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We introduce a notion of the derivative with respect to a distribution function, not relating 

necessarily to probability, which generalizes the concept of the derivative as proposed by Lebesgue 

(1973). The differential calculus required to solve the linear differential equation involved in this 

notion of the derivative is included in the paper. The definition given here may also be considered 

as the inverse operator of a modified notion of the lliemmann-Stieltjes integral. Both this unified 

approach and the results of differential calculus allow us to characterize distributions in terms of 

three different types of conditional expectations. In applying these results, a test of goodness-of-fit 

is also indicated. Finally, two characterizations of a general Poisson process are included, based 

on conditional expectations. Specifically, a useful result for the homogeneous Poisson process is 

generalized to a general context. 

1 Introd uction 

Lebesgue (1973) introduced the notion of the derivative with respect to a function of bounded variation 

in (a, b) with -00 ::; a < b ::; 00 as 

df(t) = lim f(t + h) -- f(t) for a < t < b 
a(t) h-+O a(t + h) - a(t) 

(1) 

With this definition, Lebesgue (1973) showed that the relation between the Riemann-Stieltjes integral 

related to a and this notion of the derivative is the same as that existing between the Riemman integral 
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and the usual derivative in the case a(t) = t; that is, both operators, derivative and integral, are 

inverse. Within this framework, this encourages study of differential equations based on the concept 

of the derivative given in (1). For instance, a first-order differential equation (a-equation) might be 

expressed as follows: 
df(t) 
da(t) = 9 [t, a(t), f(t)] for a < t < b (2) 

To develop this idea, let us consider the following problem. Let T be a random variable taking values 

in (a, b) with a distribution function F and a distribution tail F = 1 - F. Let us assume furthermore 

that E[T] is finite. Define, for a < t < b, 

t zdF(z) 
m(t) = E[TI T > t] = t F(t) (3) 

m is called the mean lifetime function. This immediately raises the question of how to find the distribu­

tion F, starting from knowledge of m itself. In simples cases, the procedure of finding F is familiar from 

elementary calculus. For example, if the distribution is absolutely continuous, F is obtained by differen­

tiating in (3); that is, by evaluating dm(t)/dt. Inspired by normal differential calculus, we propose the 

idea of replacing dz with dF in order to obtain dm(t)/dF. Speaking without complete scientific rigour 

and extending the classical rules of differentiation, dm(t)/dF would be reduced to: 

dm(t) _ -t + m(t) 
dF(t) - F(t) 

(4) 

Consequently, solving the differential equation involved as if it were conventional; that is, considering 

F(t) = t, the distribution F might be derived as follows: 

F(t) = exp - f: .::;:\:.>.. for all a < t < b (5) 

Obviously, equation (4) is a particular case (linear) of (2). The normal approach to solving (2) consists 

of interpreting it as an integral equation, using a heuristic argument and then giving adequate meaning to 

the integral chosen. This approach is usually considered in the context of stochastic differential equations. 

Some simple problems have a form similar form to (2). For example, the known Growth equation, (see 

Karling and Taylor (1975), pp. 354) 

dX=XdB (6) 

where B is the Brownian Motion. In the above reference, X(t) = exp[B(t)] is given as a pathwise solution 

of (6) [with initial condition X(O) = 1] which is found in an informal, non-mathematical manner. It is 

also shown that this solution is the one required when the equation (6) is interpreted as a Stratanovic 

stochastic differential equation. On the other hand, the solution Y(t) = exp[B(t) - t/2] agrees with the 

Ito solution when (6) is interpreted in the sense of Ito. The methodology developed in this approach 

starts by explicitly formalizing the notion of the integml. 
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In this work, we propose a different approach based on previously formalizing a concept of the deriva­

tive which will be useful in solving our problem. However, this is a meaningless approach within the 

general context of stochastic differential equations since df(t)/do:(t) usually depends on dt. After intro­

ducing the definition of the functional derivative, we will use methods and concepts relating to ordinary 

differential equations, but applied in this case to the definition of the derivative given here. We should 

point out that analysis of the existence of solutions and detailed research into procedures for solving (2) 

will not be included here. We will include only the arguments and developments required to formalize 

mathematically the problem of characterization of the mean lifetime func~ions stated in (4). Indeed we 

will study a more general problem, a problem of characterization in terms of conditional events of the 

form (s < T < t), which will be denoted as bilateml chamcterization. 

Turning to the example that motivated this work; that is, the characterization of distributions by mean 

lifetime functions, it should be observed that both Definition 1 and the usual definition of the Riemman­

Stieltjes integral are insufficient to achieve the objective mapped out in this paper. The main reason for 

this is that if F or m are discontinuous functions, the discontinuity points of F and m will be the same. For 

this reason, in the context of characterizing distributions in terms of conditional expectations, it has been 

assumed in the literature that the function of distribution is absolutely continuous and, therefore, that 

classical differential calculus may be involved, applied as the inverse operator of the Lebesgue integral. 

It is, therefore, necessary to consider modified definitions of derivative and integral if a general approach 

is sought, without restrictions on F. 

Hence our main objective in this paper is to give a perfectly plausible definition of the functional 

derivative, in the same sense as that provided by Lebesgue, such that the formula 5 may be derived by 

differentiation. We should point out that once known, the solution to (3), (5) might be obtained by 

analytical methods, without appealing to a new concept of the derivative as may be seen in Lillo and 

Martin (1997). However we are interested in formalizing these ideas and procedures, since a more general 

characterization problem of a conditional nat.ure, and easily solved by these methods will be treated here. 

Moreover, this differential calculus may be applied in other contexts and to other problems. On the other 

hand, considering a modified definition of the Riemann-Stieltjes integral, both operators, the functional 

derivative introduced here and the integral, would undergo process inversion, thus guaranteeing a unified 

approach in relation to the applications. Section ~ is devoted to introducing this new approach of a 

derivative compatible with the integral of the equation (3) and (5). An extended subsection is also 

included, with properties and results relating to previously defined operators. 

Advances in the characterization of probability distributions over the last two decades have brought 

new dimensions to the area of research, and have generated considerable interest among researchers 

into both Probability and Statistics. Characterization properties are of potential importance in various 

areas, such as Reliability, Statistical Inference, Stochastic Processes, Bayesian Methods and Information 
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Theory. Recent results of characterization require conditions to be applied to the distribution function of 

the random variable. A detailed panorama of the wide interest in the applicability of characterizations in 

these areas may be found in Galambos (1978), Gupta (1984), Meilijson (1972), Nagaraja and Nevzorov 

(1997), Rao and Shanbhag (1986), Shanbhag (1970). In Section 3, we characterize completely h-mean 

lifetime functions using the calculus described in Section 2. The definition of h-mean lifetime function 

is a generalization of Definition 3 in the following sense: let h be a strictly increasing function from the 

interval (a, b) to JR, such that the set of continuity points of F is included in the set of continuity points 

of h; that is, is F-continuous. Define, for a < t < b, 

mh(t)=E[h(T)IT>t] fora<t<b (7) 

then, mh is called the h-mean lifetime function. Hamdan (1972), Kotlarski (1973) and Kotlarski and 

Hinds (1975) used this conditional mean to characterize some continuous probabilities. We say completely 

since any assumptions regarding the function distribution will be required in our results. However, in 

the literature Dealing with this problem, it is often assumed that the distribution function is absolutely 

continuous. 

Some definitions Relating to conditional expectations of random variables are given, and subsequently, 

theorems of characterization of distributions based on such conditional means are shown. By way of 

application of a new concept called bilateral conditional mean, we propose a test of goodness-of-fit based 

on the general technique of the chi-squared test for goodness of fit. A new approach aimed at deriving 

the exponential distribution from a process with periodic memory is also characterized in Subsection 3.2. 

Finally, Section 4 is devoted to proving two theorems of characterization of a general Poisson process. 

One of them is a generalization of the theorem of Watanabe (1964) for the homogeneous Poisson process. 

The other is based on the conditional mean of the waiting time until the next arrival. 

2 Functional derivative 

Obviously, definition of a functional derivative suggests differentiation with respect to a function; that 

is, the idea of replacing the variable of differentiaton x for a function 0'. The simplest definition of 

the derivative with respect a function was introduced by Lebesgue (1973). However, this definition is 

not plausible, for example, when the function of differentiation is the distribution function related to a 

discrete random variable. For this reason, we may add some definitions and notation. Before starting the 

calculus, we should point out that the approach introduced here is focused on diffentiating with respect to 

distribution functions, since this is sufficient to solve our initial problem. Nevertheless, ideas and results 

may be extended to the class of bounded variation functions. 

Consider an open interval (a, b), -00 < a < b < 00 on the real line. Let 0' be a non-decreasing, 
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right--continuous real function defined in (a, b). From here on, We will assume that 0 is fixed. Let:F 

denote the class of real functions defined in (a, b). For 9 E :F, define 

C(g) = {tit E (a,b), 9 is continuous at t} 

1)(g) = {t It E (a, b), 9 is discontinuous at t} 

Definition 1 A point t E (a, b) is said to be an increasing point of f iJJ for every h > 0 such that for 

(t - h, t + h) C (a, b), we have f(t - h) < f(t) < f(t + h). The set of all such t is denoted by I(I). 

Definition 2 Given f E:F, t E I(o), the o(l)-derivative of f at t is defined as 

D(l) f(t) = lim f(t + h) - f(t) 
et h-+O o(t + h) - o(t) 

1ft + hE (a, b) and the limit of (8) exists and is finite, f is said to be o(1)-diJJerentiable at t. 

(8) 

This definition has been considered by Lebesgue (1973) to establish a unified approach between 

the Riemann-Stieltjes integral and derivatives. Consequently, in reference to our introductory example 

described in (3), we have 

If t rt I(F) ~ t rt I(mh) ~ mh is not F(1)-differentiable at t 

Hence, Definition 8 is not sufficient to achieve the aim of this work based on differentiating mh with 

respect to F. 

Definition 3 A point t E (a, b) is said to pertain to the support of function f iJJ for every h > 0 such 

that for (t - h, t + h) C (a, b), we have f(t + h) - f(t - h) > O. The set of all such t is denoted by 8(1). 

Another concept of the derivative is now considered in relation to the support of o. 

Definition 4 Given f E:F, t E 8(0), the 0(2)-derivative of fat t is defined as 

D(2) f(t) = lim f(t + h) - f(t - h) 
et h-+oo(t+h)-o(t-h) 

(9) 

If (t - h, t + h) C (a, b) and the limit of (9) exists a"nd is finite, f is said to be 0(2)-diJJerentiable at t. 

It should be remembered that we seek a derivative such that the Riemann-Stieltjes integral may be 

considered as its inverse process. In this context, Definition 4 is not sufficient to generalize the Barrow's 

rule although 0 be continuous. For example, let (a, b) = (-1,1). Let o(t) = t be 

f(t)={ t+l for tE(-I,O] 
I-t for tE(O,I) 

5 



Obviously, I is O'(2)-differentiable for all t E (a, b), but 

l' l(u)dO'(u) * D~2) I(s) - D~2) I(t) if - 1 < t < 0 < s < 1 

Therefore, neither Definition 2 for discontinuity points, nor Definition 4 for continuity points are 

satisfactory, for which reason we introduce the following, 

Definition 5 Given I E :F, we say that I is 0'(3) -differentiable iff 

• I is O'(l)-dijJerentiable lor all t E C(O') nI(O') 

• I is O'(2)-dijJerentiable lor all t E S(O') nv(O') 

Then, D13) denotes this derivative. 

Remark 1 There are obvious implications with respect to these definitions: I is O'(l)-differentiable in 

(a,b) => I is O'(3)-differentiable in (a,b) => I is O'(2)-differentiable in (a,b). 

Let us suppose that I is O'(3)-differentiable for all t E S(O'). D~3)(t) may be extended over interval 

(a, b) in a variety of ways. Note that if (c, d) rt S(O'), the Riemann-Stieltjes integral, 

ld l(u)dO'(u) = l c 

l(u)dO'(u) 

Bearing this fact in mind, and for the reasons given in the Introduction, we choose the following derivative 

extension: 

Definition 6 A lunction I is said to be cP)-dijJerentiable lor all t E (a, b) ijJ 

{ 

D13) I(t) il t E S(O') 

jj~3l I(t) = 0 il t = a, art S(O') 

D13l /(t.) il trtS(O')wheret.=sup{uJu$t, UES(O')} 

(10) 

This extension is not essential but it will allow us to express some results in a simple way. For 

simplicity, we will use the notation Do: = jj~3l I(t) .. 

2.1 Rules and properties of differentiation 

Let 0' be a non-decreasing, right-continuous real function defined in (a, b). Now, we introduce two classes 

of functions 

V~l = {J E :F /1 is O'(il-differentiable in (a, b) } , i = 1,2,3 
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V(i) = {J E :F / f is a(i)-differentiable in (a, b) with a(t) = t} , i = 1,2,3 

Vex {J E :F / f is a(3)-differentiable in (a, b) } 

The following basic rules are derived using procedures similar To those applied to the usual derivate. 

For this reason we will omit the proof. Let f, 9 E V~) be. 

1. D~) (f + g) (t) = D~) f(t) + D~) g(t) 

2. D~) (fg) (t) = g(t)D~) f(t) + f(t)D~) g(t) 

3. If g(t) > 0 for all t E (a, b) 

C) Cl D~) (L) (t) = g(t)D; f(t) - f(t)D; g(t) 
9 g(t)2 

4. D~) (log f) (t) = f- 1 D~) f(t) 

5. If f E V(i), 9 E V~), then fog E V~) and 

D~) (f 0 g)(t) = D~)g(t)D(i) f(g(t)) ( 11) 

Theorem 1 If f E V~) and D~) f(t) = 0 for all t E (a, b), then f is constant in (a, b). 

Proof: The theorem will follow if, for any interval (c, d) in which the hypotheses hold, f(c) = f(d). 

Given c, with each point t E (c, d) is associated an interval It = (t - ht, t + ht) (arbitrarily small) for 

which 

If(s) - f(s')1 < cla(s) - a(s')I, 'V s, s' E It such that s < t < s' 

The set of intervals {ItltE[c,d] is an open covering of the compact interval [c, dJ. Then, we may consider 

a finite sub covering {It,}, i = 1, ... , n. Assume that t1 < t2 < '" < tn, and for all i, let ti,i+1 verify 

ti,i+1 Elt. n Iti+1 and ti < ti,i+1 < tH1' Considering to = c and tn+1 = d, we arrive at 

n n 

If(d) - f(c)1 < L If(t;) - f(ti,i+dl + L If(ti,i+d - f(tHdl 
i=O i=O 

< c (a(d) - a(c)) (12) 

Since c is arbitrarily small, f(c) = f(d). • 

Remark 2 Theorem 1 is also valid if a is of bounded variation on (a, b). Then, inequality 12 is rewritten 

as 

If(d) - f(c)1 ~ cT(c, d) 

where T(c, d) is the total variation of a in [c, dJ. 
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2.2 A modified Riemann-Stieltjes integral 

Definition 7 Let J denote a closed linear interval [t, s]; let N be any finite set of numbers, say to, h, ... , t n , 

such that 

t = to < tl < t2 < ... < tn = s 

Then N is said to be a net over J, and the closed intervals [tr-l' t r] (r = 1,2, ... , n) are called its cells. 

The gauge of N, denoted as g(N), is given by 

g(N) = max {tr - t r- 1 , r = 1,2, ... , n} 

Consider a to be once more a non-decrasing, right-continuous real function, as defined in (a, b). 

Definition 8 Let f E :F be a real function defined in an interval (a, b). Let N be a net over [t, s] C (a, b). 

Then form the Riemann sum 

n-l 
RN(f) = L [a(tr+d - a(tr )] f(tr+d (13) 

r=O 

Let NI, ... , N q , ... be a sequence of nets or partitions such that g(Nq ) -+ O. If the sequence RNq (f) has 

a limit as q -+ 00, which is independent of the choice of the sequence Nq [provided only that g(Nq ) -+ O}, 

then the limit is called the a-integral of the function f [over interval ft,s}}, and we write 

-
13 f(u)da(u) = lim RN (f) 

t d(N)-+O 
(14) 

Remark 3 Note that if we put in (13) f(t r ) instead of f(tr+d, the Riemann sums involved lead to the 

stochastic integral of Ito, (see Karlin and Taylor (1975)). 

We keep the symbol J/ f(u)da(u) to denote the usual Riemann-Stieltjes integral of f with respect a. 

The existence of the integral can be proved if suitable assumptions are made about functions f and a, the 

most natural of which are that f is continuous and a monotonic (or of bounded variation). An integral 

defined in this manner is such that if f is integrable da (in the Riemann-Stieltjes sense) then f and a 

are nowhere simultaneously discontinuous, (see Kestelman (1959)). However, the example considered in 

the introduction of this paper reveals that mh (t) and F(t) are simultaneously discontinuous. Then, mh 

is not a Riemann-Stieltjes integrable with respect to F(t). This fact motivated Definition 8 in which 

function f in the Riemann sums is always evaluated at the lower point of intervals [tr, t r+l] instead of at 

any point ~ E [tr, tr+l]' 

On the other hand, it is easy to see that if a is a non-decreasing, right-continuous real function 

defined in (a, b), there exists a continuous function al and a step-function a2 such that 

(15) 
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Relation between both definitions of integral is given in the following result. 

Lemma 1 Let there be a Junction J E;: such that C(J) C C(O'), then 

1 J(u)dO'(u) = [' J(u)dO'd u) + L J(U)[O'2(U) - O'2(U - 0)] 
t t ueV(a) 

(16) 

Lemma 2 Let 0'* be the measure induced by 0' in (JR., B), where B denotes the Borel field. Observe 

that Lemma 1 indicates that the Lebesgue integral with respect to a mea~ure may be considered as the 

Riemann-Stieltjes integral given in (14); that is, 

l' JdO'* = I J(u)dO'(u) (17) 

We omit the proof, since the issue is straighforward considering (15). 

Remark 4 In spite of relation 17, we continue to use I: to denote the operator integral, since its meaning 

will be different in this context. 

We now include some useful results to show that the derivative introduced before and this modified 

Riemann-Stieltjes integral are inverse processes. 

Theorem 2 Let 0' be a non-decreasing, right-continuous real Junction defined in (a, b) and let J E ;: 

such that C(O') C C(J) and a-integrable in (a, b). Then, 

-
F(t) = l tJ(U)dO'(U), 'Vt E (a,b) 

Besides, FE 1)a and DaF(t) = J(t). 

Proof: If t E C(O') n I(O'), we have 

lim _F-:-( t_+-:h:+) _-_F-;,(t7) 
h-+O O'(t + h) - O'(t) 

1ft E 1)(0') n 8(0'), we have 

. I/+h 
J(u)dO'(u) 

hm=--....:........:;-~ 
h-+O O'(t + h) - O'(t) 

1
. J!+h"(J(u) - J(t)) dO'(u) + J!+h J(t)dO'(u) 
lm~--------~~~--~~--~--~ 

h-+O O'(t + h) - O'(t) 

J(t) 

1
. F(t+h)-F(t-h) 
lm 

h-+O O'(t + h) - O'(t - h) 
= lim f: J(u)dO'(u) 

h-+O O'(t + h) - O'(t - h) 
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f(t) (a(t) - a(t - 0)) 
a(t) - a(t - 0) 

f(t) 

and finally, if t ft S(a) the proof is immediate, bearing in mind Definition 6 • 

Theorem 3 Let f E 'Do: be such that C(a) C C(Do:f) in (a, b). Then, 

-it Do: [f(u)] da(u) = f(t) - f(a + 0) for all a < t < b 

Proof: Define -
H(t) = it Do: [f(u)] da(u) 

(18) 

l.From Theorem 2, we know that Do:H(t) = Do:f(t) which implies that Do:(H - f)(t) = 0 for t E (a,b). 

Consequently, the result follows from Theorem 1. • 

As an example of this modified Barrow's rule, let 

Then we have, 

and 

a(t) = {o for t < 0 
1 for t > 0 { 

0 for t < 0 
f(t) = 

c for t > 0 

z(t) = Do:f = {o for t < 0 
c for t > 0 

-l' z(u)da(u) = f(s) - f(t) 

Note that Definitions 2, 4, 5 and 6 may also be considered when a is a bounded variation, right­

continuous function with its left-limit in (a, b). However this paper is not focused on the in-depth study 

of operators but applications. Finally, we will include some useful results to be used later. 

Theorem 4 Let f E 'Do: be and Do:f > 0 in (a, b). Then, if a is non-decreasing (non-increasing) in 

(a, b), f is non-decreasing (non-increasing) in (a, b). 

On the other hand, let f E'Do: be and Do:f < 0 in (a, b). Then, if a is non-decreasing (non-increasing) 

in (a, b), f is non-increasing (non-decreasing) in (a, b). 

The proof is omitted since it may be obtained by standard calculations. 
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Theorem 5 Let I, 0, A, B be functions in (a, b) such that C(o) C C(B) and C(f) C C(A). Then, we have 

- -
A(t,f) it 1 it 1 

Dal(t) = B(t,o) <==:} a B(u,o(u))do(u) = a A(u,f(u))dl(u) 

Proof: Assume that the right-hand part is true, then 

1 
B(t,o) 

Considering 
1 1 

A(t, I) Dal(t) = B(t,o) 

the other implication is immediate and the proof is complete _ 

Theorem 6 The solution 01 the first-order linear differential equation: 

is determined by 

where 

Dol(t) + A(t, o)/(t) = B(t, 0) 

f(t) = p~t) [l p(s )B(s, a(s) )da( s) + cl 

p(t) = exp {l A(s, a(s ))da( s) } 

(19) 

(20) 

(21) 

Proof: We solve the equation by means of the integrant factor method; that is, we look for J.l(t) verifying: 

J.l(t) [Do I(t) + A(t, 0 )/(t)] = Do [J.lfl (t) 

After the calculations, the following is obtained 

D;~lt) = A(t, a) => p(t) = exp {l A(s, a(s ))da(s) } 

Then, 

Da (j.t/] (t) = J.l(t)B(t, 0) 

l.From which the result easily follows. _ 
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3 The h-mean lifetime function 

Let T be a random variable with a < T < b where -00 ~ a < b ~ 00 and a finite mean. Let F be its 

distribution function. Let h be a strictly increasing, F-continuous function from the interval (a, b) to R. 

We propose the following definition, where a more general concept of mean lifetime is introduced. 

Definition 9 Consider a random variable T and a function h described above. Then, 

mh{t)=E[h(T)IT>t], for a<t<b' (22) 

is called the h-mean lifetime function (HMLF). 

Note that if h(t) = t and if (a,b) is taken to be [0,00), we have the mean lifetime function typically 

used in the Survival Theory to describe the aging phenomenon. Specifically, Meilijson (1972) obtains the 

distribution functions related to positive random variables, with finite means and an infinite essential 

supremum starting from the mean lifetime function. l.From here on, m(t) will denote the mean lifetime 

function related to function h(t) = t. A natural question is: what are the conditions necessary and 

sufficient to guarantee that a function mh is a HMLF? This paper gives a fairly complete answer to this 

question. For any distribution function F, denote P = 1 - F. 

Certain characterizations of probability distributions have been obtained by using properties of con­

ditional expectations. Shanbhag (1970) gave a characterization of exponential distribution in terms of 

conditional expectations. A generalization of this kind of result is given by Hamdan (1972). In this ref­

erence, an HMLF is considered assuming that h is a strictly increasing differentiable function. Kotlarski 

and Hinds (1975) used the concept of conditional expectation to characterize continuous probability dis­

tributions on the real line. However, the distribution functions are required to be absolutely continuous 

and the functions h differentiable or continuously differentiable, (see Patil et al. (1975) for a quick re­

view). The following result is the widest generalization of this kind of characterizations. The difference 

in the approach here is that instead of investigating absolutely continuous distributions functions, any 

distribution on the interval (a, b), -00 ~ a < b ~ 00 may be characterized in terms of conditional 

expectations. 

Theorem 7 Let mh be a function on (a, b) and let h be a strictly increasing, right-continuous function. 

Then, mh is an HMLF for some distribution function F if, and only if, the following conditions are 

fulfilled 

1. mh(t) is a right-continuous fuction and mh{t) > h(t) for all a < t < b. 

2. mh (t) is a non-decreasing function for all a < t < b. 
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3. For all a < t < b, 

4. Taking the limits to be t -t b 

Moreover, let mh be a function fulfilling these four properties, then there exists a unique function P, such 

that mhF = mh, where mhF denotes the HMLF related to the distribution function F = 1 - P. In this 

case, P is determined as 

_ t dmh(x) { - } 
F(t) = exp -1 mh(X) - h(x) (23) 

Proof: Firstly, we assume that mh is the HMLF related to some distribution function F. l,From the 

definition of HMLF given in (22) and considering that h is strictly increasing, it is immediate that 

mh(t) > h(t), and from Theorem 2 in section 2.1, it may be deduced that an HMLF is F-continuous 

and therefore, a right-continuous function. Since mh can be stated in connection with P, i.e, 

-
( ) _ hbh(x)dF(x) 

mh t - F(t) (24) 

condition 2 may be obtained using property 4 of the derivatives. 

D ( ) _ -h(t)P(t) + th(x)dF(x) 
pmh t - F(t)2 (25) 

Since hand F are increasing, (25) is greater than zero and then, mh(t) is non-decreasing. To verify the 

third condition, observe that 

(26) 

Then, we can write 

Applying Theorem 3 to the left-hand term, we obtain equation (23) 

_ t dmh(x) { - } 
F(t) = exp -1 mh(X) - h(x) 

Consequently, the third and fourth conditions are immediate. Now, we will prove the sufficient conditions. 

To this end, we will show that function P defined in (23) determines a distribution function in (a, b) with 

finite mean. Obviously F(a + 0) = 1 and F(b - 0) = O. Using once more derivative Theorem 2, it is 
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easy to see that F is right-continuous. On the other hand, we may prove that F(t) is a non-increasing 

function of t. To this end, it is sufficient to differentiate with respect to mh. 

(27) 

Since mh is a non-decreasing function and (27) is negative, F is non-increasing. Finally, the expected 

value of h(T) associated with the distribution derived from F is mh(a) which is finite and then, E[T] is 

also finite due to the properties of function h. Now we have only to show ,that mhP = mho By equation 

(26), we know that mhP verifies 

D ( ) 
_ mhP(t) - h(t) 

FmhF' t - F(t) (28) 

Observe that (28) is a linear differential equation whose unique solution under the condition mhj:;(a) = 

E[h(T)) = mh(a) is 

_ ) _ ftbh(z)dF(z) 
mhF (t - F(t) 

which is derived using Theorem 6. i,From (27), we have that mh verifies (28). Since the solution is 

unique, we have that mhP = mh and the proof is complete. _ 

Let T be a positive random variable, with finite mean and infinite essential supremum. 

Define,for O::;t<oo, p(z)=E[T-tIT>t] 

I' is called the mean residual lifetime function, MRLF. 

Corollary 1 Let I' be a positive function on [0,00). Then, I' is an MRLF If, and only if, 

1. p(t) is a right-continuous fuction for all t ~ o. 

2. m(t) = p(t) + t is a non-decreasing function for all t > O. 

3. f; I'(~) < 00 for all t ~ O. 

Moreover, let I' be a function fulfilling these four properties, then there exists a unique function F such 

that pp = 1', where pp denotes the MRLF related to the distribution function F = 1 - F. In this case, 

F is determined as 

F = 1 - F(t) = 1'(0) exp {_ t ~} 
p(t) 10 p(z) 
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Proof: Observe that 

m(t) = t + J.L(t) 

is the MLF associated with T. This fact leads to the conclusion of proof applying Theorem 7. • 

Remark 5 Corollary 1 has been proven by Lillo and Martin (1997) using a direct development, without 

considering the differential calculus introduced here and applied in a Bayesian context. 

In the same way, we also define the concept of h-mean deathtime function as a conditional mean by 

evens (T::; t) 

Definition 10 Consider a random variable T taking values on the interval (a, b) and finite mean. Let F 

be its distribution function and consider a strictly increasing, F-continuous function h from the interval 

(a, b) onto fR. Then, 

dh(t) = E[h(T) IT::; t], fora < t < b (29) 

is called the h-mean deathtime function (HMDF). 

Applying an approach similar to that used to prove Theorem 7, we can also characterize the h-mean 

deathtime functions, as written in the following theorem: 

Theorem 8 Let dh be a function from (a, b). Then, dh is an HMDF for some distribution function F 

if, and only if, the following conditions are satisfied 

1. dh(t) is a right-continuous fuction and dh(t) < h(t) for all a < t < b. 

2. dh (t) is a non-decreasing function for all a < t < b. 

3. For all a < t < b, 

4. Taking the limit to be t -+ a 

Moreover, let dh be a function fulfilling these four properties, then there exists a unique distribution 

function F, such that dhF = dh, where dhF denotes the HMDF related to the distribution function F 

which is determined as 

{ 
[b ddhF(:r) } 

F(t) = exp - it h(:r) - dhF(:r) (30) 
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We omit the proof since it is based on the same arguments as the proof for Theorem 7. As a 

consequence of Theorem 7, results of characterization of probability distributions on the real line, in terms 

of conditional expectations, may be obtained. The first is a generalization of a kind of characterization 

given by Hamdan (1972). 

Theorem 9 Let h be a strictly increasing, right-continuous function from the interval (a, b) to [0,00) and 

let c be a positive constant satisfying a < c < b. The random variable T has its cumulative distribution 

given by 

{ 
° t < a 

F(t) = 1- e-$ a < t < b 

1 t > b 

(31) 

if, and only if, 

V t E (a, b), mh(t) = E[h(T)1 T > t] = h(t) + h(c) (32) 

Proof: l.From Theorem 7 it is sufficent to verify that mh is an HMLF. Then, using (23), the distribution 

function is expressed as 
- It dht,/ !!.ill F(t) = e - Q h c = e -li\c} , for a < t < b 

and the proof is complete. _ 

Corollary 2 If (a, b) is taken to be (0,00) and h(t) = td, t E [0,00), d> 0, Theorem 9 gives a charac­

terization of the Weibull distribution 

If in addition we have d = 1, the Weibull distribution reduces to the exponential distribution. In this 

case, the condition necessary and sufficient for T to be an exponential distribution with mean a is that 

m(t) = t + a V t > ° (33) 

Continuing with the idea of characterizing distributions in terms of conditional expectations, we 

introduce another definition of conditional expectation based on a bidimensional function. 

Definition 11 Consider a random variable T taking values on the interval (a, b), finite mean and dis­

tribution function F. Consider a function strictly increasing, F-continuous function h from the interval 

(a, b). Then, 

/Jh(t, s) = E [h(T) It < T < s], for a < t < s < b (34) 

is called the h-bilateral conditional mean function (HBCMF). 
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We will see that the HBCMF is a useful tool to characterize probability functions involving a fit-test 

with application in Statistical Inference. Firstly, three theorems of characterization of these functions are 

given without proof, since they are easily followed using Theorem 7 and Theorem 8. 

Theorem 10 Let J.lh(t, s) be a function from (a, b) x (a, b). Then, J.lh(t, s) is an HBCMF for some 

distribution function F if, and only if, 

1. For all t E (a, b), the limit 

I:WJ.lh(t, s) = J.lh,b(t) 

exists and J.lh,b is an HMLF related to the interval (a, b). 

2. If Fb is the distribution function associated to J.lh,b, It verifies, 

(35) 

Theorem 11 Let J.lh (t, s) be a function from (a, b) x (a, b). Then, dh is an HBCMF for some distribution 

function F if, and only if, 

1. For all s E (a, b), the limit 

~if,lJ.lh(t, s) = J.lh,a(S) 

exists and J.lh,a is an HMDF related to the interval (a, b). 

2. If Fa is the distribution function associated to J.la, It verifies equation (95). 

Theorem 12 Let J.lh(t, s) be a function from (a, b) x (a, b). Then, dh is an HBCMF for some distribution 

function F if, and only if, J.lb(t) is an HMLF, J.la(S) is a HMDF and moreover, Fdx) = Fa(x) 'V x E (a, b). 

Proof: It sufficient to consider that if mp and dp are the HMLF and the HMDF related the same 

distribution F, the following relation is verified 

where J.lh denotes the expected value of h(T). • 

As an example of the usefulness of this theorem, bilateral conditional means that may be written as 

linear combination of t and s will be characterized. 
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Theorem 13 Let h(x) = x be. A function J.'(t, s) = At + (1- A)S, a < t < s < b, 0 < A < 1 is a bilateral 

conditional mean if, and only if, A = 1/2. In this case, the associated distribution is uniform over the 

interval (a, b). 

Proof: Taking the limits to be s t band t + a, we have 

J.'b(t) 

J.'a(s) 

At + (1 - A)b 

Aa + (1 - A)S 

(36) 

(37) 

According to Theorem 7 and Theorem 8, J.'b is an MLF and J.'a is an MDF, respectively with the following 

associated distribution functions: 

(38) 

l,From Theorem 12, we require Fb(t) = 1- Fa(t) for t E (a, b). By straightforward calculations, it is easy 

to prove that this is possible if, and only if, A = 1/2. In this case, the distribution involved is the uniform 

distribution over the interval (a, b). • 

3.1 Goodness-of-fit test 

We propose a test of goodness-of-fit based on the notion of the bilateral conditional mean and inspired 

by the general technique of the chi-square test for goodness of fit. The method of the test proposed 

here proceeds as follows. Suppose we are sampling from a d.f. F(x) with support for the interval (a, b), 

(which may depend on parameter(s) 0). Divide the range of the distribution into k mutually exclusive 

and exhaustive intervals, say h,I2' ... ,h, where I. = [t._1,t.) and to = a, tk = b. Each interval has a 

conditional bilateral mean and variance of containing an r.v with d.f. F(x), 

f/L1xdF(x) 
J.'(ti-l, td = F(t.) _ F(t.-d' i = 1,2, ... , k 

Each sample value falls into exactly one of the intervals. Let N1, N2, ... , Nk be the respective observed 

numbers of observations ofthe sample in the intervals h, 12, ... , Ik and let N = NI +-. ·+Nk be the sample 

size. Remember that the chi-square test for goodness of fit is based on the vector N = (N1' N2 , ••• , Nk) 

has a multinomial distribution and mainly evaluates a measure of the diference between the theoretical 

frequencies and observed frequencies that the data might well have come from F(x). However once the 
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vector N is evaluated, the information provided by the sample values is not borne in mind. The test 

introduced here attempts to incorporate this information in the following way. 

Firstly, we have to introduce more notation. The random sample will be written more conveniently as 

Xij, where i, i = 1, ... , k denotes the interval in which the observation falls and j, j = 1, ... , Ni denotes 

the order in the sample i-th. It is obvious that 

EF [Xij I Xi,j E Ii] 

VarF [Xijl Xi,j E Id 
Pi, i = 1, ... , k, j = 1, ... , Ni 

er;, i = 1, ... , k, j = 1" .. , Ni 

Let Xi be the sample mean related to the interval Ii. Then, 

(39) 

On the other hand, fixed vector N and the random variables Xi, i = 1, ... , k are independent and 

thus, 

T = t ..jN;(X; - Pi) 

;=1 v'keri 
( 40) 

is asymtotically distributed N(O, 1). Now, we wish to test the hypothesis Ho : F(x) = Fo(x) where any 

parameters in Fa (x) are completely specified. First compute Pi and err, i = 1, ... , k. If Ho is true, then 

intuitively we expect Xi ::::: Pi. Thus T further away from zero indicates data less compatible with the 

claimed null distribution. Hence for large n a level a test is given by the critical region; 

1(. = {T < -z~c} U {T> Zt} 

Remark 6 Suppose now that the number of intervals may change with sample size. We denote it by kn . 

Note that an interesting problem in this context would be analizying conditions over kn to ensure that 

the asymtotic power of the test is one. 

3.2 Exponential with periodic memory 

Consider that the life time of a system is governed by a random phenomenon with period d. In terms of 

conditional expectations, the associated MLF should verify 

( 41) 

where [x] denotes the integer-part of x; that is, we want a mean lifetime function determined by its values 

in an interval (0, d). In the next result, we will characterize the distributions associated with this form 

ofMLF. 
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Theorem 14 An MRL verifies (41) if, and only if, there exists a number p, 0 < p < 1 and a distribution 

function Fd(t) defined over (0, d), such that the distribution function related to (41) is 

F(t) = p[~] {(1- p)Fd (t - d [~]) + p} (42) 

Proof: Let F be the distribution function related to (41). From Theorem 7, it is easy to see that F(t) 

satisfies: 

Taking, 

F(t) = (F(d))[t] F (t - d [~]) 

F(d) 

F(x) - p 'V x E (0, d) 
1-p 

the neccesary condition is complete, since Fd determines a distribution over (0, d). To prove the con­

dition sufficient, define F(t) as in (42). Then, 1 - F(t) determines a distribution function over (0,00). 

Using again Theorem 7 and by straightforwad calculations, the mean lifetime function associated to this 

distribution verifies condition (41). • 

Remark 7 This result is interesting since if we take the limit to be d -t 0, the limit distribution is 

exponential with mean m(O), which introduces a new approach to explain the exponential distribution. 

4 Characterization of General Poisson Processes 

Consider an arrival process N; that is, for any wEn, the mapping t -t Nt (w) is non-decreasing, increases 

by jumps only, and is right continuous with No(w) = O. In this section, we focus on characterizing 

general Poisson processes. First, recall (see Cinlar (1975)) that a general Poisson process has associated 

an expectation function a meaning 

a(t) = E [Nd, t > 0 (43) 

By the definition of a general Poisson process, a is a non-decreasing right continuous function. Let Tt be 

the waiting time until the next arrival after t. Following the idea of Corollary 2 applied to the exponential 

distributuion in (33), we want first to characterize a general Poisson Process in terms of the expected 

value of Tt. A second characterization is involved based on the expected number of arrivals during an 

interval of time. 
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Theorem 15 Let a be a non-decreasing, right continuous function and let N be an arrival process. Then, 

N is a general Poisson process if, and only if, 

E [Tt I Nu, u ~ t] = r e-[a(t+.)-a(t)] ds = A(t) (44) 

Proof: It is easy to see that N is a non-stationary Poisson process with an expectation function a if, 

and only if, the distribution of Tt, with the past history {Nu; u ~ t} of the process known to t is such as 

Ft{x) = P [Tt> X I Nu U ~ t) = e-[a(t+z)-a(t)] (45) 

Thus, the neccesary condition is obviously involved. To prove the condition sufficient, we define 

where Et [·) denotes expectation when the past history {Nu; u ~ t} is known up to t. By straighforward 

calculations, we can write 

Bt{s) 
P[Tt > si Nu, u ~ t) 

Et [Et+. [TtIT,>.)) 
P[Tt>sINu, u~t) 

Et [(s + A(t + s)) IT,>.) 
P[Tt>sINu, u~t) 

s+A(t+s) 

Since Bt (s) is a mean lifetime function, Theorem 7 allows us to obtain the distribution of Tt as 

- A(t) r'" -l!.!.-F(x)= e-Jo B,(.)-. 

t A(t + x) 

Taking, 

we have r ds ~ In ( c(t) ) 
10 Bt(s) - s - c(t + x) 

Since A(t) = ea(t)c(t), (46) can be rewritten as (45) and the proof is complete. _ 

(46) 

l.From a practical point of view, checking to see if the axioms given in the definition of a general (non­

stationary) Poisson process hold for a particular process may be quite difficult. The following theorem 

considerably reduces the checks involved. 
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Theorem 16 With the same assumptions as in Theorem 15, N = {Nt ; t ~ O} is a geneml Poisson 

process with an expectation function a if, and only if, 

E [Nt+1 - Nt I Nu u ::; t] = a(t + s) - a(t) 

Proof: Let Ft be the distribution function related to the random variable Tt. With this notation, we 

can write: 

-
Et [Nt+1 - Nt] = l' Et [Nt+1 - Nt I Tt = x] dFt(x) , 

-l' (1 + Et+% [Nt+1 - Nt+% I Tt = x]) dFt(x) (47) 

In view of the condition of the statement of the theorem, we have the following equation: 

a(t + s)F't(s) - a(t) - Ft(s) = -I a(t + x)dFt(x) (48) 

Taking the derivative with respect to Ft in (48), 

Ft(s)DF,a(t + s) = 1 

l.From Theorem 5, we have 

a(t + s) - a(t) = -In(l - Ft(s)) 

Then, the distribution of Tt verifies equation (45) and N is a general Poisson process. The proof of the 

necessary condition is omitted since it is immediate. _ 

Remark 8 It may be noted that if a(t) = t, we have also characterized the stationary Poisson process. 

Specifically, Theorem 16 is the generalization of Watanabe 's theorem (1964) for stationary processes. 

5 Final Remarks 

In view of the unified approach taken in this paper between the modified Riemann-Stieltjes integral 

and the functional derivative, it will interesting to study other typical problems of the modern theories 

of differentiation, such as differential equations with order greater than one. Some work is currently 

in progress in this direction, inspired mainly by its application to the characterization of distributions 

defined in subsets of lR,n with n ~ 1. We believe that the concept of bilateml conditional mean in the 

univariate case might be generalized to a multivariate setup and provide a a test of goodness-of-fit based 

on the development of Subsection 3.1. 
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