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Abstract 

In the framework of decomposing a time series into the sum of signal compo­

nents plus noise as in detrending or seasonal adjustment, we analyze the situation 

in which the unobserved components may be subject to the influence of sudden 

shifts. The kind of perturbation that such shifts cause on the observed series 

can be classiffied as an outlier, when the shift affects the noise component, or 

as a structural change, when the shift affects one of the signal components. The 

consequences of ignoring these perturbations are important for model specifica­

tion, parameter estimation and forecasting. We extend and modify the iterative 

procedure of Chen and Liu (1993) to allow the location, clasiffication and esti­

mation of outliers and structural changes affecting the unobserved components 

of a time series. 
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1 Introduction 

Two basic kinds of phenomena that occur frequently in seasonal time series and must 

be dealt with adequately are outlying observations and structural changes. The former 

are the result of non-repetitive events whose effects on the series rest only for one 

period; for example, a recording error or occurrence of a disaster. The latter suppose a 

change in the dynamic pattern of the series; the most well known case is the level shift 

which can arise, for example, as the consequence of a change in the definition for the 

magnitude being described by the data. Other structural changes, such as change in 

slope or change is seasonality may also be needed to be dealt with. Proper treatment 

of outlying observations and structural changes is important for model specification, 

parameter estimation and crucial for forecasting purposes. The main goal of this article 

is to devise automatic tools for handling outlying observations and structural changes 

in the hope that the proposed procedure will prove useful in the seasonal adjustment 

of economic time series. 

The state-space representation provides a flexible general framework within which to 

model and analyze seasonal time series subject to the presence of outlying observations 

and abrupt changes in pattern, see, for instance, Smith and West (1983), Kitagawa and 

Gersch (1984); Harvey and Durbin (1986), Harvey and Koopman (1992) or Durbin and 

Cordero (1993). 

Our basic tool is the iterative procedure for detecting outliers in a time series ini­

tially proposed by Chang (1982) and further modified by Chang et al. (1988), Tsay 

(1986), Chen and Liu (1993) and G6mez (1997). The more recent versions of the iter­

ative procedure allow the identification and estimation of four types of perturbations, 

Additive Outlier, Innovative Outlier, Level Shift and Transitory Change. Although 

these four types are usually encountered in real economic time series, we believe that 

this classification is too restrictive when a seasonal time series is considered, since does 

not allow the identification of perturbations associated with the trend or the seasonal 

structure of the series. In this paper, the definition of the different types of pertur­

bations that may affect the observed series is based on the particular structure of the 

series under study. Under this approach, structural changes are seeing as unusual large 
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values for the noise of the signal unobserved components, and outliers are seeing as 

unusual large values for the irregular or noise component of the series. Further, this 

approach allows the "complete" decomposition of the observed series, in the sense 

that the observed series can be decomposed into several unobserved components that 

incorporate the deterministic effects of the structural changes, for the case of signal 

components, and the outliers, for the case of the irregular component, that are affecting 

them. 

Section 2 describes the basic model; also, in this section, the state-state represen­

tation and the Kalman filter needed to estimate the model and obtain the residuals 

are introduced. In section 3, outliers and structural changes are defined and their ef­

fects on the unobserved components and the observed series are described. Section 4 

presents the iterative procedure for detecting and estimating the effect of outliers and 

structural changes. Section 5 presents some simulation results and, in section 6, two 

real examples are investigated. Finally, in section 7 some conclusions are given. 

2 State-space representation 

In a very general unobserved components model the observed series can be thought as 

the result of summing up the trend, seasonal and irregular components as follows, 

Yt 

rPJ1- (B)tS J1-( B) /1t 

rPs(B)tSs(B)St 

/1t + St + Ct t = 1, ... ,N (1) 

(2) 

(3) 

where Yt is the tth observation and /1t, St and Ct are, respectively, the trend, seasonal 

and irregular components of Yt. The irregular component Ct is white noise with mean 

zero and variance 0'; and it is assumed to be uncorrelated with bt and Ct. The model 

for the trend component is described in equation (2), where tSJ1-(B) is a polynomial in 

the backshift operator B of degree dJ1- whose zeros are on the unit circle, rPJ1-(B) is a 

polynomial of degree PJ1- whose zeros are outside the unit circle, (}J1-(B) is a polynomial 

of degree qJ1- whose zeros are on or outside the unit circle and bt rv N(O,O'; * b), where 
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b is the trend-noise ratio. Similarly, let (3) be the model for the seasonal component. 

The polynomials 6s(B), <l>s(B) and ()s(B) are of degree ds, Ps and qs respectively, and 

are defined in an analogous way to the correspondent trend component polynomials; 

finally, Ct rv N(O, er; * c) where c is the seasonal-noise ratio. We assume 6J.L(B) and 

6s(B) have no common zeros and bt and Ct are uncorrelated with each other. Note 

that the unobserved components representation in (1 )-(3) is general and admits as 

particular cases most frequent characterizations of the trend and seasonal components, 

see Maravall (1993) for a complete description of possible specifications for models in 

(2) and (3). 

Let ~J.L(B) = <l>J.L(B)6J.L(B) be a polynomial of degree PJ.L + dw Following Bell and 

Hillmer (1990), the state-space representation of minimum degree TJ.L' where TJ.L = 

max(pJ.L + dJ.L' qJ.L + 1) , for the trend component Pt could be written as, 

where the TJ.L x 1 state-vector XJ.L,t has the following components, xJ.L,t(l) = Pt and, 

r~ q~ 

xJ.L,t( i) = L ~J.L,jP(t-l+i-j) - L ()J.L,jb(t-l+i-j) i = 2, ... ,TJ.L 
j=i-l 

(4) 

(5) 

and H~ = (1,0, ... ,0)' and GJ.L = (1, ()J.L,1,"" ()J.L,r~) are TJ.L x 1 vectors with ()Il,j = 0 for 

j > qw Finally, F J.L is a TJ.L X TJ.L matrix as follows, 

~J.L,1 1 0 

FJ.L = 
<I> J.L,r ~-1 0 0 1 

~J.L,r~ 0 0 0 

where <l>J.L,j = 0 for j > PJ.L + dw Letting ~s(B) = <l>s(B)6s(B) be a polynomial of degree 

ps + ds, a state-space representation of minimum degree T s = max (Ps + ds, qs + 1) for 

the seasonal component St is possible with the Ts x 1 vectors Xs,t, H: and G s, and the 

Ts x Ts matrix F s defined as previously for the trend component. 

Considering model (1)-(3) and the state-representation for the individual compo­

nents Pt and St, the state-space representation of minimum degree T = T J.L + T s for the 
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observed series Yt can be written as, 

Xt 

Yt 

where the r x 1 state-vector is Xt = [x~, x~]; H' = [H~, H~] is a r x 1 vector; F = 
diag(FJ.l)Fs ) is a r x r matrix; G = diag(GJ.l)Gs ) is a r x 2 matrix; and W't = [bt,Ct]. 

For given values of the unknown parameters in model (1 )-(3), the likelihood function 

can be evaluated using the Kalman filter recursions, see Jones (1980), G6mez and 

Maravall (1994), etc. Since the variances of the trend and seasonal components have 

been specified in terms of a;, the latter can be concentrated out of the likelihood 

function and therefore, we can set, without loss of generality, a; = 1 in the Kalman 

filter recursions and obtain it once the unknown parameters have been estimated. 

The Kalman filter recursions consist on the initial conditions xIIO = E(xo = 0) and 

PIlo = var(xo) = POlo, and then, 

Xtlt-I = FXt-Ilt-l, Ptl t- I = FPt-lit-IF' + GG' 

where, Kt = Ptlt-IH(H'Ptlt-IH + Itl. To evaluate the likelihood function at each 

iteration, it is necessary to obtain the innovation Vt = Yt - Ytlt-I where Ytlt-I = H'Xtlt-1 

and its variance ~t = H'Ptlt-IH + 1. Setting the standardized residuals et = vt/~;/2 
and the vector e = (el, ... , eN)', the prediction error decomposition of the concentrated 

likelihood is, 

I = -~ {In (g ~t) + Nln(e'e)} 

The variance of the irregular component can then be estimated as a; = (1/ N)e'e. 

For non-stationary unobserved components, the likelihood can not be properly defined 

since the initial conditions are unknown. There are several ways to handle this situation 

as transforming the data to eliminate the influence of initial observations or placing a 

diffuse prior on the variance of the initial state; see, for instance, Bell (1984), Harvey 

and Pierse (1984), Kohn and Ansley (1986), Harvey (1989) pg.127-128, or G6mez and 

Maravall (1994). 

5 

----- ---------------

I 
i 

I 

I 



3 Outliers and structural changes 

Assume the time series Yt is as described in (1 )-(3); Yt may be subject to the influence 

of outliers and structural changes that should be needed to deal with. The unobserved 

components model suggests a natural definition of outliers and structural changes as 

being unusual large values for the white noise series ct, bt and Ct. 

(i) Outliers. Can be defined as a perturbation affecting the irregular or noise 

component and can be represented by an unusual large value for the white noise series 

Ct. For the case of one outlier at time t = T, a convenient way of modelling the observed 

or "contaminated" series, Y;, is as follows 

• I(T, * 
Yt = Ilt + St + Ct + W t = Ilt + St + Ct (6) 

where w is the magnitude of the outlier, IV' is an indicator variable with IV' = 1 if 

t = T and IV' = 0 otherwise, and c; = Ct+wIV' can be considered as the contaminated 

irregular component which includes the original irregular component plus the effect 

of the outlier at time t = T. Note that the trend and seasonal components result 

unaffected by the perturbation and, therefore, (2) and (3) still hold. This type of 

perturbation is equivalent to the Additive Outlier, see, for instance, Fox (1972), Tsay 

(1986), Chen and Liu (1993). 

(ii) Structural changes in the trend. Can be defined as a perturbation affecting 

the trend component model (2) and imply an abrupt change or a break in the dynamic 

pattern of the trend and therefore, a change in the dynamic pattern of the observed 

series. Note that if 0/"(8) i- 1, that is, if the trend follows a nonstationary process, the 

change will be permanent. For a trend structural change at time t = T, the observed 

time series can be described as the outcome of the following model, 

(7) 

with (3) still applying and the contaminated trend component as follows, 

(8) 
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Expression (8) makes clear that a structural change in the trend can be naturally 

modelled as an unusual large value for the trend disturbance bt . 

The trend component in (2) can be further decomposed as being the result of 

summing up the level and the slope. Among others, Harvey and Todd (1983) or Smith 

and West (1983) use the local linear trend, 

/-Lt 

(3t 

/-Lt-l + (3t-1 + bt 

(3t-1 + dt 

(9) 

(10) 

where dt is white noise with variance O'J and it is assumed to be uncorrelated with bt , 

Et and Ct. Note this model for the trend is equivalent to model (2) with JJ.1(B) = \72 

and ()J.1(B) = (1 - ()J.1,lB), see Harvey (1989). Two different kind of structural changes 

affecting the trend can be considered in this framework: a structural change in the level, 

caused by an unusual large value for the disturbance level bt ; and a structural change 

in the slope, caused by an unusual large value for the slope disturbance dt . Smith and 

'West (1983) present an example where a trend component as the one described by 

(9)-(10) is subject to the influence of both types of structural changes. 

(iii) Structural changes in the seasonal component. Can be defined as a 

perturbation affecting the noise in the seasonal equation (3) and imply an abrupt 

change or break in the dynamic pattern of the seasonal component. For the case of 

a seasonal structural change at time t=T, the observed series y; can be described as 

follows, 

* Yt 

(11 ) 

with (2) still applying and, 

( 12) 

If 6s (B) =I- 1 the effect of the abrupt change will be permanent from t = T onwards, 

otherwise, if 6s(B) = 1 and 1Ys(B) =I- 1, the effect of the perturbation on the seasonal 

component will decay proportionally to the coefficient in the autoregressive polynomial 
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Apart from those types, depending on the nature of the series under study, would be 

possible to define structural changes in a cyclical component. Also the decomposition 

of the seasonal component in several components, each of them associated to one 

seasonal root, would allow the definition of structural changes affecting each of these 

subcomponents. But the more obvious and interesting extension would be a case where 

the structural change simultaneously affects two or more components. To illustrate 

the case of a simultaneous change, suppose a perturbation affecting at time t = T the 

seasonal and the trend disturbances. The model for the observed series is then, 

where WIJ. and Ws are the magnitudes for the initial impact of the structural change 

on the trend and on the seasonal component, respectively; and p7 and s; are as in 

(8) and (12) respectively. Note that a perturbation causing structural changes in each 

of the signal components in a time series will have an effect on the observed series 

equivalent to the one produced by the innovative outlier -an important difference is 

that the effect of a simultaneous structural change may be decomposed into all the 

affected corn ponents-, see Kaiser (1995). 

4 Detection and estimation 

In this section we discuss how standard tools in the time series literature may be used 

to detect and estimate the kind of outliers and structural changes described in the 

previous section. In particular the iterative procedure described in, among others, 

Chang (1982), Tsay (1986), Chen and Liu (1993) or G6mez (1994) can be extended 

and modified to allow both the detection and estimation of these perturbations. The 

key point in our analysis is to consider the observed series as being the sum of several 

unobserved components which can be subject to deterministic effects as outliers or 

structural changes. Suppose, for instance, we base our analysis on the seasonally 

adjusted series, then we should provide ourselves with tools to extract the seasonal 

component and all the deterministic effects related to it from the observed series. 
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4.1 One perturbation parameters known 

Let W = (JJ1"I, ... , JJ1"dp.+pp., () J1"I, ... , () J1"qp.' Js,l, ... , Js,d.+P., () s,l, ... , () s,q., b, c, (j;) be the 

vector of parameters in model (1)-(3) and let us suppose, by the moment, that it is 

known. Further, suppose that the i-th unobserved component, i = /-l, s, E, is subject to 

the influence of a structural change at time t = T. Then the state-space representation 

of the observed series Y; consists on equation (4) and, 

Y; '1fJi(B)wIV) + H'Xt + Et 

Zit(T)w + H'Xt + Et , 

where '1fJi(B) = ()i(B)/Ji(B) is the ARIMA polynomial for the contaminated component 

model; and Zi~t(T) = '1fJi(B)IV) is an N x 1 vector describing the change in the dynamic 

pattern due to the perturbation. The state-space model above can be rewritten as 

a linear regression model (see Khon and Ansley 1985, Harvey 1989 or G6mez and 

Maravall 1994) as follows, 

Yt 

Zi~t (T)w + Yt 

H'Xt + Et 

(13) 

(14) 

where Yt is as described in expressions (1)-(3). Let y* = (yj, ... ,y'N)'; y = (Yl, ... ,YN)' 

and Z* = (Zi~l (T), ... , Zi~N(T))'. 'Writing (13) in matrix terms yields, 

y* = Z*w + y (15) 

The model in (15) is a regression model with autocorrelated residuals and, therefore, 

the problem of estimating w can be solved by Generalized Least Squares (GLS), see 

Kohn and Ansley (1985) or G6mez (1994). Let var(y) = (j;n with n a N x N matrix 

which depends on Wand which is assumed to be positive defined; and let n = L'L 

be the Cholesky decomposition of n with L lower triangular. Premultiplying (15) by 

L- 1
, and setting e = L-1y*, Z = L-1Z* and e* = L-1y, it is obtained the Ordinary 

Least Squares (OLS) model, 

e = Zw + e* (16) 
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where var( e*) 

(16) as 

O";IN. The OLS estimator of wand its variance are obtained from 

w = (Z'Zr 1 Z'e (17) 

As argued in G6mez and Maravall (1994), to move from the GLS model in (15) to the 

OLS model in (16) there is no need to evaluate the matrix n since the application of 

the Kalman filter recursions on the observed series y* yields the vector of standardized 

residuals e = L -ly* and, similarly, the application of the same filter on vector Z* 

provides the vector Z = L -1 Z* from which (17) can be obtained. 

To test the null hypothesis that there is no a structural change in component i at 

time t = T one can use the standardized statistic, 

w 
A = -,==:;:= 

Jvar(~) 

which for known W, follows a standard normal distribution. In practice, the true 

parameters in Ware usually unknown in the modelling stage, but they can be estimated 

by any consistent estimator, see Chang et al (1988); in that case the A-statistic above 

is still asymptotically normal. 

If the objective of the analysis is to determine the component affected by the struc­

tural change at time t = T, one possibility is, as suggested by Chang et al (1988) for 

the case of outliers affecting the observed series, to calculate the estimates wi(T) and 

its respective statistics Ai, where the subscript i makes reference to the unobserved 

component which results contaminated by the perturbation and then use the statistic, 

if 7](T) > C, where C is a predetermined critical value, then there is a possibility that 

component i is subject to the influence of a structural change at time t = T. Since the 

vector Z = L -1 Z* in (16) depends on the ARIMA polynomial for the contaminated 

component, it is clear that in order to compute the statistic 7](T), the Kalman filter 

needs to be run four times, once on the vector of observations y* and once on each of 

the three possible vectors Zi = 'l/Ji(B)IV), for i = f-L, S, L 
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Finally, the timing T is seldom known a priori, but as suggested by Chang et al 

(1988), the likelihood ratio criteria leads to the criteria, 

t = 1, .. . ,N 

Then, if rJ > C, there is a possibility that component i is subject to the influence of 

one perturbation at time t = T. In order to compute the rJ statistic above, the Kalman 

filter should be applied on the vector of observations to obtain the vector e and on 

N x 3 different Zi,t vectors, for i = /-l, 5, E and t = 1, ... ,N. The procedure is therefore 

inefficient in terms of computing time. Nevertheless, this difficulty can be avoided if 

the reduced ARIMA form of model in (1)-(3) is known. Let II(B)Yt = at where at 

is a white noise process with zero mean and variance er;; and II(B) = J(B)jB(B) is 

an ARIMA polynomial such that J(B) = JI-'(B)Js(B) and B(B)at = BI-'(B)Js(B)bt + 

Bs(B)JI-'(B)ct +JI-'Js(B)Et. The GLS estimator of w can then be computed by using the 

Kalman filter to obtain the exact residuals e, and then applying the truncated filter 

II(B) to vector Z* to obtain the vector Z in (16). 

Once the location and the component affected by the perturbation are known its 

effect can be adjusted from the residuals using (16). The adjusted series and its un­

observed components can also be obtained from (13) and the expressions in section 

3. 

4.2 Multiple perturbations 

In a more general framework, one can consider the observed series as being the result of 

summing up the trend, seasonal and irregular components plus k deterministic effects 

at times t = t 1, ... ,tk. In such a situation the state-space representation of Y; consists 

on equation (4) and, 

k 

Y; = 2:= Zi~t(j)Wi + H'Xt + Et (18) 
j=l 

where Zi,t(j) = 'l/Ji(B)It(tJ
) represents the effect of the structural change in component 

i at time t = tj. The practical procedure we propose in this paper does not detect the 

11 

I 
I 



k perturbations at the same time but proceeds in several iterations detecting one by 

one the possible outliers and structural changes. In the detection stage, the procedure 

starts by applying the Kalman filter to the vector of observations to obtain the residuals 

and the truncated filter II( B) to vectors Zi~t(j) to determine the location and type of 

the k perturbations in (19). Once the detection stage is completed, in order to avoid 

possible masking effects see, Chen an Liu (1993), the final w/s are obtained within the 

following multiple regression model, 

y* = Z*w + y 

where Z* is a N x k matrix with columns Z\ = (Zi~I(j), ... , Z~N(j)) and w is a 

k x 1 vector with elements Wj for i = 1, ... , k. The application of the Kalman filter 

recursions on the vector of observations y* and on the k columns of matrix Z* allows 

the specification of an OLS model from which the vector w can be estimated as in 

(17). An efficient way to estimate the vector w , see Kohn and Ansley (1985), makes 

use of the QR algorithm in which an orthogonal N x k matrix Q is obtained, such that 

Q'L-1Z* = (R',O)" where R is a non-singular k x k upper triangular matrix. Then 

w = R-1VI, where VI consists of the first k elements of the vector V = QL-Iy*. 

4.3 A procedure for joint detection and estimation 

The proposed procedure starts with the specification of the models for the unobserved 

components as if were no shocks and the following stages: 

1.1 Obtain the maximum likelihood estimators for the unknown parameters in 

vector W based on the original or the adjusted vector of standardized residuals e. 

In the first iteration, the residuals obtained from the application of the Kalman filter 

on the observed series are used; after the first iteration the adjusted residuals are used 

to evaluate the likelihood function. 

Detection inner loop 

1.2 For t = 1, ... , N, compute Ai(T) for i = /-l, 5, f. and the statistic T/t = maXi {IAil}. 

If T/ = maXtT/t = IT/i(T) I > C where C is a predetermined critical value, then there is a 

possibility of one perturbation affecting component i at time t = T. 

12 



In the presence of outlying observations or structural changes, the prediction errors 

obtained via the Kalman filter are contaminated and hence &? = {l/N}e'e may be 

overestimated. One method to overcoming this problem which it is not time consum­

ing is the omit-one method in which &; is calculated with the e(t i ) omitted. Other 

alternatives include the MAD method or the Q' % trimmed method, see Chen and Liu 

(1993). 

1.3 If a possible structural change or outlier is found, remove its effect from the 

residuals and obtain the adjusted residuals e* using, 

e* = e - Zw, 

and go back to 1.2 to iterate. Otherwise, proceed to lA. 

1.4 If no structural change or outlier is found in the first iteration, then stop. If 

the presence of one or more structural changes or outliers have been detected in the 

previous iterations from steps 1.2-1.3, then go back to 1.1 to revise the parameters 

estimates. Continue to repeat 1.1-1.3 until no new perturbations are found, then go to 

ILL 

Joint estimation stage 

II The effects of the identified structural changes are jointly estimated in the multi­

ple regression model in (19) by Generalized Least Squares applying the Kalman filter, 

both on the vector of observations and on each of the columns of matrix Z, and the QR 

algorithm. Then compute the t-statistic for the estimated effects and check if there is 

any perturbation for which the t-statistic is less than C, where C is the same critical 

value used in 1.2. If there is not, then obtain the adjusted series, check whether the 

initial specification in the models for the unobserved components is still valid, apply 

the Kalman filter on the adjusted series, obtain the new residuals and go back to stage 

I to repeat the complete process. Otherwise, delete one by one the insignificant effects 

and reestimate the multiple regression model until all the w/s are significant, then 

obtain the vector of adjusted observations, apply the Kalman filter on it, obtain the 

new residuals and go back to I to iterate. 
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5 Simulations 

In this section we design simulations to study the performance of the proposed iterative 

procedure. We focus our analysis in two aspects of the procedure: a) the relative 

frequency of detection of one outlier or structural change while no one is effectively 

present, which is a measure of the error type I, and b) the relative frequency of correct 

detection, which is a measure of the power. 

The simulations were performed using the quarterly "Basic Structural Model" 

(BSM), see Harvey (1989) in which the observed series is Yt = /-it + St + Ct and the 

models for the unobserved components are as follows, 

/-it = /-it-l + f3t-l + TIt 

f3t = f3t-l + ~t 
s-1 

St = - 2: S t-j +Wt 
j=1 

where Ct, TIt, ~t and Wt are white noise series uncorrelated with each other and with zero 

mean and variance er;, er;, erl and er~ respectively. The BSM was chosen because it is 

simple, very general -in the sense that many economic series can be described with 

this model- and it has, at least in the cases we have considered, a well known reduced 

form, the so called airline model of Box and Jenkins (1976). In all the cases we have 

considered, the simulated series also admit a canonical decomposition. The results 

using these canonical models are almost identical to the ones that are presented and 

therefore they are not reported here. 

The performance of the iterative procedure was found to be associated with i) the 

number of observations ii) the magnitude of the variances er;,er~,erl and er~, and iii) 

the critical value C. In the first simulation exercise we consider different values of the 

variances for the unobserved components. The six models are described in table 1. For 

each model we generated 1000 series with N observations (N = 50,100,200,300) and 

considered critical values C = 2.5,3.0,3.5,4.0,4.5 and 5.0. Table 2 gives the relative 

frequency of error type I for every possible combination of models I to VI, number of 

observations and critical values. 

14 



The worst result is obtained in model I, where 0"; = 20, for which a frequency of 

error type I smaller than 10% is obtained for critical values bigger than 4.0 and 4.5 for 

50 and 100 observations, respectively; even using a critical value of 5.0, the frequency 

of error type I is bigger than 10% for 200 and 300 observations. In models IV, V and 

VI, when 0"; < 1, we obtain the best results. In these models, using a critical value of 

C ~ 3.5, the frequency of error type I is smaller than 5% and 10% for samples sizes of 

50 and 100 observations, respectively; for a sample size of 200 observations and critical 

value C = 4.0, the frequency of error type I is smaller than 5%, and it varies from 4.2% 

in model IV to 6.2% V for a sample size of 300 observations. Models 11 and III can be 

considered intermediate cases, for which a critical value of C = 4.0 yields a frequency 

of error type I less than 1% in the case of 50 observations, less than 5% in the case of 

100 observations, 6-7% in 200 the case of 200 observations, and 10-11% in the case of 

300 observations. 

In the models we have considered the influence of the variances O"~, O"t and O"~, in 

the size of error type I is less evident than the influence of 0"; but, in general, one 

should expect that higher values of the four variances cause a higher relative frequency 

of error type I, e.g. although models IV and V yield similar results, model IV is slightly 

better than model V while the only difference between them is the value of O"t (O"t = 0 

in model IV and O"t = 0,25 in model V). 

To investigate the power of the iterative procedure in terms of perturbation de­

tection, we studied first the relative frequency of correct detection (type an loca­

tion are correctly identified) of one outlier or structural change. The BSM with 

0"; = O"~ = O"~ = 1 and O"t = 0 was used to generate simulated series of length 100 

observations. We considered outliers and structural changes in the trend and seasonal 

components, affecting one observation at the middle of the sample t = 50 or one obser­

vation near the end of the series t = 90. The size of the initial impact w was considered 

to vary from 3.0 to 5.0. For each combination of type and location we generated 1000 

simulated series. 

Table 3 reports the mean relative frequency of correct detection for critical values 

C = 2.5,3.0,3.5,4.0,4.5 and 5.0. In general, the power of the iterative procedure 

increases with the size of the initial impact wand decreases with the critical value C, 
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whereas the location of the perturbation, at the middle or near the end of the series, 

does not seem to have any significant effect. The power of the iterative procedure is 

greater in the cases of structural changes in the seasonal or trend component than in 

the case of one outlier. Going back to table 2, for a sample size of 100 observations a 

critical value of C = 4.0 yields a frequency of error type I smaller than 4% in all the 

considered models except in model 1. Using the same critical value, the power of the 

iterative procedure in the case of one outlier is greater than 50% for w = 3.0, greater 

than 75% for w = 3.5 and, for w 2: 4.0, the power is greater than 90%. In the cases of 

structural changes in the seasonal or the trend component, the power is around 70% 

for w = 3.0; around 90% for w = 3.5 and greater than 99% for w 2: 4.0. 

The power of the procedure when two perturbations are present was also investi­

gated. The BSM with (J'; = (J'; = (J'~ = 1 and (J'Z = 0 was used to generated simulated 

series of 100 observations. We considered six cases with different combinations of out­

liers and structural changes in trend and seasonal component that are listed bellow, 

1. Two outliers at t=50 and t=80. 

2. Two structural changes in the seasonal component at t=50 and t=80. 

3. Two structural changes in the trend component at t=50 and t=80. 

4. One outlier at t=50 and one structural change in the seasonal component at 

t=80. 

5. One structural change in the trend component at t=50 and one structural change 

in the seasonal component at t=80. 

6. One structural change in the trend component and one structural change in the 

seasonal component both at t=50. 

As before, the size of the initial impact w was considered to vary from 3.0 to 5.0 

and for each combination we generated 1000 simulated series. Table 4 reports, for 

critical values C = 3.0,4.0 and 5.0, in the columns marked with F 2 , the mean relative 

frequency of correct detection of the two perturbations that affect the simulated series 
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and, in the columns marked with F 1 , the mean relative frequency of correct detection 

of one of the two perturbations. The performance of the iterative procedure in correctly 

detecting the two perturbations is an increasing function of wand a decreasing function 

of C. In cases 1-3, where the two perturbations are of the same type, it is again clear 

that it is more difficult to detect outliers than structural changes, specially when w 

is small. In case 1, for a critical value of C = 4.0 and size w = 4.0, F2 = 75% and 

Fl = 24% while, for the same values of C and w, F2 = 90% and Fl = 9.7% in case 

2 and, F2 = 94% and Fl = 5% in case 3. Cases 4 and 5 are very similar; for small 

values of ware worse than cases 2 and 3 but, as w increases, the differences among 

the four cases tend to decrease. Finally, for case 6, the power is greater than it was 

expected. For a critical value of C = 4.0 and size w = 4.0, the procedure detects in 

the first two iterations the two perturbations with a relative frequency of 76%, and for 

size w = 5.0 and the same critical value, the relative frequency of correct detection of 

the tvvo perturbations increases to 95%. Note that the power in case 6 is greater than 

the power in case 1 for small values of wand it is only slightly worse when w ~ 4.0. 

This good performance of the iterative procedure in case 6 may imply that there is no 

need to define a new type of structural change to capture the effect of a perturbation 

affecting two or more unobserved components at the same time (see the end of section 

3) since the power of the iterative procedure in terms of perturbation detection is still 

high when a simultaneous perturbation occurs. 

Concluding this section, we would recommend to base the election of the critical 

value C in both the length of the series and the variances of the noises in the models for 

the unobserved components. The critical value C = 4.0 may be adequate for a series 

of moderate length, i.e. 100 to 200 observations, and moderate values of the variances. 

In practice, it is recommended to use more than one critical value in the analysis, to 

allow the investigation of the results sensitivity. 

6 Examples 

In this section we consider two examples discussed in Harvey (1989), the log-transformed 

quarterly UK gas consumption by other final users and the log-transformed monthly 
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number of car drivers killed or seriously injured. 

The gas consumption series starts in the first quarter of 1960 and ends in the fourth 

quarter of 1986. The plot of the observed series is represented in figure l.a with a solid 

line. Note that from the beginning of the seventies, the pattern of the seasonal fluctua­

tions changes coinciding with the introduction of natural gas. The programs TRAMO 

and SEATS were used to decompose the observed series into unobserved components of 

trend, seasonal and irregular following the ARIMA model based approach (see G6mez 

and Maravall, 1996). The models for the trend and seasonal components are, respec­

tively, 

3 

L St-j = (1 - 0.1792B - 0.4755B2 
- 0.3453B3

)Ct 

j=O 

,,,here the variances are O"~ = 0.00942, O"~ = 0.11937 and 0"; = 0.27473,and the reduced 

form is, 

where Zt is the gas consumption series. The variances for the unobserved components 

are obtained using that B(B)at = BJL(B)Js(B)bt + Bs(B)JJL(B)ct + JJLJs(B)Ct, and are 

expressed in units of 0";, the variance of the noise in the reduced form. The variance for 

the noise associated with the irregular component represents, for the gas consumption, 

the 27% of the noise variance in the reduced form model, whilst the variances associated 

with the trend and seasonal component represent the 3.8% and the 0.8%, respectively. 

Applying the iterative procedure with a critical value of C = 4.0 two perturbations 

were detected, 

First iteration. Seasonal Structural change at t=197l.1 with w = -0.3510 

Second iteration. Seasonal Structural change at t=1970.2 with w = -0.1951 

Figure l.a shows that the change in the seasonal pattern is less pronounced for the 

adjusted series plotted with a dashed line. Figure l.b shows, for a reduced sample 

beginning in 1968.1 and ending in 1979.4, the original and adjusted seasonal compo­

nents, and makes clearer the effects of the two interventions that reduce the magnitude 
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of the seasonal fluctuations. Finally figure l.c shows the sum of the effects of the two 

structural changes. The models for the adjusted trend and seasonal components are, 

respectively, 

3 

L St-j = (1 - 0.1748B - 0.4763B2 - 0.3488B3
) {et - 0.351ltl.l) - 0.195Ito.2)} 

j=O 

where the variances are now er; = 0.00941, almost equal to the original, er~ = 0.0854, 

reduced by the effect of the two seasonal structural changes that have been corrected, 

and er; = 0.3214. 

The second series, the log-transformed number of car drivers killed or seriously 

injured, starts in January 1960 and ends in December 1984. This series has been used 

by several authors, see Harvey and Durbin (1986), Harvey and Koopman (1992) or 

Balke (1993). The observed series is plotted with a solid line in figure 2.a. The trend 

pattern of the series seems to be composed of three different periods; during the first 

five years the series exhibits an upwards trend, the second period is characterized for 

a very stable level without a clear upwards or downwards trend and finishes with the 

introduction of the seat belt law on January 1983, the third period lasts for about 

two years and exhibits a soft upwards trend. The models for the trend and seasonal 

components are respectively, 

"VPt = (1 + 0.0094B - 0.9906B2)bt 

(1 + 0.96B + 0.74B2 + 0.46B3 + 0.16B4 
- 0.10B 5 (19) 

where the variances are er; = 0.03806, er~ = 0.0026 and er; = 0.56528,and the reduced 

ARIMA form is, 

"V"V 12logzt = (1 - 0.5892B)(1 - 0.8924B 12 )at 

where Zt is the number of car drivers killed or seriously injured. 

Applying the iterative procedure with a critical value of C = 4.0 two perturbations 

were detected, 
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First iteration. Trend Structural change at t=1983.01 with w = -0.1385 

Second iteration. Trend Structural change at t=1973.10 with w = -0.1187 

In figure 2.a the adjusted series, plotted with a dashed line, exhibits an upwards 

trend for the entire sample. Figure 2. b shows the effect of the two structural changes 

in the trend component. The models for the adjusted trend and seasonal components 

are, respectively, 

VPt = (1 + 0.0134B - 0.9866B2 ) {bt - 0.138It(83.01) - .118It(73.10)} 

(1 + 0.69B + 0.41B2 + 0.16B3 - 0.04B4 - 0.20B5 (20) 

0.30B6 - 0.36B7 - 0.38B8 - 0.37 B9 - 0.33BIO - 0.27 Bll )Ct 

where the variances are O'~ = 0.01609, O'~ = 0.00846 and 0'; = 0.63701. The variance of 

the trend component represents now the 1.6% of O'~, less than half of the proportion 

for the original trend component, while the proportion for the irregular and seasonal 

components increases. 

7 Conclusion 

In this paper a procedure for detecting outliers and structural changes in the unob­

served components of a seasonal time series was proposed. The iterative procedure 

was illustrated with real and simulated series and, consequently, may be of interest for 

data analyst focused on the seasonal adjustment of economic time series. 

A final remark must be made on the nature of the iterative procedure. An observed 

time series may be subject to the influence of many different types of perturbations. 

The method proposed here permits the treatment of some of them, not all, that have 

a clear and direct interpretation. 
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Model I. G'; = 20, G'~ = 1, G'€ = 0 and G'~ = 0.25 

Model Il. G'; = 3, G'~ = 1, G'€ = 0 and G'~ = 0.75 

Model Ill. G'; = 1.13, G'~ = 1, G'€ = 0 and G'~ = 0.01 

Model IV. G'; = 0.70, G'~ = 1, G'€ = 0 and G'~ = 0.25 

Model V. G'; = 0.70, G'~ = 1, G'€ = 0.25 and G'~ = 0.25 

Model VI. G'; = 0.5, G'~ = 0.25, G'€ = 0.25 and G'~ = 0.25 

Table 1. List of models in the first simulation exercise. * Models I to IV were taken from 

Maravall(1985) 

Model I Model Il 

N\C 2.5 3.0 3.5 4.0 4.5 5.0 2.5 3.0 3.5 4.0 4.5 5.0 

50 1.000 0.862 0.494 0.166 0.032 0.006 0.906 0.348 0.060 0.004 0.002 0.000 

100 1.000 0.980 0.838 0.436 0.144 0.034 0.992 0.684 0.168 0.020 0.004 0.000 

200 1.000 1.000 0.980 0.780 0.378 0.114 1.000 0.926 0.390 0.064 0.008 0.002 

300 1.000 1.000 0.998 0.916 0.574 0.252 1.000 0.964 0.488 0.100 0.016 0.000 

Model III Model IV 

N\C 2.5 3.0 3.·5 4.0 4.5 5.0 2.5 3.0 3.5 4.0 4.5 5.0 

50 0.880 0.346 0.060 0.004 0.000 0.000 0.870 0.260 0.036 0.004 0.000 0.000 

100 0.990 0.644 0.180 0.042 0.002 0.000 0.980 0.504 0.092 0.010 0.000 0.000 

200 1.000 0.868 0.340 0.070 0.012 0.000 1.000 0.826 0.226 0.040 0.006 0.000 

300 1.000 0.974 0.516 0.110 0.020 0.006 1.000 0.912 0.344 0.042 0.002 0.000 

Model V Model VI 

N\C 2.5 3.0 3.5 4.0 4.5 5.0 2.5 3.0 3.5 4.0 4.5 5.0 

50 0.856 0.294 0.042 0.000 0.000 0.000 0.858 0.288 0.036 0.002 0.000 0.000 

100 0.976 0.522 0.098 0.002 0.000 0.000 0.986 0.550 0.114 0.008 0.000 0.000 

200 0.998 0.850 0.244 0.024 0.002 0.000 1.000 0.840 0.240 0.040 0.000 0.000 

300 1.000 0.918 0.320 0.062 0.008 0.000 1.000 0.924 0.358 0.054 0.002 0.000 

Table 2. Mean relative frequency of error type I using the iterative procedure. 



Outlier T = 50 Outlier T = 90 

w\C 2.5 3.0 3.5 4.0 4.5 5.0 2.5 3.0 3.5 4.0 4.5 5.0 

3.0 0.951 0.873 0.738 0.552 0.351 0.199 0.963 0.894 0.755 0.556 0.322 0.154 

3.5 0.994 0.969 0.910 0.785 0.583 0.389 0.993 0.969 0.906 0.781 0.583 0.358 

4.0 1.000 0.995 0.977 0.930 0.827 0.656 1.000 0.996 0.979 0.926 0.803 0.616 

4.5 1.000 0.998 0.996 0.981 0.938 0.855 1.000 1.000 0.999 0.982 0.941 0.833 

5.0 1.000 0.999 0.998 0.996 0.983 0.952 1.000 0.999 0.999 0.999 0.986 0.943 

ST in Seasonal T = 50 ST in Seasonal T = 90 

w\C 2.5 3.0 3.5 4.0 4.5 5.0 2.5 3.0 3.5 4.0 4.5 5.0 

3.0 0.961 0.926 0.839 0.671 0.445 0.236 0.984 0.959 0.883 0.686 0.430 0.225 

3.5 0.990 0.988 0.972 0.885 0.733 0.500 0.995 0.991 0.972 0.910 0.756 0.525 

4.0 0.999 0.999 0.997 0.973 0.919 0.773 0.998 0.997 0.995 0.980 0.915 0.780 

4.5 1.000 1.000 1.000 0.997 0.975 0.916 1.000 1.000 1.000 0.999 0.991 0.944 

5.0 1.000 1.000 1.000 1.000 0.997 0.982 1.000 1.000 1.000 1.000 1.000 0.991 

ST in Trend T = 50 ST in Trend T = 90 

w\C 2.5 3.0 3.5 4.0 4.5 5.0 2.5 3.0 3.5 4.0 4.5 5.0 

3.0 0.984 0.949 0.885 0.751 0.546 0.307 0.986 0.946 0.869 0.720 0.481 0.258 

3.5 1.000 0.992 0.967 0.912 0.764 0.528 0.997 0.988 0.963 0.894 0.761 0.529 

4.0 1.000 0.999 0.996 0.989 0.941 0.829 1.000 1.000 0.992 0.977 0.916 0.777 

4.5 1.000 1.000 0.999 0.992 0.976 0.937 1.000 1.000 1.000 0.997 0.983 0.934 

5.0 1.000 1.000 1.000 1.000 0.998 0.989 1.000 1.000 1.000 0.999 0.998 0.985 

Table 3. Mean relative frequency for correct detection of one perturbation in a simulated 

series of length N=100. 



Case 1 Case 2 

C 3.5 4.0 4.5 3.5 4.0 4.5 

w F2 Fl F2 Fl F2 Fl F2 Fl F2 Fl F2 Fl 

3.0 0.486 0.435 0.221 0.543 0.077 0.426 0.794 0.206 0.571 0.425 0.284 0.677 

3.5 0.744 0.248 0.488 0.441 0.242 0.538 0.934 0.066 0.777 0.223 0.518 0.479 

4.0 0.905 0.301 0.753 0.242 0.497 0.448 0.975 0.025 0.903 0.097 0.697 0.303 

4.5 0.972 0.028 0.894 0.105 0.732 0.262 0.994 0.006 0.957 0.043 0.837 0.163 

5.0 0.992 0.008 0.966 0.034 0.890 0.110 0.999 0.001 0.988 0.012 0.933 0.067 

TC in T = 50 and in T = 80 IC in T = 50 and SC in T = 80 

C 3.5 4.0 4.5 3.5 4.0 4.5 

w F2 Fl F2 Fl F2 Fl F2 Fl F2 Fl F2 Fl 

3.0 0.793 0.084 0.565 0.157 0.339 0.160 0.724 0.265 0.476 0.463 0.212 0.573 

3.5 0.937 0.042 0.807 0.118 0.570 0.212 0.905 0.094 0.753 0.236 0.456 0.050 

4.0 0.986 0.011 0.940 0.049 0.785 0.164 0.973 0.027 0.895 0.105 0.731 0.266 

4.5 0.997 0.002 0.973 0.025 0.894 0.088 0.995 0.005 0.970 0.030 0.872 0.128 

5.0 1.000 0.000 0.994 0.006 0.970 0.028 0.997 0.003 0.989 0.011 0.936 0.064 

TC in T = 50 and SC in T = 80 TC and SC in T = 50 

C 3.5 4.0 4.5 3.5 4.0 4.5 

w F2 Fl F2 Fl F2 Fl F2 Fl F2 Fl F2 Fl 

3.0 0.705 0.284 0.431 0.502 0.180 0.591 0.582 0.392 0.339 0.550 0.145 0.570 

3.5 0.882 0.118 0.699 0.030 0.426 0.535 0.763 0.235 0.560 0.427 0.319 0.604 

4.0 0.947 0.053 0.859 0.141 0.651 0.347 0.903 0.097 0.760 0.240 0.550 0.439 

4.5 0.989 0.011 0.958 0.042 0.833 0.167 0.960 0.040 0.873 0.127 0.732 0.268 

5.0 0.997 0.003 0.984 0.016 0.920 0.080 0.985 0.015 0.950 0.050 0.855 0.145 

Table 4 Mean relative frequency for correct detection of two perturbations in a simulated 

series of length N=100. F2 Correct detection of the two structural changes; Fl Correct detection 

of only one of the two changes. 



Figure 1. UK gas consumption by other final users 
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Figure 2. Car drivers killed and seriously injured 
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