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ABSTRACT 

The problem of estimating the uniform scale parameter under the squared error 

loss function is investigated from a Bayesian viewpoint. A complete characteriza-

tion of differentiable Bayes estimators and generalized Bayes estimators is given. 

The solution determines a family of prior measures both proper and improper, 

involving densities whose support io:; the whole parameter space, i.e, the interval 

(0,00). Relations between degrees of smoothness of the estimators and the priors 

are investigated. We will also consider sequences, depending on the sample size, 
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of Bayes (generalized Bayes) estimators with a fixed structure which are generated 

from a unique prior measure. They will be named strong Bayes sequences or strong 

generalized Bayes sequences. We characterize this type of Bayes estimation which is 

more restrictive than the usual one. As a consequence of the characterization results, 

we will prove that strong Bayes sequences of polynomial form are not possible 

for the uniform scale parameter. Moreover we will show that the sequence whose 

components are the minimum risk equivariant estimator for each sample size is the 

best strong generalized Bayes sequence of polynomial form. 

Key words: Bayesian analysis, characterization theorems, Bayes and generalized 

Bayes estimators, strong Bayes sequence, scale parameters. 

1 INTRODUCTION 

Let Xl, ... , Xn be a random sample from a uniform distribution on (0,0), 0 > o. 

The problem considered in this paper is the estimation of the scale parameter 0 from a 

Bayesian viewpoint. The admissibility of estimators derived here is compared in terms 

of the squared error loss function. Since Y = max{Xl , ... ,Xn } is a complete sufficient 

statistic for 0, this work focuses on estimators of the scale parameter based on Y. From 

now on, we will use On(Y) to denote an estimator of O. A good estimator of 0 should 

verify On(Y) ~ Y. 

The problem of admissibility is usually linked with the Bayesian estimation. Thus, 

given a point estimator of an unknown parameter, it is interesting to know if it is a Bayes 
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estimator. In this context, results characterizing the analytic form of Bayes estimators 

(BE) are useful tools in mathematical inference. Theorems of characterization of linear BE 

have previously been given in the literature [see Johnson (1967), Kagan (1973), Goldstein 

(1975)]. Specifically, linear Bayes prediction has been used by the actuarial profession 

[see Kahn (1975)]. Some recent papers have focused on the problem of identifiability of 

a mixture model, connecting it with the question of unique determination of prior dis­

tributions in the Bayesian context. Cacoullos and Papageorgiou (1983) investigated the 

uniqueness of determination of the bivariate distribution for some discrete type condi­

tionals and an arbitrary consistent regression function. A generalization of such results is 

provided in Wesolowski (1995a). Sapatinas (1995), in the case of a power-series mixture, 

obtained characterizations based on a regression function (posterior expectation). Other 

conditional specifications of similar nature are given in Wesolowski (1995b), Gupta and 

\Nesolowski (1997) and Papageorgiou and Wesolowski (1997). Diaconis and Ylvisaker 

(1979) characterized linear Bayes estimation of the mean parameter of a random vector 

belonging to the exponential family. In this family, the conjugate priors typically used 

satisfy and are characterized by a relation of posterior linearity. As we will see in this pa­

per, similar results do not apply to the problem of estimating the scale uniform parameter 

when the linear case is considered. 

In spite of the importance of identiafibility of general BE, our objective is to charac­

terize mathematically the form of (BE) of the uniform scale parameter with good analytic 

properties such as to be k-times differentiable, k 2:: 1 and to be strictly increasing within 
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the parameter space, i.e., (0,00). This approach leads us to consider absolutely continuous 

priors assuming additionally that their densities are at least k - I-times differentiable. 

Gupta and Wesolowski (1997) studied the problem of identification of uniform mixtures 

via posterior means when it is assumed that the prior is absolutely continuous and the 

sample size is unity. Although characterization problems applied to Bayesian estimation 

are not considered in this reference, it is interesting to note the coincidence of the results, 

specifically the agreement on the form of the prior density, which is derived by methods 

that are different from those developed here. In Lillo and Martin (1997), a complete cha­

racterization of BE without any additional conditions is given, i.e., absolute continuity of 

the priors involved is not assumed. However, we are now interested in the identifiability 

of BE with specifying precise forms. Hence, the aim of the current paper is to consider 

characterization of differentiable and strictly increasing BE of O. Moreover, our approach 

relies on the identifiability of prior distributions associated with this type of BE, trying 

to obtain the prior density directly. The interest in studying this subject lies in characte­

rizing BE with analytic properties that implies differentiability such as polynomial form, 

convexity, concavity and so on. Although the polynomial case is the only one studied 

in detail in this paper, other cases can be analyzed following arguments similar to those 

developed here. 

The prior densities considered in this paper are positive for all 0 > 0. The reason for fo­

cusing on the estimation problem with these types of densities is that the parameter space 

is the interval (0,00) and not any subset of it; therefore a positive probability should be 
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assigned to every open interval. This restriction naturally involves prior measures based 

on positive densities within the parameter space and hence, increasing and differentiable 

BE can be derived. If we also assume that the prior is k-times differentiable with k ~ 1, 

k + I-times differentiable estimators can be obtained. 

Generalized Bayes estimators (GBE) based on prior measures over the whole para­

meter space are also characterized in this paper. This class of estimators is important 

in this framework since many well known estimators such as the minimum risk invariant 

are GBE and not BE. Both problems of characterization are solved in Theorem 2.2 and 

Theorem 2.3, respectively. As a consequence of these two theorems, we will show that 

BE of the form aY are not possible; however, linear BE of the form aY + b, b > 0 are 

possible with some restriction on a. 

A fundamental problem in Bayesian analysis consists of choosing an appropriate prior 

probability, proper or improper, that accurately reflects the available information on the 

unknown parameter. On the other hand, it would be advisable to consider sequences 

of estimators depending on the sample size whose components are BE or GBE with 

particular analytic form. With this comment in mind, we introduce the notion of strong 

Bayes sequence and strong generalized Bayes sequence as a sequence of estimators, one 

for each sample size n, derived from the same prior measure, proper or improper. We will 

also characterize this type of sequence mathematically in Theorem 2.4. 

Applying this result, we will prove that strong Bayes sequences of polynomial form 

are not possible for e and strong generalized Bayes sequences of polynomial form are only 
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feasible with the structure anY. Specifically, the sequence of minimum risk invariant • estimators is a strong generalized Bayes sequence. This fact completes the list of good 

properties of this estimator. 

Now we will introduce the notation to be used in this paper to refer to the two families 

of prior densities, proper and improper, respectively. 

(1.1) D = {f: f( 0) > 0 for all 0 > 0, 100 f( 0) dO = 1 } 

(1.2)Doo = {f: f(O) > 0 for all 0> 0, l°°f (O)do=oo, l°°f (O)dO<oofor all x > o} 
Given fED, the associated Bayes estimator under squared error loss is 

( 1.3) 

A 100 o-(n-l) f(O)dO 

On(Y) = 100 
y o-n f( O)dO 

We should bear in mind that BE related to improper prior densities are considered 

and are designated by the adjective generalized, provided that the integrals in (1.3) are 

finite. It is easy to see that for the uniform scale parameter this occurs if f belongs to 

class Doo defined above. From now on, the set of BE (GBE) derived from prior measures 

belonging to D (Doo) and related to the sample size n is denoted by 15n ( Dnoo). 

2 CHARACTERIZATION THEOREMS 

We will devote this section to the mathematical characterization of BE of the uniform 

scale parameter. Exploiting equation (1.3), Theorem 2.1 given below shows a general 

result concerning characterizations based on positive integrable functions and hence, cha-

racterization of BE and GBE are revealed as special cases. Let I be the set of positive 
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functions integrable over (0,00) with the weight w(t) = t, t E (0,00). For any 9 E I, 

consider now the basic equation, 

(2.4) m(y) i oo 

g(t) dt = i oo 

tg(t) dt, for all y > 0, 

where m : (0,00) -+ 1R is another function. In the sequel, let S denote the functions that 

verify equation (2.4) for some 9 E I. From characterization of a class of functions broader 

than S, given in Zoroa et al. ((1990), Theorem 3.1), seven sufficient conditions for mE S 

can be obtained, although some of them are not necessary. The first result of this paper 

deals with the study of analytic properties to typify the class S. 

Theorem 2.1 Let m : (0,00) -+ 1R be any real function. Then, m E S if and only if the 

following four conditions hold. 

Condition (Cl). m(y) > y, for all y > 0. 

Condition (C2). limy-+o m(y) = m(O+) > 0. 

Condition (C3). m is differentiable with positive derivative. 

Condition (C4). m'(y) (m(y) - yr2 exp {- J~(m(t) - t)-ldt} is integrable over (0,00) 

with the weight w(t) = t. 

Afo1'eover, if these four conditions are fulfilled, a unique function 9 E I exists given by 

(2.5) m(O+)m'(y) {lY dt } 
g(y) = [m(y)_ypexp - 0 m(t)-t ' for all y > 0, 

with the property that the solution of (2.4) related to (2.5) is m. 

Proof: First, we prove the necessity. Assume that m E S. Then, from (2.4), 

(2.6) for some 9 E I 

7 



Hence, (Cl) follows easily and a simple sufficient condition for (C2) to hold is gET. By 

standard calculations in (2.6), (C3) is obvious, that is, m is differentiable with positive 

derivative since 

(2.7) m'(y) 100 g(t) dt = [m(y) - y] g(y), for all y > o. 

Hence the function [m(y) - y]g(y)/m'(y) is differentiable and 

Thus, we find 

m'(y) 
m(y) - y' 

for all y > O. 

m'(y) {lY 
m'(t) } g( y) = () exp - ( ) dt, my-y omt-t 

for all y > O. 

Therefore 

(2.8) l
y 
m'(t). l Y dt 
( ) dt = In[m(y) - y]- In[m(O+)] + ( ) , 

omt-t omt-t 
for all y > 0 

and finally, 

(2.9) m(O+)m'(y) {lY dt } 
g(y) = [m(y) - yJ2 exp - 0 m(t) - t ' for all y > O. 

(C4) is verified by noting that 9 is integrable over (0,00) with the weight w(t) = t. This 

completes the necessity conditions. To derive the sufficiency conditions, assume that m is 

a real function satisfying the four conditions stated in the statement of the theorem and 

consider the function 9 defined from m as in (2.9). Note that (C4) implies that gET. 

To complete the proof, we only need to show that the function m defined as in (2.6) 
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considering 9 and denoted by mg is the initial m. Integrating by parts, we have 

yexp { - J; ~ dt} - Ll + Jyoo exp { - J; ~ dt} dx 

exp { - J; ;(;~~t dt } - L2 

yexp { - J; ~ dt} + exp { - J; *' } 
exp { - J; m(;~~t dt} 

From (2.8) we immediately have mg = m. Note that we have also proved the uniqueness 

of 9 E I during both, our proof of sufficiency and the derivation of 9 in (2.9). Hence, the 

proof is complete. • 

Lemma 2.1 A sufficient condition for (C4J is 

Condition (C4'). (m(y) - y)-1 is not integrable over (0,00). 

Proof: By routine calculations, we obtain 

y ~p - ~ 100 m'(y) {lY 
dt } 

o [m(y) - yj2 0 m(t) - t 

where 

lim yexp {- fY 7'?) dt}, 
Y~OO 10 m t - t 

. {lY 
m'(t) } hm exp - ( ) dt. 

Y~OO 0 m t - t 

Observe that Ll = L2 = 0 implies (C4). Since L1 = 0 implies L2 = 0, we only need to 

prove the first limit. Hence, it is easy to see that: 

. m(y) {lY 
dt } Ll = hm exp - . 

Y~OO m(y) - y 0 m(t) - t 
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Applying L'Hopital's rule and considering (C4'), it follows that 

1
. m'(y) 
lm ------------~----~~----~------~ 

Y~OO [m'(Y) - 1] exp {J; m(~)-t} + exp {J; m(~)-t} 
limexp {- [Y (d)t }=o. 
Y~OO lo m t - t 

Since Ll = 0 implies L2 = 0, the proof is complete. • 

Remark 2.1 (C4') is not a necessary condition in Theorem 2.1. For instance, consider 

the function m(y) = y2 + y + 1 suggested by a referee. Then (C4') is not satisfied but 

(C1-C4) are and 9 as defined by (2.5) belongs to I. 

Remark 2.2 Note that if 9 is a density function with infinite support (0,00), m(y) - y 

in (2.4) is a mean residual life function. In the Reliability framework, characterizations of 

these functions have been given, (see Guess and Proschan (1988) for a review), although 

different from that obtained considering Theorem 2.1. 

Now we return to our aim in this paper. Let (Xl,'" , Xn) be a random sample from 

a uniform distribution over (0,0),0 > 0 and let Y = max {Xl,'" , X n}. The following 

results unify many standard, but cumbersome, Bayesian calculations. A characterization 

of BE of 0 derived from prior density functions of class V follows easily from the preceding 

Theorem 2.1. 

Theorem 2.2 Let en be an estimator ofO. Ifn = 1, the necessary and sufficient condition 

for en E 15n is en E I; that is, (Cl) to (C4) of Theorem 2.1 hold. If n > 1, the necessary 

and sufficient conditions are en E I and 
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Condition (C5). 

(2.10) 100 n e~(t) {It 
dz } t A exp - A dt < 00. 

o [On(t) - tJ2 0 On(Z) - Z 

Hence, if these conditions are fulfilled, a unique prior density function fen E 'D exists 

given by 

(2.11) for all 0 > 0 

with the property that the Bayes estimator related to (2.11) is en. 

Proof: Suppose en E Vn, then it follows from (1.3) taking g(t) = tn f(t) that en verifies 

equation (2.4). Hence, Conditions (C1)-(C4) of Theorem 2.1 provide an analytic charac-

terization of en. Function h(y) = yg(y) is integrable over (0,00) since gin (2.5) belongs 

to class T. This implies that, if n = 1, the function f derived is a proper density and 

if 11 > 1, it is necessary to add condition (C5) (equation 2.10) in order to ensure that 

function f involved be a proper density. • 

Remark 2.3 The prior density given in (2.11) can be derived from the results of Gupta 

and Wesolowski (1997) [Equation (3.3), p. 178]. However, in this reference, necessary and 

sufficient conditions are not specified. Although the issue of identification of estimators 

is the same, the developments used to derive them are different. 

We now consider the question of characterizing GBE of the uniform scale parameter; 

i.e. we want to explore when an estimator of 0 belongs to the class Vnoo . 
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Theorem 2.3 Let On be an estimator of O. Necessary and sufficient conditions for On E 

Dnoo are (Cl), (C3) , and 

Condition (C6). On(O+) = O. 

Condition (C7). If R(t) is a primitive function of [On(t) - t]-l, then 

Condition (C8). As t --t 0, !ne~(t) e-R(t) --t 00 
[Bn(t)-t]2 

for all y > O. 

Furthermore, if these conditions hold, a unique family of improper priors exists, denoted 

by Fen' such that if f E Fen' then f E Doo and there exists some k E /R+ such that 

(2.12) for all 0 > 0 

Proof: Note that f(x)/ fyoo f(t)dt for 0 < y < x, is the kernel of a density function taking 

values on (y, (0). Conditions (Cl), (C3) and (C7) are immediate by extending the result 

from the former characterization of Theorem 2.1 to the case of functions integrable over 

(y, (0). Hence, 

for all x > y. 

Thus, it is easy to see that (fyoo f( t )dt) ky is independent of y and therefore, the equality 

(2.12) is clear. (C6) and (C8) follow easily considering that f E Doo. The sufficiency 

conditions are provided by using arguments parallel to Theorem 2.1. The uniqueness, 

except for proportional constants, follows naturally. • 
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Now, a relation between the orders of differentiability of the estimators and those of 

the corresponding priors is given. 

Corollary 2.1 Suppose that en E VnCt\oo). Then On is k-times differentiable) if and 

only if, the corresponding prior is k - I-times differentiable. 

Proof: Taking g(t) = rn f(t) in (2.7), we have 

(2.13) , [m(y) - y] f(t) 
m(y)= tn fyOOt-nf(t)dt' for all y > O. 

Hence, the conclusion yields easily observing (2.13), since m' and f have the same order 

of differentiabiliy. • 

From (1.3), it is easy to see that the form of the Bayes decision depends on the sample 

size. However, it is of considerable interest to know if a prior density, proper or improper, 

can generate a finite family of BE or GBE for a fixed parameter; that is, if 

e(y) = E [0 I y] < 00, for all n. 

On the other hand, an interesting question is: given a family of BE depending on sample 

size with a particular structure, does any prior exist whose associated BE for all n are the 

components of this family? With this idea in mind, we propose the following definition: 

Definition 2.1 Let (On(Xl,'" ,xn)) be a sequence of Bayes (generalized BayesJ es-
nEN 

timators. Suppose that a prior (improper prior J density function f E V (VooJ exists 

verifying that the Bayes estimator associated with f and related to the random sample 

Xl,'" ,Xn is en(Xl, .. ' ,xn). Then) a sequence of estimators satisfying this condition 
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is named a strong-Bayes sequence (SBS) , (strong generalized Bayes sequence), 

(SGBS). 

Now, to answer our last questions related to the identifiability of a given structure of 

sequences of BE, we obtain a characterization result for estimators of the uniform scale 

parameter which is restricted to measures provided by class V and Voo. 

Theorem 2.4 Let ()n be a sequence of estimators for (). Then, On is an SBS (SGBS) 

1,2, ... , with 

(2.14) for all y> 0 

(chue 1l1,.(y) = I1~=1 Ok(y), y > O. Then, the (generalized) prior density f associated to 

the sequence On takes the form 

(2.15) for all () > O. 

Proof: Observe that considering (2.4) foi' any n with the same f implies: 

for all y > 0 

and by differentiating, 

for all y > O. 

Thus, equation (2.14) holds for all r ~ 1 and the form of f is easily derived. • 
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On the other hand, as pointed out in the introduction, characterizations of k-times dif-

ferentiable SBS, (SGBS) are useful to obtain estimators with good analytical properties. 

The following result deals with the case k = 2. 

Theorem 2.5 Let (en)nEN be a SBS (SGBS) related to class 'D. Then, en, n > 0 is twice 

differentiable, if and only if, On(Y) E 15n, ('Dnoo) and 

(2.16) 

where 

(2.17) 

n-1 
~n(Y) = 6(Y) +-, 

y 
for all y> 0 

for all y> O. 

Proof: First, note that a different equation for f is obtained by differentiating (2.13), 

whose solution is easy to obtain by routine calculations. Then, considering that f is 

differentiable and (en)nEN is a SBS (SGBS), its density function has to hold for every 

n>O 

(2.18) f(y) = yexp { -laY ~n(t)dt}, n > 0 

where ~n is defined in (2.17). Thus, from straightforward calculations using (2.18) with 

n = 1, the equation (2.16) is easily obtained. • 

In the next section we will show how this definition and the previous characteriza-

tion result may be applied in the context of the linear estimation of the scale uniform 

parameter. 
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3 LINEAR BAYES ESTIMATORS 

As an application of results obtained in previous sections, we will study the case of 

linear estimators in detail. This example is also of interest since linear Bayes prediction 

has been widely used by the actuarial profession under the heading of the credibility 

theory, (see Kahn (1975)). 

Corollary 3.1 Let Xl,." ,Xn be a rundom sample from a uniform distribution over 

(0.0). Then, On(Y) = ay, Y > 0 is a generalized linear Bayes decision belonging to class 

(:3.19) 
n 

1 < a < --1' if n > 1, 
n-

and 1 < a, if n = 1. 

In this case, the prior density function is the improper Pareto distribution 

(:3.20) (
1)13+

1 

f(O) ex (j , for all 0 > 0 with 

Proof: Immediate from Theorem 2.:3. • 

a 
(3= ---no 

a-I 

Note that if the improper Pareto measure defined in (:3.20) is added to the classic 

Pareto family (see DeGroot (1970)), the natural conjugate family for the uniform distri-

bution is complete. Indeed the improper Pareto functions provide the most of the well 

known estimators of O. 

Corollary 3.2 Let Xl,'" ,Xn be a random sample from a uniform distribution over 

(0,0). For all b > 0, On (y) = y + b is 0 Bayes decision belonging to class 75n related to 
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the prior density function 

(3.21) for all () > o. 

Now, On(Y) = ay + b, a > 1, b > 0 is a Bayes decision belonging to class 15n, if and only 

if, (3.19) is fulfilled. In this case, the prior density function is: 

(3.22) 
()n 

f(()) ex (() + O)~+l' for all () > 0, with (J = _a_ 
a-I 

b 
0=--. 

a-I 

Proof: In both cases, the proof is based on on verifying the conditions of Theorem 2.2. 

Therefore, after straightforward manipulations, the p.d.f.s given in (3.21) and (3.22) are 

easily derived as proper prior distributions. • 

Note that (3.21) is the p.d.f. of a Gamma distribution for n 2: 1. Observe also that 

Bayes estimators for each sample size are not possible using (3.22) as a prior density. 

Hence, the idea of introducing the notion of strong sequences. Thus, our next objective is 

to look for Bayes or generalized Bayes sequences with simple analytic form generated by 

a unique prior distribution. However, the following result shows that such simple families 

are not feasible for the uniform scale parameter in comparison with the exponential family, 

(see Diaconis (1979)), where linear Bayes sequences are certainly possible using the natural 

conjugate prior measures for the location parameter. 

Theorem 3.1 Let Pn(y) be a sequence of k-order polynomial functions such that Pn(y) > 

y for y > o. Then, 
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2. {Pn(Y)}nEN E SOBS, if and only if, k = 1 and 

(3.23) P{ )_CI:'+n+l 
n Y - + y, 

Cl:' n 
for some Cl:' > O. 

Proof: If k = 1, Pn(y) = anY with an > 1, then (3.23) is attained by applying condi-

tion (2.16). If k > 1, assume that Pn(y) = aOn + alnY + ... + aknyk. It is easy to ensure 

that the independent coeficient is zero, i.e, aOn = O. Then, taking limits on both sides of 

(2.16) adapted to the polynomial case, we have 

lim Y~n(Y) 
y-+oo 

k + 1, for all n 

lim y6 (y) + n - 1 
y-+oo 

k+l+n-l. 

From this contradiction, it is obvious that polynomial sequences are not feasible with this 

Bayesian approach. • 

Remark 3.1 As one of the referees pointed out, Theorem 3.1 can be proved in terms of 

Theorem 2.4. It follows that if the order of the polynomials is k then hr(y) if of the order 

y(k-l)r+l for y -+ 00. Consequently only k = 1 is possible. Taking Pn(y) = anY + bn, and 

then taking y -+ 0 it follows easily that bn = 0 for any n. Now Pn(y) = anY iff 

I1~=l ak - 1 .=:..==--- = al - 1 
r 

and hence (3.23) is derived. 

Most estimators used in the problem of estimating the scale parameter for the uni-

form distribution display the form described in (3.23). For example, remember that the 

18 



1 
I 

I 

minimum risk equivariant (MRE) estimator of the scale parameter for the quadratic error I 
loss function is 

0(1)( ) = n + 2 
n y n + 1 y, for all y > o. 

Observe that the MRE estimator of () is a generalized strong-Bayes sequence for a = 2. 

Setting a = 1, the unbiased estimator is also obtained as a SGBS. The consequence of 

this fact is that usual estimators have this good property in relation to the new notion of 

Bayes estimation introduced here. 

To sum up, as far as the linear estimation of the uniform scale parameter is concerned, 

we have proved that BE of the form ay are not possible but GBE are feasible. If a > 1 

and b > 0, we have shown that BE are possible using prior distributions which do not 

generate a strong-Bayes sequence. Moreover, note that the prior distribution described 

in (3.22) only implies linear BE when the sample size is n, and the prior distribution 

described in (3.21) generates an SBS whose structure is not linear. In view of the fact 

that it is difficult to obtain strong Bayes estimators with simple structure for the uniform 

distribution, it is reasonable that the MRE estimator is the most used estimator. 

4 FINAL NOTES 

Remark 4.1 Consider now the error loss function typically used for scale parameter, i.e. 

(4.24 ) 
a-() 

( )

2 

L(a, ()) = -()-
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The problem of characterizing BE or GBE generated for prior measures of'D or 'Doo and I 
under this loss function is also solved from results shown here. In this case the form of 

estimator is 

A 100 0-(n+1) f( O)dO 

On(Y) = lOO 
}y o-(n+2) f(O)dO 

Hence, observe that an estimator is Bayes or generalized Bayes for 0 under the error loss 

function (4.24), if and only if, it belongs to class Vn+2 or Vn +2oo , respectively. 

Remark 4.2 It is well known that Bayesian estimation of the uniform scale parameter 

is usually linked with the Pareto family. Wesolowski and Ahsanullah (1995) considered 

Pareto density class of the form 

(4.2.5) 
(3,(3 

f( 0) = ({ + 0)(3+1 ' 0 > 0, (3" > O. 

Note that (4.25) belongs to class 'D since its support is (0,00). In this paper, we have 

proved that the MRE estimator under squared error loss is a linear GBE derived from 

an improper measure described in (3.20). Observe that as , -+ 0, the proper density of 

(4.25) converges to the improper density of (3.20). Hence, we propose the use of these 

priors as a solution to the Bayesian estimation problem of the uniform scale parameter. 

Remark 4.3 David (1981) and Lehmann (1983) describe other inference problems for 

the scale parameter of the uniform distribution with some additional restrictions on the 

parameter 0, such as 
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By methods similar to those developed here, the characterization of Bayes rules under 

restrictions on the scale parameter can be solved by considering priors with supports over 

these new parameter spaces. 
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