr G. In fact, (3.4) does not even 
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imply that F $hr G. In order to see this, let r be a decreasing hazard rate function such 

that r(O+) > 1, for example, r(t) = rlj and let s(t) = 1 (that is, the hazard rate function 

of a standard exponential random variable). Then (3.4) holds, but r(t) is not larger than or 

equal to s(t) for all t > o. 
It is also of interest to note that F $lr G does not imply (3.6). In order to see it, let F 

be the uniform distribution on [0,1]' and let G be the gamma(2) distribution. Then 

g(t) = {tet, 0 $ t $ Ij 

f(t) 00 t > 1· , , 

and this is increasing in t; that is, F $lr G. However, the corresponding ~~!~ is positive when 

o $ t $ 1, and is 0 when t > 1. Therefore (3.6) does not hold. 

The next result gives conditions under which the epoch times of the first process are 

smaller than the epoch times of the other process in the multivariate mean residual life 

order. Shaked and Shanthikumar (1991) have given a few equivalent definitions of this 

order. Let X = (Xl, X 2 , ••• , Xn) be a nonnegative random vector with a finite mean vector. 

Consider a possible realization ('history') of X at time t ~ 0, that is, an event of the form 

ht = {XI = tI,XI > te}, Oe $ tI $ te, I ~ {1,2, ... ,n}j (3.8) 

here X I and tI are vectors of dimension Ill, X I is a vector of dimension n - III (7 denotes 

the complement of I in {I, 2, ... ,n}), and e is a vector of 1 's of a proper dimension. Given a 

history ht as in (3.8), let i E / (that is, i corresponds to an item that is still alive at time t). 

Then the multivariate mean residual life, associated with i, at time t, is defined as follows: 

where, of course, ~ E /, Oe $ tI $ te, and I ~ {I, 2, ... ,n}. 

Let X and Y be two n-dimensional nonnegative random vectors with associated mul­

tivariate mean residual life functions 1.1.(.1.) and m.I.(·I·), respectively. For the purpose of 

this paper we will use the definition of the multivariate mean residual life order as given in 

(4.F.3) of [19]. There is a mistake there. The equation there should be 

liIIUJ(uISI, sJ) $ milI( ultI) whenever J n I = 0, 0 $ SI $ tI $ ue, and 0 $ SJ $ ue, 

(3.9) 

where i E I U J, and (SI, sJ) and tI are possible realizations of the underlying random 

vectors. When the multivariate mean residual life functions of X and Y satisfy (3.9) we 
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will denote this by X ~mrl Y. If the distribution functions of X and Y are Fx and Fy, 

respectively, then this relation will sometimes be denoted below by Fx ~mrl Fy. In the 

univariate case we have that X ~mrl Y if, and only if, l(u) ~ m(u) for all u ~ 0, where 

l(u) = E[X - ulX > u] and m(u) = E[Y - ulY > u]. 

Recall that two univariate random variables X and Y, with distribution functions F and 

G, respectively, are said to be ordered in the dispersive order (denoted by X ~disp Y or 

F ~disp G) if F-I(f3) - F-I( et) ~ G-I (f3) - G- I ( et) whenever 0 ~ et ~ f3 ~ 1 (see Section 2.B 

in [19]). See also Proposition 4.3 below for a simple condition which implies F ~disp G 

Theorem 3.7. Let F and G be distribution functions associated with two nonhomogeneous 

Poisson processes as described above. If F ~mrl GJ and if F ~disp GJ then 

Proof. Let l.,.(·I·) be the multivariate mean residual life functions associated with (TI,}, T},2, 

... ,TI,n) and let m.,.( ·1·) be the multivariate mean residual life functions associated with 

(T2,1, T2,2, ... ,T2,n). Also, let I be the univariate mean residual life function associated with 

F and let m be the univariate mean residual life function associated with G. Finally, denote 

the inter-epoch intervals associated with the two processes by Xi,j == Ti,j - 1i,j-l, i = 1,2, 

j ~ 1. From Proposition 3.10 of Shaked and Szekli (1995) it follows that XI,j ~st X 2,j for 

all j ~ 1 (see also Theorem 4.1 below) and therefore 

j~1. (3.10) 

Fix an n ~ 1. First let us obtain an explicit expression for the right hand side of 

(3.9). Since T2,1 ~ T2,2 ~ ... ~ T2,n a.s., it follows that t[ in (3.9) can be a realization of 

observations up to time u only if I is of the form I = {I, 2, ... ,m} for some m. In such a 

case we have 

. if i = m + 1; 

if i > m + 1; 
where I = {I, 2, ... , m}. 

Next, let us obtain an explicit expression for the left hand side of (3.9). Since TI,1 ~ TI ,2 ~ 

... ~ TI,n a.s., we see that when 1= {1,2, ... ,m} then (s[, sJ) in (3.9) can be a realization 

of observations up to time u only if J is of the form J = {m + 1, m + 2, ... , k} for some 
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k ~ m. In such a case we have 

if i = k + 1; 

if i > k + 1; 

where 1= {1,2, ... ,m} and J = {m + I,m + 2, ... ,k}. 

Since i in (3.9) must satisfy i E I U J (that is, i > k), we see that if k > m then using 

(3.10) and l( u) ::; m( u) we get 

i-I 

liIIUJ(U!SI,SJ) = l(u)::; m(u) + L E[X2,j] = miII(u!tI ) if i = k + 1; 
j=m+1 

i-I i-I 

liIIUJ(U!SI,SJ) = l(u) + L E[XI,j]::; m(u) + L E[X2,j] = miII(U!tI) 
j=k+1 

so (3.9) holds. If k = m (that is, J = 0) then 

liIIUJ(U!SI, sJ) = l(u) ::; m(u) = miII(U!tI) 
i-I 

j=k+I 

so (3.9) holds in this case too. 

j=m+1 

if i = k + 1; 
i-I 

j=k+1 

if i > k + 1; 

ifi > k + 1; 

o 

Before we close this subsection it is worthwhile to mention that if F and G are distribution 

functions associated with two non homogeneous Poisson processes as described above, then 

F ::;c b*, ::;su] G if, and only if, TI,n ::;c [::;*' ::;su] T2,n, where ::;c, ::;* and ::;su are the 

transform orders described in Section 3.C of [19]; this is Theorem 2 of Gupta and Kirmani 

(1988). Using the idea of their proof we also obtain the following result. 

Theorem 3.8. Let F and G be distribution functions associated with two nonhomogeneous 

Poisson processes as described above. Then F ::;disp G if, and only if, TI,n ::;disp T2,n for all 

n~l. 

Proof. Fix an n ~ 1, and denote by FI,n andF2,n the distribution functions of TI,n and T2,n, 

respectively. Recall from (3.3) that 

and 

where tfJ(u) == r n( -log(1 - u)), u E [0,1]. Therefore, 

F2~~(FI,n(t)) - t = (tfJn(G)tl(th(F(t))) - t = G-I(F(t)) - t, t ~ o. 

Thus, from (2.B.6) in [19] it is seen that F ::;disp G if, and only if, TI,n ::;disp T2,n. 0 
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3.2 Nonhomogeneous birth processes 

Consider two non homogeneous birth processes. Let the first one be associated with a se­

quence {YI,n, n = 1,2, ... } of independent absolutely continuous nonnegative random vari­

ables with density, distribution, and hazard rate functions kl,n, KI,n, and TI,n, respectively. 

Let the second one be associated with a sequence {Y;,n, n = 1,2, ... } of independent abso­

lutely continuous nonnegative random variables with density, distribution, and hazard rate 

functions k2,n, K2,n, and T2,n, respectively. For i = 1,2, define the epoch times of the two 

processes by 

Ti,l =st }i,l, 

n ~ 2, 

(3.11) 

(3.12) 

as in (2.5) and (2.6). In this subsection we derive some extensions and analogs of the results 

in the previous subsection. 

The first result gives conditions under which the epoch times of the two nonhomogeneous 

birth processes are ordered according to the usual stochastic order. This result may be 

compared with Theorem 3.1. The following result can be proven using some general ideas 

from Shaked and Szekli (1995), but we give here a simpler direct proof of it. 

Theorem 3.9. Let Tj,n be defined as in (3.11) and (3.12). If}},l ::;st Y;,l and if}},j ::;hr Y;,j 

for j ~ 2 then 

(3.13) 

Proof. We will apply Theorem 4.BA in [19]. Note that for j ~ 2 we have 

and this is stochastically increasing in tj-l (see Theorem l.A.11 in [19]). Therefore (TI,t, TI,2, 

... , TI,n) is CIS (conditionally increasing in sequence, see [19, page 117]). Next note that 

[TI,j I TI,1 = t I, TI,2 = t2, ... ,TI,j-1 = tj-l] =st [}},j I}},j > tj-I] 

::;st [Y2,jIY;,j > tj-l] =st [T2,jIT2,1 = tt, T2,2 = t2, .. . , T2,j-1 = tj-I], 

where the inequality, which is equivalent to 

KI,j{u) < F2,j(U) 
KI,j(tj-t) - K 2,j(tj-d' 

follows from }},j ::;hr Y;,j. Thus (3.13) follows from Theorem 4.BA in [19]. 
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The next result is an extension of Theorem 3.2 to nonhomogeneous birth processes. 

Theorem 3.10. Let Ti,n be defined as in (3.11) and (3.12). If ¥i,j ~hr Y2,j for j ~ 1 then 

(T1,1, T1,2, . .. , T1,n) ~hr (T2,!, T2,2, ... , T2,n) for all n ~ 1. 

Proof. The proof is similar to the proof of Theorem 3.2. Fix an n ~ 1. Let .,,,,,(·1·) be the mul­

tivariate conditional hazard rate functions associated with (T1,!, T1,2, ... , T1,n) and let A·I·( ·1·) 
be the multivariate conditional hazard rate functions associated with (T2,b T2,2, . .. ,T2,n). 

In order to obtain an explicit expression for the right hand side of (3.2), we first notice, 

as in the proof of Theorem 3.2, that I there must be of the form I = {I, 2, ... ,m} for some 

m. Then we have 

\ ( 1 ) - {r2,m+I(U), 
Ail! U t! -

0, 

if i = m + 1; 

if i > m + 1; 
where I = {I, 2, ... , m}. 

Similarly, in the left hand side of (3.2) we must have I = {I, 2, ... , m} and J = {m + 1, m + 
2, ... , k} for some k ~ m. Then we have 

if i = k + 1; 

if i > k + 1; 

where I = {I, 2, ... ,m} and J = {m + 1, m + 2, ... ,k}. 

The rest of the proof follows the lines of the proof of Theorem 3.2. o 

The next result is an extension of Theorem 3.5 to nonhomogeneous birth processes. At 

a first glance condition (3.14) in the following theorem looks restrictive, however in many 

applications (see Section 5 below) the hazard rate functions rl,l, rl,2, ... are proportional, 

and the hazard rate functions r2,1, r2,2, . .. are also proportional, and then (3.14) can often 

be verified. 

Theorem 3.11. Let Ti,n be defined as in (3.11) and (3.12). IfY1,j ~hr Y2,j, and ifr2,jjrl,j 

is increasing, and if 

t ~ 0, (3.14) 
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Proof· First note that by Lemma 3.4 we have Yi,j $Ir Y2,j, j 2:: 1. 

Now, the stated result is obvious for n = 1. So let n 2:: 2. The density function hl,n of 

(T1,1, TI,2, . .. ,TI,n) is given by 

nrr-l kl,i(Xi) 
hl,n(xl, X2,· . " Xn) = kl,n(xn) 

i=l K l,i+l (Xi) 

Similarly, the density function h2,n of (T2,1, T2,2, ... ,T2,n) is given by 

h ( ) nrr-l k2,i(X,) k ( ) 
2,n XI,X2,,,,,Xn =.r 2,n xn 

i=l R 2,i+l (Xi) 

Note that condition (3.14) can be written as 

K2,j( t)'R\,j+1 (t) 
K 2,j+1 (t)K l,j( t) 

is increasing in t 2:: o. 

Consider now (Xl, X2, . .. , xn) and (YI, Y2, . .. , Yn) such that Xl < X2 < 
YI $ Y2 $ ... $ Yn' We want to prove that 

Let E = {i $ n - 1 : Xi 2:: Yi}. Then (3.16) reduces to 

(3.15) 

< Xn and 

and this follows from the monotonicity of r2,j/rl,j, from (3.15), and from Yi,j $Ir Y2,j. D 

4 Stochastic Comparisons of Inter-Epoch Intervals 

4.1 Nonhomogeneous Poisson processes 

As in Subsection 3.1, consider two nonhomogeneous Poisson processes with intensity func­

tions rand s, respectively, and with associated density functions (see (2.2)) f and 9, respec­

tively, and associated distribution functions F and C, respectively, and associated cumulative 
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hazard functions Rand S, respectively. Let TI,i and T2,i be as defined in Subsection 3.l. 

Let the inter-epoch intervals of the first nonhomogeneous Poisson process be denoted by 

XI,i = TI,i - TI,i-I, i = 1,2, ... , with TI,o = 0, and similarly, let the inter-epoch intervals of 

the other nonhomogeneous Poisson process be denoted by X 2,i = T2,i - T2,i-b i = 1,2, ... , 

with T2 ,o = 0. 

In this subsection we derive some results which stochastically compare vectors of XI/s 

with vectors of X 2 ,i's. 

The first result gives conditions under which the inter-epoch intervals of the first process 

are smaller than the inter-epoch intervals of the other process in the usual stochastic order 

sense. It is essentially a restatement of Proposition 3.10 of Shaked and Szekli (1995). 

Theorem 4.1. Let F and G be distribution functions associated with two nonhomogeneous 

Poisson processes as described above. If F ::;disp G then 

(4.1) 

Roughly speaking, inequality (4.1) for n = 00 is denoted in Shaked and Szekli (1995) as 

NI 2:st-oo N 2 , where NI and N2 are the underlying nonhomogeneous Poisson processes. 

A similar result which is worth mentioning is the following; it follows from Theorem 2.7 

of Shaked and Szekli (1995). 

Theorem 4.2. Let rand s be intensity functions associated with two nonhomogeneous Pois­

son processes as described above. If 

r(u) 2: s(u + x), u 2: 0, x 2: 0, (4.2) 

then 

n2:l. 

Note that (4.2) holds if F ::;hr G and if r or s is decreasing (that is, F or G is DFR). 

Thus, Theorem 4.2 is a stronger result than Theorem 8 of Gupta and Kirmani (1988) or 

Theorem 4.4 of Kochar (1996a). In fact we have the following relationship among the 

conditions of Theorems 4.1 and 4.2. 

Proposition 4.3. Let F and G be two 'distribution functions with respective hazard rate 

functions rand s. If (4.2) holds then F ::;disp G. 
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Proof. Condition (4.2) implies that r(u);::: s(u), that is, F :5hr G. This, in turn, implies 

F :S;st G, and therefore F-l(o:) :5 G-l(o:) for all 0: E (0,1). 

Now, (4.2) therefore gives r(F-l(o:)) ;::: s(G-1(0:)) for all 0: E (0,1), which is equivalent 

to F :S;disp G by (2.B.8) in [19]. D 

From Proposition 4.3 it is seen that Theorem 4.2 follows from Theorem 4.1. Proposi­

tion 4.3 also strengthens a result of Bartoszewicz (1985) and of Bagai and Kochar (1986) 

which is stated as Theorem 2.B.13(a) in [19]. This is so because if F :5hr G and if r or s is 

decreasing then (4.2) holds. 

Condition (4.2) defines what can be called a 'shifted hazard rate order' in the spirit of 

Shanthikumar and Yao (1986) who defined a 'shifted likelihood ratio order.' However, it 

should be noticed that whereas (4.2) is the same as X :S;hr [Y -xlY > x] for all x;::: 0, where 

X and Y have the hazard rates functions r and s, respectively, the condition of Shanthikumar 

and Yao is the same as [X - xiX> x] :S;lr Y for all x ;::: 0. 

The next result gives conditions under which each inter-epoch of the first process is 

smaller than the corresponding inter-epoch of the other process in the hazard rate order. 

Theorem 4.4. Let F and G be distribution functions associated with two nonhomogeneous 

Poisson processes as described above, with corresponding hazard rate functions rand s, and 

with corresponding cumulative hazard functions Rand 5, respectively. If F :5hr G, and if F 

and G are logconvex (that is, DFR), and if (3.4) holds, then X 1,n :5hr X 2,n for each n ;::: 1. 

Proof. For the purpose of this proof we denote F by Ft, G by F2, r by rI, s by r2, R by 

RI, and 5 by R2 . Let Gi,n denote the survival function of Xi,n, i = 1,2. The stated result 

is obvious for n = 1, so let us fix an n ;::: 2. Then, from (2.4) we obtain 

t ;::: 0, i E {1,2}. (4.3) 

Condition (3.4) means that 

ri(t) is TP2 (totally positive of order 2) in (i,t). 

Condition (3.4) also implies that ~$~ is increasing in t ;::: 0; that is, R(t) is TP2 in (i, t). 

Since a product of TP2 kernels is TP2 we get that 

( ) Ri-2
(t) . TP . (. ) 

r i t (n _ 2)! IS 2 III z, t . 
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The assumption Fl ::;hr F2 implies that 

Fi(S+t) is TP2 in (i,s) and in (i,t). 

Finally, the logconvexity of F 1 and of F 2 means that 

Fi(S + t) is TP2 in (s, t). 

Thus, by Theorem 5.1 in page 123 of Karlin (1968), we get that Gi,n(t) is TP2 in (i, t); that 

is, Xl,n ::;hr X 2,n. 0 

The next result gives conditions under which the inter-epoch ~ntervals of the first process 

are smaller than the inter-epoch intervals of the other process in the multivariate likelihood 

ratio order. 

Theorem 4.5. Let F and G be distribution functions associated with two nonhomogeneous 

Poisson processes as described above, with corresponding density functions f and g, and with 

corresponding hazard rate functions l' and s. If F ::;hr G, and if f and l' are logconvex 01' 9 

and s are logconvex, and if (3.4) holds, then 

Proof. First note that by Lemma 3.4 we have F ::;lr G. 

We will give the proof when f and l' are logconvex; the proof when 9 and s are logconvex 

is similar. Note that the logconvexity of f and l' implies that f and l' are positive over 

(0,00). The result is obvious for n = 1, thus let us fix an n ~ 2. The density function £l,n 

of (Xl,l, Xl,2, ... , Xl,n) is given by 

n-l 

£l,n(Xl, ... ,xnj = IT r(xl + ... + Xj)f(Xl + ... + xn), Xk ~ 0, k = 1, ... ,n. (4.4) 
j=l 

The density function £2,n of (X2,I, X 2,2, . .. , X2,n) is given by 

n-l 

£2,n(Xl, ... , xn) = IT S(Xl + ... + Xj)g(Xl + ... + xn), Xk ~ 0, k = 1, ... ,n. (4.5) 
j=l 

The logconvexity of f implies that 
, 

f(Xl V Yl + ... + Xn V Yn)f(Xl /\ Yl + ... + Xn /\ Yn) ~ f(Xl + ... + Xn)f(Yl + ... + Yn) 

(4.6) 
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for all Xk ~ 0 and Yk > 0, k - 1, ... , n. Similarly, the logconvexity of r implies, for I 

j = 1, ... , n - 1, that 

for all Xk ~ 0 and Yk ~ 0, k = 1, ... ,j. Therefore 

n-l 

= IT r(xl 1\ Yl + ... + Xj 1\ Yj)f(Xl 1\ Yl + ... + Xn 1\ Yn) 
j=l 

n-l 
X IT S(Xl V Yl + ... + Xj V Yj)g(Xl V Yl + ... + Xn V Yn) 

j=1 

where the first inequality follows from (4.6) and (4.7), and the second inequality follows from 

(3.4) and from F :::;lr G (that is, g/ f is increasing). This gives the stated result. 0 

In light of the conditions in Theorem 4.5 the following question is of interest: Let f be 

a density function of a nonnegative random variable, and let r be the corresponding hazard 

rate function. Does the logconvexity of f imply the logconvexity of r, and vice versa? It 

turns out that neither is the case. First consider the hazard rate function 

t ~ o. 

Here log r is linear, so it is logconvex. The corresponding density function is given by 

f(t) = el+t-e
t

, t ~ 0, 

and a computation of the second derivative shows that f here is strictly logconcave (see 

Pellerey, Shaked and Zinn (1999)), and thus it is not logconvex. In order to see that 'f is 
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logconvex' does not imply that 'r is logconvex,' consider the hazard rate function 

1 1 t + 2 
r(t) = t+3 - (t+3)2 = (t+3)2' t ~ O. 

This is indeed a hazard rate function since it is nonnegative, and it integrates to 00. A 

straightforward computation shows that (cP /dt2) log r(t) < 0 for 0 < t < 2v'2 - 2. Therefore 

r is not logconvex. The corresponding density function is 

3(t+2) { t } 
f(t) = (t + 3)3 exp 3(t + 3) , t ~ O. 

A straightforward computation gives 

and this is positive for all t ~ O. Thus f is logconvex. 

Since the multivariate likelihood ratio order is closed under marginalization (see Theo­

rem 4.E.3(b) in [19]), we get the following result as a corollary of Theorem 4.5. 

Corollary 4.6. Let F and G be distribution functions associated with two nonhomogeneous 

Poisson processes as described above, with corresponding density functions f and 9, and with 

corresponding hazard rate functions rand s. If F ~hr G, and if f and rare logconvex or 9 

and s are logconvex, and if (3.4) holds, then X1,n ~lr X 2,n for all n ~ 1. 

The next result gives different conditions under which each inter-epoch of the first process 

is smaller than the corresponding inter-epoch of the other process in the likelihood ratio order. 

Theorem 4.7. Let f and 9 be density functions associated with two nonhomogeneous Pois­

son processes as described above, with corresponding hazard rate functions rand s, and with 

corresponding cumulative hazard functions Rand S, respectively. If F ~hr G, and if f and 

9 are logconvex, and if (3.4) holds, then X1,n ~lr X 2,n for each n ~ 1. 

Proof. First note that by Lemma 3.4 we have F ~lr G. 

For the purpose of this proof we denote f by f1' 9 by 12, r by rI, s by r2, R by RI, and 

S by R2 • Let 9i,n denote the density function of Xi,n, i = 1,2. The stated result is obvious 

for n = 1, so let us fix an n ~ 2. From (2.4) we obtain 

t ~ 0, i = 1,2. 
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As in the proof of Theorem 4.4, we have that 

( ) R?-2(t). TP . (. t) 
ri t (n _ 2)! IS 2 III Z, • 

The assumption FI ~lr F2 implies that 

fi(s+t) is TP2 in (i,s) and in (i,t). 

Finally, the logconvexity of h and of h means that 

fi(s + t) is TP2 in (s, t). 

Thus, by Theorem 5.1 in page 123 of Karlin (1968), we get that 9i,n(t) is TP2 in (i, t); that 

is, XI,n ~lr X 2,n. 0 

The next result gives conditions under which each inter-epoch of the first process IS 

smaller than the corresponding inter-epoch of the other process in the mean residual life 

order. Recall that a distribution function F is said to be IMRL (increasing mean residual 

life) if the mean residual life at time t, defined as (ftoo F(u)du)/F(t), is increasing in t ~ 0 

when the ratio is well defined. 

Theorem 4.8. Let F and G be distribution functions associated with two nonhomogeneous 

Poisson processes as described above, with corresponding hazard rate functions rand s, and 

with corresponding cumulative hazard functions Rand 5, respectively. If F ~mrl G, and if 

F and G are IMRL, and if (3.4) holds, then XI,n ~mrl X 2,n for each n ~ 1. 

Proof. As in the proof of Theorem 4.4, we denote here F by FI, G by F2, r by rI, s by r2, 

R by RI, and 5 by R2. The stated result is obvious for n = 1, so let us fix an n ~ 2. The 

survival function Gi,n of Xi,n, i = 1,2, is given in (4.3). From (l.D.3) in [19] it is seen that 

the stated result is equivalent to 

is TP 2 in (i, t); 

that is, to 

is TP2 in (i, t). (4.8) 

Now, from the proof of Theorem 4.4 we know that (3.4) implies that ri(s)~~~22\~) is TP2 

in (i, s). The assumption FI ~mrl F2 means that 

is TP 2 in (i, s) and in (i, t). 
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Finally, the assumption that Fi is IMRL means that 

is TP2 in (8, t). 

Thus (4.8) follows from Theorem 5.1 in page 123 of Karlin (1968). o 

4.2 N onhomogeneous birth processes 

In this subsection, as in Subsection 3.2, we consider two non homogeneous birth processes. 

Let the first one be associated with a sequence {Yi,n, n = 1,2, ... } of independent abso­

lutely continuous nonnegative random variables, and let the secpnd one be associated with 

a sequence {Y2,n, n = 1,2, ... } of independent absolutely continuous nonnegative random 

variables. The notation of Subsection 3.2 will be used here. In particular, the epoch times 

Ti,n associated with the two processes are defined in (3.11) and (3.12). The associated 

inter-epoch intervals will be defined as 

X i ,l =st }i,I, 

n ~ 2, 

(4.9) 

(4.10) 

The density function ll,n of (XI ,I,X1,2, ... ,XI,n) is an extension of (4.4) and is given by 

n-1 j K (,\,j) n 
o ( ) IT (~) 1,j .LJ1=1 XI k (~ ) q ,n Xl, . .. ,Xn = r 1 ,j ~ X I j 1 ,n ~ X I , 

j=l 1=1 K 1,j+1(LI=l XI ) 1=1 

Xk ~ 0, k = 1, ... ,n. 

(4.11) 

The density function l2,n of (X2,I, X 2,2, ... ,X2,n) is an extension of (4.5) and is given by 

n-1 j K (,\,j) n 
o ( ) IT (~) 2,j .LJI=I XI k (~ ) 1:2,n Xl, .. ·, Xn _- r2,j ~ XI r j 2,n ~ XI , 

j=l 1=1 K 2,j+1 (LI=l XI) 1=1 

Xk ~ 0, k = 1, ... , n. 

(4.12) 

In this subsection we derive some extensions and analogs of the results in the previous 

subsection. 

The first result gives conditions under which the epoch times of the two non homogeneous 

birth processes are ordered according to the usual stochastic order. This result may be 

compared with Theorem 4.2. The following result can be shown to follow from Theorem 2.7 

in Shaked and Szekli (1995), however, we provide here a simple direct proof of it. 
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Theorem 4.9. Let Xi,n be defined as in (4.9) and (4.10). ffY1,1 ::S;st 12,1 and if 

u ~ 0, x ~ 0, j ~ 2, (4.13) 

then 

n~1. (4.14) 

Proof. The result is obvious when n = 1. So fix an n ~ 2. Let x~ ~ Xk ~ 0, k = 1,2, ... , n. 

Now, for j = 2, ... , n we have 

[ 
j-I I j-l] 

[XI,jIXI,1 = XI, ..• , X1,j-1 = xj-d =st Yi,j - L Xk Yi,j > L Xk , 

k=1 k=1 

[ 
j-l I j-l] 

[X2,jIX2,1 = x~, ... ,X2,j-1 = xj_d =st Y2,j - LX~ 12,j > LX~ . 
k=l k=l 

Denote z = L{:~ Xk and z' = Li:~ xk' It is not hard to see that (4.13) implies that 

[Yi,j - zlYI,j > z] :::;st [12,j - z'I12,j > z'] whenever z' ~ z ~ 0, j ~ 2 (4.15) 

(in fact, (4.13) and (4.15) are equivalent). Thus the stated result follows from Theorem 4.B.3 

in [19]. 0 

As a corollary (see a comment following Theorem 4.2) we see that if Y1,1 ::S;st 12,I, and if 

Yi,j :::;hr 12,j, j ~ 2, and if Y1,j or 12,j are DFR, j ~ 2, then (4.14) holds. 

The next result is an extension of Theorem 4.5. 

Theorem 4.10. Let Xi,n be defined as in (4.9) and (4.10). ffY1,j ::S;hr 12,j, and ifr2,j/rl,j is 

increasing, and if (3.14) holds, and ifrl J", ~1,) and kl J" orr2J", {2,) and k21" are logconvex 
, n 1,)+1 ' , 2,)+1 ' 

for all j ~ 1, then 

The proof of Theorem 4.10 is a straightforward extension of the proof of Theorem 4.5, 

using (4.11) and (4.12) rather than (4.4) and (4.5); we omit the details. 

It is worth mentioning that .,f;') is logconvex if, and only if, ri,j+1 - ri,j is increasing. 
<,)+1 " 

5 Some Applications 

In this section we describe some applications of the results of Sections 3 and 4. The list of 

applications that we provide below is far from exhaustive, and is given only as an indication 

of the applicability of the mathematical results. In fact, the results of Sections 3 and 4 

provide useful bounds in almost any area where birth processes are used. 
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-: 
5.1 Comparisons of generalized Yule birth processes 

A Yule (or a linear) birth process is a birth process with jump intensity from state n to state 

n+ 1 ofthe form (n+ I)A, where A> o. Let us consider a generalization NI = {NI(t), t 2:: O} 

of the Yule process in which the jump intensity at time t, given that n jumps have occurred 

already, is of the form (n + I)A(t). Let N2 = {N2(t), t 2:: O} be another generalized Yule 

process with the corresponding jump intensity (n + 1)'7(t). 

The generalized Yule process is a nonhomogeneous birth process. Thus, if the distribution 

functions F and G, that are associated with the failure rate functions A and '7, satisfy F ::;hr G 

(that is, A(U) 2:: '7(u) for all U 2:: 0), then, by Theorem 3.9 or 3.10, it is seen that at any 

time t, there are stochastically at least as many jumps in NI as 'there are in N2 (this is an 

intuitively clear result that can also be proven directly). If, in addition to A(U) 2:: '7(u) (note 

that then (3.14) holds too), we also have that '7/A is increasing, then by Theorem 3.11 the 

vectors of the first n jumps are ordered in the multivariate likelihood ratio order, and sharper 

inequalities hold (see, for example, (5.1) below). 

If A and '7 satisfy (4.13), that is, A(U) 2:: '7(u + x) for all x 2:: 0 and U 2:: 0, then by Theo­

rem 4.9 all the times between births in NI are stochastically smaller than the corresponding 

times between births in N 2 • 

A generalized Yule process may model the spread of a disease, where n is the number of 

infectives, and A(t) is the rate in which infectives pass the disease to new individuals at time 

t; this rate, in general, depends on the calendar time t - for example, it may change with 

the seasons of the year (Bailey, 1975). Consider now two generalized Yule processes, with 

rates A(t) and '7(t), which model the spread of a disease under two different health measures 

that are expected to control the spread. The stochastic inequalities described above can 

direct a health official as to how to fight the spread of a disease, if the official can select 

between the two measures that control the spread with respective rates A(t) and '7(t). 

A comparison of a generalized Yule process NI (with intensities rI,n(t) = (n+ 1 )A(t)) with 

a standard Yule process N2 (with intensities r2,n(t) = (n + 1 )'7, independent of t) can provide 

computable upper or lower bounds on various probabilistic quantities of interest that are asso­

ciated with NI. This is based on the fact that the inter-epoch intervals X 2,I, X 2,2, . .. , X 2,n, ... 

of the standard Yule process N2 are independent exponential random variables with rates 

'7,2'7, ... , n'7, . .. , and the epoch times T2,n are sums ofthese independent X 2,i'S. For example, 
" 

suppose that we have under study a generalized Yule process NI as above, and suppose that 

A(t) is bounded from below by a constant '7 (that is, A(t) 2:: '7 for all t 2:: 0). Define N2 as the 
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standard Yule process with the associated rate 11. Then by Theorems 3.9 or 3.10, and 4.9 we 

get (Tl,l, ... , Tl,n) :S;st (T2,I,"" T2,n) and (Xl,I, ... , Xl,n) :S;st (X2,I, ... , X 2,n), and therefore 

E</J(T},l,' .. , Tl,n) :s; E</J(T2,I,"" T2,n) and E</J(Xl,!, •.. , Xl,n) :s; E</J(X2,!, . .• , X 2,n) for any 

increasing function </J for which the expectations exist. For example, 

n 

ETl,n :s; ET2,n = 11-1 L i-I. 
i=l 

Another example is provided by Theorem 4.1 of Bunge and Nagaraja (1992). The authors 

give there an explicit expression for the expected value of the waiting time until the nth record 

occurs when the arrival process is a standard Yule process. If in a particular application 

the arrival process is a generalized (rather than standard) YUle'process, and its associated 

rate ),(t) is bounded from below, then the explicit expression in Theorem 4.1 of Bunge 

and N agaraja (1992) provides an upper bound for the expected value of the waiting time 

until the nth record occurs. Another reference in which one can find explicit expressions 

of probabilistic quantities of interest that are associated with a standard Yule process is 

the paper by Brown, Ross, and Shorrock (1975). When the rate ),(t) that is associated 

with the generalized Yule process is bounded from below or from above, then these explicit 

expressions can bound the corresponding probabilistic quantities that are associated with 

the generalized Yule process. In fact, Brown, Ross, and Shorrock (1975) study a Yule process 

with immigration (that is, the intensity is of the form (n + 1)11 + 0); this process can bound 

a non homogeneous birth process with intensities of the form rn(t) = (n + l),(t) + J.L(t). 

Consider now again the generalized Yule process NI with intensities rl,n (t) = (n + 1 ),( t), 

and the standard Yule process N2 with intensities r2,n( t) = (n+ 1 )11, that we described above. 

If, in addition to ),( t) 2: 11, we also have that ),( t) is decreasing, then 11/),( t) is increasing, 

and by Theorem 3.11 we have (Tl,l, .. " Tl,n) :S;lr (T2,1,' .. ,T2,n)' Then, for example, we have 

-
E[</J(Tl,I, ... ,Tl,n)lt?:s; Tl,i:S; tL i = 1, ... ,n] 

:s; E [</J(T2,1, ... , T2,n) It? :s; T2,i :s; tL i = 1, ... ,n] (5.1) 

for all increasing functions </J, whenever t? < t}, i = 1, ... , n (see Theorem 4.E.1 in [191). 

Such an inequality does not follow, in general, from the weaker condition (Tl,!, •.• , Tl,n) :S;st 

(T2,1,' .• , T2,n)' See below, in the next paragraph, a possible practical application of (5.1). 

When ),(t) 2: 11, and ),(t) is decreasi~g, then all the conditions of Theorem 4.10 hold. 

In order to see it we first note that (3.14) obviously holds because ),(t) 2: 11. If k2,j de­

notes the exponential density with rate jn then it is easy to verify that r23" KK2,] and k23' 
'/ '2,]+1 ' 
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are alllogconvex. Thus, from Theorem 4.10 we obtain (X1,I, ... , X1,n) $lr (X2,I,"" X 2,n), 

where X 2,l, .•• , X 2 ,n are independent exponential random variables as described above. This 

stochastic inequality is useful in a situation where benefits are derived at any inter-epoch 

time interval. For example, suppose that the benefit from a realization (XI, ... , Xn) of 

(Xl,l,"" Xl,n) is </>(XI, ... , Xn), but the benefits are derived only during an initial period of 

length to in any inter-epoch interval. Then the expected benefit from the first n inter-epoch 

intervals of the generalized Yule process is E[</>(X1,I, ... ,X1,n)IX1,i $ to, i = 1, ... ,n], pr<r 

vided the expectation exists. When </> is increasing then this expectation is bounded from 

above by E[</>(X2,l, ... ,X2,n)IX2,i $ to, i = 1, ... ,n]; this follows from (X1,I, ... ,Xl,n) $lr 

(X2,I,' .. , X 2 ,n) and from Theorem 4.E.1 in [19]. The latter ~xpectation is not hard to 

compute because X 2,!, . .• , X 2,n are independent exponential random variables. 

5.2 Comparisons of load-sharing models 

Consider n items that share a load Ll(t) at time t. A common model (see Schechner (1984)) 

is to assume that the failure rate of each item then is L1(t)/n. After i items have already 

failed, each of the remaining n - i items has a load of Ll(t)/(n - i). If we denote rl,j{t) = 

L1(t)/(n - i + 1), then it is seen that the failure times Tl,l $ Tl ,2 $ ... $ T1,n are the epoch 

times of a nonhomogeneous birth process. Let L2 be a second load shared by n similar items. 

If Ll(U) ~ L2(U) for all U ~ 0, then, by Theorem 3.9 or 3.10, it is seen that at any time 

t, there are stochastically at least as many failures in the first model as there are in the 

second (this is an intuitively clear result that can also be proven directly). If, in addition to 

Ll(U) ~ L2(U) (note that then (3.14) holds too), we also have that L2/L l is increasing, then 

by Theorem 3.11 the vectors of the n failure times are ordered in the multivariate likelihood 

ratio order, and sharper inequalities hold. 

If Ll(U) ~ L2(fl+X) for all x ~ 0 and U ~ 0, then, by Theorem 4.9, all the times between 

failures in the first model are stochastically smaller than the corresponding times between 

failures in the second model. 

If the load L2 is constant then some probabilistic quantities of interest can be computed 

explicitly. Thus, when Ll(t) is bounded from below or from above, we can use the load­

sharing model associated with L2 in order to bound some probabilistic quantities of interest 

involving the model associated with Ll(t). For example, Equation (4.9) of Phoenix (1978) 

gives an explicit expression for the mean ~f a single member in a load-sharing model with 

a constant L2. If Ll(U) ~ L2 for all U ~ 0 then, using Theorems 3.9, 3.10 and 4.9, we see 
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that (4.9) of Phoenix (1978) provides an upper bound on the corresponding expectation in 

the model associated with L 1• 

A load-sharing model with a constant L often describes the strength of a bundle of fibers. 

If the load on the bundle varies with time (for example, the load may be different during the 

day than during the night) then the general model, in which L depends on t, applies. 

5.3 Comparisons of benefits between times of minimal repair 

The repair times of an item that is continuously minimally repaired are the epoch times of 

a nonhomogeneous Poisson process whose intensity function is the hazard rate function of 

the lifetime distribution of the item; see, for example, Shaked and Szekli (1995). 

Suppose that a manager has to decide which of two items that are continuously minimally 

repaired is to be used. The selected item (which may be, for example, a computer, a car, or 

an airplane) can then be used until its next failure. If we denote by X a generic intrafailure 

interval, then it can be assumed that the benefit derived from the item is an increasing 

function <f;(X) of the interval (see, for example, a discussion in page 1093 of Shaked and 

Szekli (1995)). If the choice of the manager is between the ith interval of either of the two 

items, then Theorems 4.1-4.7 can direct the manager in his choice. For example, if the 

item is going to be used for the whole duration of the intrafailure interval, then under the 

conditions of Theorems 4.1 or 4.2 we have E[<f;(X1,i)] ~ E[<f;(X2,i)], and thus the second item 

is preferable. If the item can be used only after some fixed burn-in time Xo, then under the 

conditions of Theorem 404 we have E[<f;(X1,i - xO)IX1,i > xo] ~ E[<f;(X2 ,i - xO)IX2,i > xo], for 

any fixed Xo, and thus again the second item is preferable (by (l.B.5) in [19]). Finally, if the 

item is going to be used only for a fixed subinterval, [xo, xd say, of the intrafailure interval, 

then under the conditions of Theorems 4.5 or 4.7 we have E[<f;(X1,i - xo)lxo < X 1,i ~ xd ~ 
E[<f;(X2,i - xo)lxo -< X 2,i ~ xd, for any fixed Xo < XI, and thus the second item is preferable 

(by (1.CA) in [19]). 
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