
Evolutionary techniques in a constraint satisfaction problem:

Puzzle Eternity II

Jorge Muñoz, German Gutierrez, Araceli Sanchis

Abstract— This work evaluates three evolutionary algorithms
in a constraint satisfaction problem. Specifically, the problem is
the Eternity II, a edge-matching puzzle with 256 unique square
tiles that have to be placed on a square board of 16× 16 cells.
The aim is not to completely solve the problem but satisfy as
many constraints as possible. The three evolutionary algorithms
are: genetic algorithm, an own implementation of a tech-
nique based on immune system concepts and a multiobjective
evolutionary algorithm developed from the genetic algorithm.
In addition to comparing the results obtained by applying
these evolutionary algorithms, they also will be compared with
an exhaustive search algorithm (backtracking) and random
search. For the evolutionary algorithms two different fitness
functions will be used, the first one as the score of the puzzle
and the second one as a combination of the multiobjective
algorithm objectives. We also used two ways to create the initial
population, one randomly and the other with some domain
information.

I. INTRODUCTION

The Eternity II [1] (also known as E2) puzzle is an edge-

matching puzzle created by Christopher Monckton for the

game editor Tomy (TM). This puzzle consists in 256 unique

square tiles that have to be placed in a 16× 16 board. Each

tile has a different color pattern in each of its four sides.

The tiles are different to each other, there are not two tiles

with the same color pattern in all their edges, and each

tile can be rotated 90o, 180o or 270o before putting in the

board. Two adjacent tiles must match in their color pattern

for considering that they are placed correctly in the board.

There are special tiles for the corners and the border of the

board. These tiles have a grey color in the side that must be

in the border of the board. Also, it is known the position and

orientation of one of the tiles in the puzzle, but we will omit

this information in our evolutionary algorithms.

The quality of the puzzles is measured with a score. Each

time two adjacent tiles match in one of their edges the score

is increased one unit. The grey edges that must be placed

in the border of the board do not count for this score. In a

n× n board, the maximum score is given by equation 1. In

Eternity II, with a 16 × 16 board, the maximum score that

can be reached is 480.

max score = n · (n − 1) + (n − 1) · n
= 2 · n · (n − 1) (1)

The size of the search space, S, of edge-matching puzzles

with a squared board of n×n cells and with unique tiles can

J. Muñoz, G. Gutierrez, A. Sanchis are with the Computer Science
Department, University Carlos III of Madrid, Avda. de la Universidad 30,
28911 Leganés, Spain (emails: { jmfuente, ggutierr, masm }@inf.uc3m.es).

be calculated with equation 2, where n2 is the total number

of tiles.

S = (n2)! · 4n2

(2)

If the problem is divided in three subproblems: the tiles

that have to be placed in the corners, that tiles of the border

of the board and the interior tiles; then the search space is

reduced as equation 3 shows.

S = 4! + (4 · (n − 2))! + 4(n−2)2 · (n − 2)2!

� 4(n−2)2 · (n − 2)2! (3)

In an edge-matching puzzle as the Eternity II with 256
tiles (16×16 board) the search space is approximately 4196 ·
196! � 10485.

The edge-matching puzzles belong to the category of

NP-complete problems [2], specifically they are constraint

satisfiability problems (CSPs) [3]. Despite the evolutionary

algorithms are not the best ones to find a solution in this sort

of problems, an enormous search space as it is in this problem

means that this problem is computationally intractable, there

is not efficient algorithm that can solve it in an admissible

time. Thus, the goal is not to find a solution but to find the

solution that the more constraints satisfies (the more number

of matching edges). These kind of problems are know as

MAXSAT [4] and here is where an evolutionary algorithm

can be useful [5].

We use three different evolutionary algorithms for this

problem:

• Genetic algorithm (GA): an evolutionary algorithm used

for NP-complete problems [6][7][8].

• Artificial immune evolutionary algorithm (AIEA): an

algorithm developed from some concepts of the artificial

immune systems [9].

• Multiobjective evolutionary algorithm (MOEA): a mul-

tiobjective algorithm [10] developed from the genetic

algorithm which have been added several objectives, to

know whether split the problem in objectives is useful.

In the rest of the document we present some related

work of evolutionary algorithms in combinatorial problems

(Section II), a description of the search algorithms used (the

exhaustive search algorithm and the three the evolutionary

algorithms, Section III), the experimental results of the

evolutionary algorithms with different parameters (Section

IV) and, finally, the conclusions and future works (Section

V).

2985978-1-4244-2959-2/09/$25.00 c© 2009 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/30043142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. RELATED WORK

There are different techniques that can be used to try to

solve a CSP which can be classified into two categories:

inference and search, although a mixed of both techniques

have been used [11][3]. The inference tries to modify the

problem into another that it is easier to solve. This is

performed through the domain information. The main al-

gorithms in inference are the consistency algorithms, also

known as constraint propagation [3]. For search techniques

the main algorithm is the backtracking algorithm [11], this

algorithm essentially performs a depth-first search of the

space of potential solutions. The lack of search algorithms

is that they do not use any kind of domain information and

repeats the same mistakes, that is, they repeat a lot of times

searches that do not lead to a solution and could be avoided

with some domain information.

Due to the exhaustive search is the unique algorithm

that guarantees to find a solution if it exists, a mixed

algorithm between search and inference is commonly used.

The exhaustive search is often enhanced with look-ahead

and look-back techniques as constraint propagation. In some

problems as the Eternity II puzzle or other with a enormous

search space, this sort of search is useless because there is

not time enough to browse all the possible solutions. So,

when the goal is to satisfy the higher number of restrictions

(MAXSAT problem) a local search is performed instead of

an exhaustive search.

Local search algorithms start with a set of assigned

variables and tries to allocate the rest of variables. When

it is reached a situation where a constraint is violated the

algorithm modify the values of the variables that break

the constraint. These algorithms apply a heuristic to guide

the search. The best known results in the Eternity II were

obtained with an algorithm of these features that uses a

hibridization of constraint propagation and very large neigh-

borhood stochastic local search [12], it satisfies 458 of the

480 constraints.

Another way to find a good solution in a MAXSAT

problem is through the use of evolutionary algorithms [7].

Some of the algorithms in the literature are SAWEA [13][8],

RFEA [14][15], FlipGa [16] and ASAP [17], although a

genetic algorithm can be used too [5].

III. SEARCH ALGORITHMS APPLIED

We have used a random search algorithm, an exhaustive

search algorithm and three evolutionary algorithms for the

Eternity II puzzle. Random search only places the tiles on

the board randomly and then checks is a solution has been

found.

Below we describe the exhaustive search algorithm and

the main features of the evolutionary algorithms. At the end

of the section it will be explained how is the fitness function

in all the evolutionary algorithms and how is the initial

population created. It has been used two kinds of fitness

functions and two ways to initialize the initial population in

the evolutionary algorithms.

A. Exhaustive Search Algorithm (ES)

The exhaustive search algorithm is just a backtracking

algorithm. The algorithm starts with the known tile that is

placed in the middle of the board, and then tries to put the

rest of the tiles. The board is filled like a spiral, from the

inner to the outer.

In order to improve the results of this algorithm when

the maximal deep of search is reached, instead of do the

backtracking, the algorithm continues browsing the board and

placing tiles in the right way. The cells where any tile can be

placed are left in blank. This improvement of the algorithm

is the same as we do in one of the initializations of the

population that will be described in Section III-F.

B. Genetic Algorithm (GA)

In the experiments we have used a simple genetic algo-

rithm with elitism and tournament selection. Codification,

crossover and mutation will be described below.

As the domain of the problem is an edge-matching puz-

zle, we have decided to use a new representation of the

chromosome instead of a bit stream or floating point one

[7]. This new representation is a bidimensional matrix where

each cell contains a tile and its orientation. With this coding

of the individuals there is a direct correspondence between

the problem domain and the chromosome, and the spacial

relations among the adjacent tiles are also kept. Due to our

objective is to keep the spatial relations among the tiles in the

puzzle between generations we need to apply new operators

for crossover and mutation. These new operators use an

area or region of the puzzle to realize their operations. With

regions the spatial relations within and outside the regions

are preserved both vertically and horizontally.

The specific crossover operator for the new coding is

based on the regions exchange. From two parents only one

offspring is generated. After the parents are selected, a region

with random size in a random point is chosen. Then, the outer

cells of the region are copied to the offspring from one parent

and the inner ones from the other parent. It must be born in

mind that one of the constraints of the problem is that each

tile is unique and the board must have all the tiles, so there

can not be repeated tiles and can not miss anyone. Thus,

some extra operations must be taken to avoid this problem

when a region is copied into the offspring. See Algorithm 1

and Fig. 1 for details.

There are two types of the mutation operator: the region

exchange and the region rotation. In the first one, region

exchange, two regions of the same size are selected in the

individual and all the cells of the regions are exchanged (Fig.

2). The only requirement here is that the two regions must not

be overlapped. In the second mutation operation, the region

rotation, a region is selected and rotated (Fig. 3).

In the genetic algorithm when an individual has to be

mutated it is used only one mutation operator: the region

exchange or the region rotation. The probability to choose

one operator or the other one is the same.

Both crossover and mutation operators, the height and

width of the regions are chosen randomly between two

2986 2009 IEEE Congress on Evolutionary Computation (CEC 2009)



Algorithm 1 Crossover

Require: parentA, parentB , offspring

1: select a random region

2: copy the cells from parentA to offspring (clone

parentA)

3: remove the tiles from offspring that are in the inside

the region in parentB
4: add the remaining tiles inside the region in offspring

to a list

5: copy the cells inside the region from parentB to

offspring

6: fill the empty cells in offspring randomly with the tiles

in the list

Fig. 1. A simple example of crossover

bounds. The minimum size of the region for crossover is

2 and the maximum 8, and for mutation the bounds are 1
and 10. In crossover and region exchange mutation the region

can be a rectangle but in region rotation mutation the region

must be a square.

C. Artificial immune Evolutionary Algorithm (AIEA)

The artificial immune evolutionary algorithm (AIEA) has

been developed from some concepts of the artificial immune

systems [9][18], specifically the clonal selection principle,

also called clonal selection theory. This principle is the

process used by the immune system to protect our body

to an antigenic stimulus. From this theory we have used

two ideas for our algorithm, the clonal selection and the

somatic hypermutation. The new cells that the body needs

to elaborate a response against the antigen are produced by

the clonal selection. This means that only the best cells

against the antigen are cloned and increased their number.

But when there are not good cells to respond against an

antigen it is necessary an adaptation. The body needs to

generate new sort of cells quickly against that antigen, so it is

necessary a mutation of the cells. This last process is called

hypermutation because the cells suffer a rapid accumulation

of mutations for a fast maturation.

The algorithm that we propose has a population with

a fixed number of individuals. From this population an

individual is selected through a selection operator. In the

Fig. 2. An example of region exchange mutation

Fig. 3. An example of region rotation mutation

experiments it has been used a tournament selection. The

selected individual is cloned, and the new cloned individual

is mutated proportionally to its fitness. If the fitness is

good compared with the rest of the population the cloned

individual suffers a few mutations, the operator of mutation

is applied few times. If the fitness is bad it suffers a lot of

mutations, the operator of mutation is applied a lot of times.

In our case the worst individuals have a great fitness and the

best individuals have a lower fitness. Then other individual is

selected from the population with another selection operator

but in this case the selection operator returns a bad individual.

We have also used for this a tournament operator that returns

the worst individual of the tournament. The last selected

individual is removed from the population and the cloned and

mutated individual is added. The process is repeated until

a stop criterion is reached. The AIEA algorithm is shown

below, in algorithm 2.

In AIEA the mutation operator that has been used is the

same that in the genetic algorithm: region exchange and

region rotation. In each mutation the probability to choose

one or other operator is the same.

The main difference between this algorithm and a genetic

algorithm is that our immune algorithm does not use a

crossover operator. Also when an individual is mutated it

normally suffers more than one mutation. This has a lack

that no information from more than one individual is used

to create a new one, but this way increases the diversity of

the population.

Other algorithms from artificial immune systems like

ClonalG [9], negative selection [19], immune networks [9],...

and in general all the ideas taken from immune systems are

normally applied to pattern recognition systems [20]. But in

AIEA that ideas from immune systems are applied into an

evolutionary algorithm.

D. MultiObjective Evolutionary Algorithm (MOEA)

The last of the three evolutionary algorithms is a mul-

tiobjective evolutionary algorithm (MOEA). Although our

problem is not multiobjective we think that splits the problem

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 2987



Algorithm 2 Artificial Immune Evolutionary Algorithm

Require: population size, tournament size, stop criterion

1: generate the initial population

2: for each individual in population do

3: calculate fitness of the individual

4: end for

5: maxfit ⇐ maximum fitness in the population

6: minfit ⇐ minimum fitness in the population

7: repeat

8: individual to clone ⇐ select the best of a tourna-

ment

9: ind ⇐ clone individual to clone

10: fit ⇐ ind → fitness

11: mutation range ⇐ fit−minfit
maxfit−minfit

12: mutate ind proportional to mutationRange

13: individual to remove ⇐ select the worst of a tour-

nament

14: remove individual to remove from population

15: add ind to population

16: maxfit ⇐ maximum fitness in the population

17: minfit ⇐ minimum fitness in the population

18: until stop criterion

into related subproblems and try to solve all of then at

once could improve the results. We used the same concepts

explained in the NSGA-II algorithm [10] but with some

modifications to improve the performance in the problem.

The chromosome, crossover operator and mutation operator

are the same as in the other algorithms we saw before.

There are three major changes in our MOEA compared

to NSGA-II. Two of them are improvements related to the

dominance and the distance among individuals to increase

the performance of the algorithm. The last modification is

about the number of individuals of the pareto front that are

copied from one generation to the next one.

The first improvement is how the dominance is calculated.

Instead of using fronts of dominance, the dominance of

one individual is calculated by counting the number of

individuals that dominate that individual. This is faster than

calculate the fronts of dominance.

A second improvement has been needed to calculate the

distance among individuals. The MOEA only calculates the

distances among the individuals in the pareto front. The

distance value of an individual is the sum of the distances of

that individual with the others individuals in the pareto front.

The distance between two individuals is obtained through the

diversity in the values of the objectives. If the same objective

in both individuals has different values the distance between

those individuals is increased one unit, thus the maximum

distance between two individuals is the number of objectives

and the minimum is 0.

For the elitism, instead of copy all individuals of the pareto

front from one generation to the next one, MOEA have a

maximum number of individuals that can be copied to the

next generation. The MOEA only copies the individuals in

the pareto front and it starts coping the individuals with the

higher value in their distances. If there are more individuals

in the pareto front than the maximum number of individuals

that can be copied then starts copying the individuals with

the higher value in their distances keeping the diversity in the

population between generations. The more distance value in

a individual means that individual is more different to others

individuals with less distance value.

The objectives that have to be maximized for the problem

are three:

• Objective 1: The number of adjacent edges that match,

excluding the grey sides of the tiles that must be placed

in the border of the board, this is the score of the

puzzle we said in Section I (Fig. 4(a)). This objective

will be used to compare the results with the other two

evolutionary algorithms. The maximum value of this

objective is 480 and the minimum is 0.

• Objective 2: The number of square regions of four tiles

(2×2 regions) that matches in their adjacent inner sides

(Fig 4(b)). The maximum value is 225 and the minimum

is 0.

• Objective 3: The number of tiles that have their four

sides matched with the adjacent tiles (Fig. 4(c)). The

maximum value is 256 and the minimum is 0.

(a) Objective 1: edge-
matching

(b) Objective 2: a 2×2

region

(c) Objective 3: matched tile

Fig. 4. The three objectives of the MOEA

E. Fitness Function

For the experiments two types of fitness function have been

used in the genetic algorithm and in the artificial immune

evolutionary algorithm. In both algorithms the objective is

to minimize the value returned by the fitness function, so

that an individual with fitness equals to 0 is a puzzle solved.

The first fitness function is maximum score possible in

a puzzle (480 for Eternity II) minus the score of the puzzle

(equation 4). The score value is the same as the objective 1 in

2988 2009 IEEE Congress on Evolutionary Computation (CEC 2009)



the multiobjective algorithm: the number of adjacent sides of

tiles that match. This fitness will be called the normal fitness

in the rest of the document.

normal fitness = 480 − score (4)

The second fitness is a combination of the three objectives

in the multiobjective algorithm, so we called it the combined

fitness. The idea of this fitness is to increase the domain

information as in the multiobjective algorithm to make a

comparison with this last algorithm. The combined fitness

is the average of the normalized values of the objectives

in the multiobjective algorithm. The equation to calculate

this combined fitness is shown in equation 5 where k is the

number of objectives, objectivei is the value of the objective

i and max objectivei is the maximum value of the objective

i.

combined fitness = 1 −
(

1

k
·

k∑
i=1

objectivei

max objectivei

)
(5)

The time cost to calculate the combined fitness is three

times higher than the normal fitness because the board have

to be browsed three times instead of one, one per each

objective.

F. Initial Population

As the problem has a big search space it was decided

to create the initial population in two different ways. One

randomly from scratch which we called random initialization

and another with some domain information which we called

initialization with knowledge. In the random initialization

the bidimensional matrix is filled placing the tiles randomly

with a random orientation, while in the initialization with

knowledge the cells of the matrix are browsed trying to put

the tiles in the right way. A more detailed description of

the initialization with knowledge algorithm can be shown in

algorithm 3.

The initialization with knowledge algorithm has a com-

plexity of O(M) = (M2 + M) per individual where M is

the number of tiles (256) while random initialization has a

complexity of O(M) = M .

The individuals generated with domain knowledge have an

average score of 301.932 with a standard deviation of 0.016,

352 of maximum and 250 of minimum. The individuals

generated with random initialization have an average score of

18.654 with a standard deviation of 0.042, 40 of maximum

and 5 of minimum. These results were generated over 105

experiments.

The initialization with knowledge is the improvement that

has been applied to the exhaustive search explained in Section

III-A.

IV. EXPERIMENTAL RESULTS

In this section can be shown the setup of the experiments

realized with the three evolutionary algorithms: genetic algo-

rithm (GA), artificial immune evolutionary algorithm (AIEA)

Algorithm 3 Initialization With Knowledge

Require: list of tiles, a path to browse the bidimensional

matrix

1: for each individual in the population do

2: tile list ⇐ copy tiles

3: randomize tile list

4: for each cell in path do

5: tile ⇐ find the first tile that matches in the cell

from tile list

6: if no tile fits then

7: cell is empty

8: else

9: remove tile from tile list

10: end if

11: end for

12: for each empty cell in the path do

13: fill the cell with a tile form tile list

14: remove the tile form tile list

15: end for

16: end for

and multiobjective evolutionary algorithm (MOEA). Then

the results of these algorithms will be shown and compared

with an exhaustive search (ES) and random search (RAND)

algorithms. The evolutionary algorithms have been executed

with the two types of fitness functions and initialization of

the initial population that have been explained in Sections

III-E and III-F.

For the experiments the evolutionary algorithms were

executed with different parameters. These parameters can

be shown in table I. First column (Experiment) shows the

experiment name. Second column (Alg.) is the algorithm

used in that experiment where GA means genetic algorithm,

AIEA means artificial immune evolutionary algorithm and

MOEA means multiobjective evolutionary algorithm. Third

column (Pop.) is the population size. Next three columns

are the number of individuals that are generated for the next

generation by crossover (Cross.), mutation (Mut.) and elitism

(Elit.) respectively. Last column (Tour.) is the tournament

size. An empty cell (’-’) in the table means that parameter

is not used in that algorithm.

TABLE I

ALGORITHM PARAMETERS

Experiment Alg. Pop. Cross. Mut. Elit. Tour.

GA 1 GA 10000 9000 999 1 3

GA 2 GA 10000 5000 4999 1 3

GA 3 GA 10000 7500 2500 0 3

AIEA 1 AIEA 10000 - - - 3

AIEA 2 AIEA 10000 - - - 20

AIEA 3 AIEA 1000 - - - 3

MOEA 1 MOEA 10000 9000 990 10 3

MOEA 2 MOEA 10000 5000 4990 10 3

For genetic algorithm there are three experiments. First

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 2989



one has commonly used values for the crossover, mutation,

tournament and elitism. Second experiment has the same

ratio of mutation and crossover. And the last experiment has

intermediate values between the other two experiments but

without elitism.

For artificial immune evolutionary algorithm there are also

three experiments. The first one has the same population and

tournament size that the genetic algorithm experiments. In

the other two experiments the selective pressure has been

increased, in the second experiment the tournament size is

higher and in the third experiment the population is lesser.

With a higher tournament size the probability to choose

a good individual is higher and with less population the

probability to choose any individual is also higher, so the

selective pressure is increased.

The two experiments of the multiobjective evolutionary

algorithm have the same setup as the first two experiments

of the genetic algorithm.

This experimental setup has been chosen to cover different

situations, we want to know an initial results of the algo-

rithms in this problem. Instead of prove more parameters, we

prefer using bigger populations and more number of evalua-

tions for two reasons: avoid the problem of fast convergence

problem with small populations and give enough time to the

algorithms to converge.

Each experiment was executed 10 times and each time

it were running until 5 · 107 evaluations, where evaluation

means each time the fitness of an individual is obtained. The

results of all experiments can be shown in table II. First

column (Experiment) shows the name of the experiments,

furthermore the experiments showed in table I there are

two more experiments: a random search algorithm (RAND)

and a exhaustive search algorithm (ES). The second column

(Init.) shows the sort of initialization used to create the initial

population: random (rand) or initialization with knowledge

(iwk). Third column shows the fitness that has been used:

normal fitness (norm) or combined fitness (comb). Empty

cells (’-’) in these two last columns mean that the algorithm

does not use that sort of initialization or fitness. In the next

three columns are shown the minimum (Min.), maximum

(Max.) and mean (Mean) value of the score of the puzzles

in the experiments. For these columns the higher value is

the better is, with a maximum value of 480. The last column

(Std. Dev.) is the standard deviation of the experiments.

V. CONCLUSIONS AND FUTURE WORKS

In all the evolutionary algorithms the results are better

when a initialization with knowledge is used instead of the

random one. With random initialization MOEA and GA

with combined fitness are the only ones that have similar

results as the exhaustive search. When the initialization with

knowledge is used the results are better than the exhaustive

search. Furthermore, this kind of initialization reduces the

difference among the results of the different experiments with

the same algorithm.

GA and AIEA with random initialization get better results

with the combined fitness, although more significant in

TABLE II

RESULTS

Experiment Init. Fitness Max. Min. Mean Std. Dev.

RAND - - 48 44 46.3 1

ES - - 371 358 364.4 4.36

GA 1 rand norm 303 278 292.5 8.56

GA 2 rand norm 169 152 159.7 4.78

GA 3 rand norm 105 63 90.2 12.79

GA 1 iwk norm 394 382 385.9 3.33

GA 2 iwk norm 358 348 351.3 2.76

GA 3 iwk norm 343 334 337.9 3.08

GA 1 rand comb 352 334 345.8 4.92

GA 2 rand comb 338 144 214.7 78.02

GA 3 rand comb 364 344 355.9 6.36

GA 1 iwk comb 387 377 382.3 3.26

GA 2 iwk comb 391 341 355.3 12.97

GA 3 iwk comb 374 363 367.4 3.85

AIEA 1 rand norm 236 224 230.1 3.56

AIEA 2 rand norm 272 260 266.5 3.64

AIEA 3 rand norm 285 274 278.3 3.16

AIEA 1 iwk norm 373 364 369.4 3.14

AIEA 2 iwk norm 385 374 379.8 3.16

AIEA 3 iwk norm 379 373 375.9 1.81

AIEA 1 rand comb 244 218 229.5 8.89

AIEA 2 rand comb 292 270 279.5 7.49

AIEA 3 rand comb 307 383 292.5 6.42

AIEA 1 iwk comb 372 361 366.4 3.44

AIEA 2 iwk comb 383 372 378.4 3.35

AIEA 3 iwk comb 376 365 372.3 3.72

MOEA 1 rand - 365 346 356.7 5.98

MOEA 2 rand - 364 346 358.3 4.9

MOEA 1 iwk - 394 382 387.6 2.94

MOEA 2 iwk - 396 388 392.5 2.66

the GA. However these algorithms with initialization with

knowledge have the same results with both fitness functions.

We can conclude about the fitness that the combined is

only useful in the random initialization, this is especially

significant in the GA which results with this fitness are close

to the MOEA with random initialization. We also have to

mention that the results of GA with random initialization

and normal fitness and AIE with random initialization and

both fitness functions have worse results than the algorithm

that creates the initial population with domain information

(initialization with knowledge).

In the GA, we get better results in the first experiment

(GA 1) with 90% of crossover 10% of mutation and one

individual generated from elitims. But we must remark here

that in the third experiment (GA 3) the results suffer a

big improvement with the combined fitness. With random

initialization and normal fitness the results are near the

random search but with the combined fitness the results are

close the exhaustive search.

For the AIEA we only can remark that results are better

with more selective pressure. The experiments with a higher

tournament size or less population have better results than

the first experiment (AIEA 1).

In the MOEA the results of the two experiments are

2990 2009 IEEE Congress on Evolutionary Computation (CEC 2009)



very close. Furthermore, MOEA with initialization with

knowledge gets the best results of all algorithms, we satisfied

396 of the 480 constraints.

If we compare our results with those obtained in other

papers, we are very far from the 458 over 480 that has been

got by P. Schaus [12]. But we must bear in mind that we have

used generic evolutionary search algorithms without any kind

of heuristic in our crossover and mutation operators. So the

future work for this problem will point out in three directions:

• improve the mutation and crossover operators with some

kind of heuristic that bear in mind the well formed

regions

• include a local search to improve the individuals be-

tween generations

• using GA or AIEA with individuals that have an array

of tiles as chromosome which order is used to realize

an exhaustive search during a fixed time, and the result

of that search would be the fitness function

• conduct more experiments with differents setups

ACKNOWLEDGMENT

This work was supported in part by the University Carlos

III of Madrid under grant PIF UC3M01-0809 and by the

Ministry of Science and Innovation under project TRA2007-

67374-C02-02.

REFERENCES

[1] Tomy, “Eternity II (official site),” http://www.eternityii.com, November
2008.

[2] E. Demaine and M. Demaine, “Jigsaw Puzzles, Edge Matching,
and Polyomino Packing: Connections and Complexity,” Graphs and

Combinatorics, vol. 23, pp. 195–208, 2007.
[3] R. Dechter, Constraint Processing. Morgan Kaufmann, 2003.
[4] V. Raman, B. Ravikumar, and S. Rao, “A simplified NP-complete

MAXSAT problem,” Information Processing Letters, vol. 65, no. 1,
pp. 1–6, 1998.

[5] S. Rana and D. Whitley, “Genetic algorithm behavior in the MAXSAT
domain,” Proc. of PPSN-V, pp. 785–794, 1998.

[6] M. Sipser, “The history and status of the P versus NP question,”
Proceedings of the twenty-fourth annual ACM symposium on Theory

of computing, pp. 603–618, 1992.
[7] J. Gottlieb, E. Marchiori, and C. Rossi, “Evolutionary Algorithms for

the Satisfiability Problem,” Evolutionary Computation, vol. 10, no. 1,
pp. 35–50, 2002.

[8] A. Eiben and J. van der Hauw, “Solving 3-SAT with adaptive Genetic
Algorithms,” Proceedings of the 4th IEEE Conference on Evolutionary

Computation, pp. 81–86, 1997.
[9] L. de Castro and F. Von Zuben, “Artificial Immune Systems: Part I–

Basic Theory and Applications,” Universidade Estadual de Campinas,
Dezembro de, Tech. Rep., 1999.

[10] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
Wiley, 2001.

[11] V. Kumar, “Algorithms for Constraint-Satisfaction Problems: A Sur-
vey,” AI Magazine, vol. 13, no. 1, pp. 32–44, 1992.

[12] Y. D. Pierre Schaus, “Hybridization of CP and VLNS for Eternity II,”
JFPC, 2008.

[13] T. Bäck, A. Eiben, and M. Vink, “A Superior Evolutionary Algorithm
for 3-SAT,” Proceedings of the 7th International Conference on

Evolutionary Programming VII, pp. 125–136, 1998.
[14] J. Gottlieb and N. Voss, “Improving the performance of evolution-

ary algorithms for the satisfiability problem by refining functions,”
Proceedings of the 5th International Conference on Parallel Problem

Solving from Nature (PPSN V), vol. 1498, pp. 755–764, 1998.
[15] J. Gottlieb and Voss, “Adaptive fitness functions for the satisfiability

problem,” Proceedings of the 6th International Conference on Parallel

Problem Solving from Nature, pp. 621–630, 2000.

[16] E. Marchiori and C. Rossi, “A flipping genetic algorithm for hard
3-SAT problems,” Proceedings of the Genetic and Evolutionary Com-

putation Conference, vol. 1, pp. 459–465, 1999.
[17] C. Rossi, E. Marchiori, and J. Kok, “An adaptive evolutionary algo-

rithm for the satisfiability problem,” Proceedings of the 2000 ACM

symposium on Applied computing-Volume 1, pp. 463–469, 2000.
[18] D. DasGupta, Artficial Immune Systems and Their Applications.

Springer-Verlag New York, Inc. Secaucus, NJ, USA, 1998.
[19] S. Forrest, A. Perelson, L. Allen, and R. Cherukuri, “Self-nonself

discrimination in a computer,” in Research in Security and Privacy,

1994. Proceedings., 1994 IEEE Computer Society Symposium on,
1994, pp. 202–212.

[20] L. de Castro and F. Von Zuben, “Artificial Immune Systems: Part II
A Survey Of Applications,” Department of Computer Engineering and
Industrial, Tech. Rep., 2000.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 2991



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


