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Abstract: Many methods to codify Artificial Neural Networks have been
developed to avoid the defects of direct encoding schema, improving the search
into the solution's space. A method to estimate how the search space is covered
and how are the movements along search process applying genetic operators is
needed in order to evaluate the different encoding strategies for Feedforward
Neural Networks. A first step of this method is considered with two encoding
strategies, a direct encoding method and an indirect encoding scheme based on
graph grammars: generative capacity, how many different architectures the
method is able to generate.

1. Introduction

In the last years, many works have been centered toward automatic resolution of the
design of neural networks architecture [1,2,3,4,5,6]. Two representation approaches
exist to find the optimum net architecture using Genetic Algorithms (GA). One based
on the complete representation of all the possible nodes and/or connections, Direct
Encoding Methods (DEM), where every node and/or connection of the neural
network is indicated into the chromosome of the GA [7,8]. And other based on an
indirect and compact representation of the architecture instead of codifying the
complete network, called Indirect Encoding Methods (IEM) [1,9,10].

IEM are applied in order to reduce the length of the genotype, the search space,
and to make the problem more scalable. No exhaustive analysis of those features
exists in the literature. The main problem is the definition of an objective measure to
evaluate different codifications and search strategies. The measure should be able to
evaluate the generative capacity and the efficiency of the search strategy, analyzing
the different neural network architectures generated with several methods.

Typically, a good problem representation requires the representation of any
possible solution, and a good search strategy requires that similar genotypes produce
similar architectures. In this way, all the search space is covered and the fitness
function is able to guide the search.

The goal is to evaluate and compared different encoding algorithms. In this way,
we need to estimate the neural networks generated, to analyze the generative capacity
of the method (how many different architectures the method is able to generate) over


Nota adhesiva
Published in: Computational methods in neural modeling : 7th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2003, Proceedings, Part I, Springer, 2003 (Lecture notes in computer science, vol. 2686), pp. 478-485


the whole search space and the search strategy (how the Genetic Algorithm generates
neural networks).

Hamming distance might be used to show how the neural network space is covered
by the encoding scheme. However, indirect approaches could not be applied because
each chromosome and its corresponding binary matrix have a different meaning
depending on the expansion method. We proposed an objective measure to evaluate in
the same way different methods and the evaluation is made over the generated neural
networks architecture space. Thus different encoding methods can be compared.

Our interest is focused in the evolution of architectures of feedforward neural
networks (FNN) with one hidden layer, just the number of hidden nodes and
connections between different layers. The task of weight training is left to be carried
out by the back propagation algorithm. So, only the topology of FNN will be codified
into the chromosome.

In this work, the generative capacity of two different encoding methods are studied
and compared: a DEM that represents every possible connection of a FNN and an
IEM based on Graph Grammars with a expansion process to obtain the binary matrix
that represent the FNN architecture. Using the procedure defined in this paper, we
could analyze the generative capacity (representation) and the search space in the
domain of genotypes of direct codification scheme and compare with the indirect one.
An objective assessment and the results concerning to the generative capacity (ability
to cover the FNN architecture space) of both encoding methods proposed are shown.
A random initial population of chromosomes will be created for both encoding
methods, the expansion process will be applied to each chromosome for the IEM and
conclusions obtained from the histograms of neural networks achieve will be exposed.
In [11], a preliminary study of the representation capacity of another IEM based on
Cellular Automata [12] is presented using that objective measure. The results showed
that the IEM based on cellular approach is able to cover the search space.

Section 2 and 3 is related with the direct and indirect encoding schemes,
respectively, used in this work. Section 4 describes the objective assessment. The
generative capacity of the encoding schemes is shown in section 5. Finally, some
conclusions are presented in section 6

2. Direct Encoding Method

In direct encoding schema the most usual way to codify the architecture is to place
the chromosome (a string) as the concatenation of rows (or columns) of the binary
connections matrix, where each cell represents the existence or absence of a set
connection between two nodes. Since we are interested only in FFN architectures with
one hidden layer, rejecting any other type of neural network, as recurrent neural
networks, the direct encoding scheme used in this work only represents useful
connections, connections between nodes of one layer and immediately next layer.
Thus, the length of the chromosome is reduced.

The direct encoding scheme used in this work is based on a binary matrix of
dimension Dim, x Dim,, where Dim, is equal to the number of input neurons plus the
number of output neurons and Dim, corresponds with the maximum number of



hidden neurons to be considered (see Fig 1). To relate that matrix with an architecture
of a FNN with one hidden layer, the meaning for the grid position (i,j) is defined as
follows. Let’s n the number of input neurons; if i < n then (i,j) represents a connection
between the i-th input neuron and the j-th hidden neuron; if i>n, (i,j) represents a
connection between the j-th hidden neuron and the (i-n)-th output neuron. That
relation is shown in Fig 1. The chromosome is just the concatenation of the matrix
rows and Dim, x Dim, gives the length of the chromosome.

Fig. 1. Matrix connection for direct encoding method.

3. Method based on Graph Grammar/Indirect Encoding Method

In 1990, Kitano [9] presents a new method for designing neural networks by means of
Genetic Algorithms, where neural networks are represented through graph grammars,
codified in the chromosomes of the individuals. The selected indirect encoding
method is based on an improvement of Graph Grammars used by Kitano.[13]

Whole system is composed of three modules, Genetic Algorithm Module,
Grammar Module and Neural Network Module. In [14] a detailed description of
Neural Network and Genetic Algorithm Modules can be found. The Grammar
Module takes charge of generating FNN architecture from a Graph Grammar
indicated into the chromosome. The generated FNN is trained and relevant
information about the goodness of FNN is used as the fitness value for the genetic
algorithm module. And finally the genetic algorithm module takes charge of generates
Graph Grammars of next generation.

Into each chromosome a bi-dimensional Graph Grammar is described and a bi-
dimensional word, a binary matrix, is obtained, in a deterministic way, from the bi-
dimensional Graph Grammar [13]. The binary matrix obtained represents a
connection matrix, where each element a,, represents the existence (a,,=1) or the
absence (a,,=0) of connection from node labelled x to node labelled y.

Since the goal in this paper is to compare the generative capacity of both methods,
the binary matrix, the word. obtained from the Graph Grammar codified into a



chromosome has to be translated into the matrix connection described in section 2.
Every backward connection or every direct link from a input node to a output node is
not considered on the translation process: Only connections corresponding to a link
from input nodes to a hidden node or a link from hidden node to output node are hold.

4. Generative Capacity

The goal is to evaluate different encoding algorithms studying the generative capacity
(how many different architectures the method is able to generate) over the whole FNN
architecture space and the search strategy (how the Genetic Algorithm generates
neural networks).

In order to analyze the behavior of the different encoding methods, two kind of
information have to be studied:

The first one is related with the ability of the methods to generate an initial
population of chromosome covering the complete FNN space. As the initial
population has a finite size, the individuals are a subset of the search space. Clearly,
an algorithm that generates random individuals following an uniform distribution over
the search space is better than algorithms that introduce a bias in the initial
population.

The second one is related with the way the algorithm searches in the search space.
The best situation to apply genetic algorithm is that small changes in the genotype
produce small changes in the fitness value. This situation avoids the epistasis
problem. This problem could not be addressed directly (as in other genetic
approximations) with the indirect encoding methods because of the particular process
introduced to translate the genotype in to the neural network.

We propose to approximate the points one and two, analyzing the number of
hidden neurons (n/4) and the number of connections (nc). We propose to calculate the
histogram of n/ and nc for the initial population (point one), and to evaluate random
walks (representing in a 3-D graph the fitness landscape over nh and nc) for the
search (point two).

In this work, results concerning to the first point are shown. The study involves the
following steps:

1. Generate a random initial population of chromosomes with a uniform
distribution.

2. Apply the translation process for each encoding method and for each
chromosome to obtain the correspondent binary matrix or neural network
architecture.

. Make a histogram of the number of hidden neurons (»4) in the binary matrix.

. Make a histogram of connections (xc) in the binary matrix.

. 3-D histogram considering the bidimensional space n/ x nc.
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. Represent the percentage of connections for each FNN obtained with the
same number of hidden nodes



5. Experimental Results

In order to analyze the generative capacity of both encoding methods, a initial
population of 10* chromosomes is randomly generated for each encoding method. In
both schemes every value for an element of the chromosome has the same probability
than the other values. With direct encoding method, in any element of the binary
matrix (the chromosome) there is a “0” or a “1” with the same probability (1/2). For
IEM based on graph grammars the chromosome codifies a bidimensional grammar.
Into the chromosome, the production rules (the right side of the production rules), the
expansion method and the level of recursion are codified in binary. Each allele has the
same probability (1/2) to be a “0” or a “1”.

In these results a generic domain is used, with 2 inputs and 2outputs (n; = np = 2).
Then the maximum number of hidden neurons of FNN considered for DEM is 16
((n1+n0)2), [11]. Therefore the length of the chromosome for direct encoding scheme
is 64, equal to the maximum number of connection considered.

In case of IEM, the length of the chromosome is fixed and not depends on the
problem. The maximum number of hidden nodes and connections depends on the size
of the binary matrix immediately obtained from the derivation process for each
chromosome. The size of that matrix depends on which rules are codified in the
chromosome and especially in the value of two parameters that stop the derivation
process [13].

For both encoding schemes if in the binary matrix the elements of a column are 0,
it means that the hidden node that this column represents has not any connection from
input layer or to output layer. In this case, it could be eliminated from the FNN.

For grammatical approach only the results within range 0 to 16 of hidden nodes
and 0 to 64 of connections are exposed to compare with results of DEM, that are
limited to these values for the size of FNN obtained. But bigger FNNs are obtained
for the IEM.

Fig 2 (a) (b) show FNN with the same number of hidden nodes obtained from the
initial population of chromosome. FNN architectures with the same number of
connections are shown if Fig 3 (a) (b) for both direct and indirect encoding scheme.

In Fig 4 (a) and Figure 4 (b) the 3-D histograms for both encoding schema is
shown. In them, the number of FNN with a same number of hidden nodes and a same
number of connections is displayed.

In Fig 5 (a) (b) the percentage of connectivity for FNN with the same number of
hidden nodes for both encoding schemes are shown. The maximum number of
connections for a given number of hidden nodes (h) is (2x(n, +n,)), the minimum

number of connection is (n, +n,)

In Fig 2 (a) and Fig 3 (a) is observed that for direct encoding scheme the
probability density function, corresponding to this discrete distribution, could be
obtained exactly from the probability that a column has no element equal to “1” and
an element of matrix connection (the chromosome in DEM) is equal to “1”. It is clear
that must be a binomial distribution. But for indirect encoding (see Fig 2(b) and 3(b))
it is not feasible, at least too complex, to obtain exactly the discrete probability
density function that corresponding to the histogram of nc and nh.



Besides, in Fig 5 (a) (b) can be observed that the percentages of connectivity of
FNN obtained with both encoding schemes. EM are limited to some values (35 - 75
%). By opposite, for IEM (see Fig 5 (b)) FNN with percentages of connectivity

ranging from minimum, 10%1 +n, )» to maximum are obtained.

All these advantages for IEM, considering a initial set of chromosomes randomly
generated with a uniform distribution, could make the search more feasible for the
evolutionary algorithm.
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Fig. 3. How many FNN have the same number of connections. DEM (a), [EM (b).
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Fig. 4. FNN have the same number of hidden nodes and connections. DEM (a), IEM (b).

As it is observed in all figures, it is clear that indirect encoding scheme cover the
FNN space for a initial random population of chromosomes better than the DEM.
With DEM no FNN with less than 10 hidden nodes and only FNN with a number of
connections ranging between 18 and 47 are obtained. Therefore only a limited subset
of space of FNN is obtained from a uniform distribution of chromosome space.

On the contrary, with IEM and considering only the subset of FNN space with less
or equal than 16 hidden nodes and 64 connections, the space of FNN is covered. Even
though FNN with few hidden nodes and connections are majority obtained.

Fig. 5. Percentage of connectivity. DEM (a), IEM (b).

6. Conclusions

Indirect Encoding methods are applied in order to reduce the length of
chromosomes. As a Evolutionary Algorithm begins the search with a random initial
population, it is important that it covers as completely as possible the search space.
The analysis presented in this work shows that direct encoding methods do not carry
out this condition, on the contrary than the indirect encoding scheme based on
grammars aforesaid.



In future works, estimations of what density distribution functions correspond with
the histograms shown will be study. Random walks over the space of chromosomes
will be evaluated in order to get to know how the genetic algorithm look for in the
search space for both encoding methods, direct and indirect.
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