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1 Introduction

During the last thirty years the interest on comparing random variables has shifted from hypothesis tests

for the first and second statistical moments to more convoluted tests considering the entire distribution of

the data. The reason for this is twofold. On one hand, the common belief that the underlying generating

processes are nonlinear and cannot be described by simple models of mean and variance; and second, the

development of sophisticated mathematical and statistical techniques based on empirical processes that

allow for the comparison between distribution functions, and higher statistical moments. The interest for

testing for stochastic dominance between random variables has arisen in different theoretical and applied

fields within statistics, economics and recently, finance. The comparison of wealth distribution between

economies has been widely investigated in the literature, see McFadden (1989), Larsen and Resnick (1993),

Kaur, Prakasa Rao and Singh (1994), Anderson (1996), Davidson and Duclos (2000), Barrett and Donald

(2003), among others. The close relationship between the concept of stochastic dominance and expected

utility maximization for rational investors has also produced a fertile area of research in finance, see Stone

(1973), Porter (1974) or Fishburn (1977). These authors also discuss the link between stochastic dominance

and portfolio efficiency. More recently, Shalit and Yitzhaki (1994) and Linton, Maasoumi and Whang (2005,

LMW hereafter) extend this relationship to portfolio efficiency and conditional stochastic dominance. The

concept of conditional stochastic dominance has been subject to different interpretations. Thus, Shalit

and Yitzhaki (1994) define marginal conditional stochastic dominance as the probabilistic conditions under

which all risk averse individuals, conditional on a portfolio of assets, prefer to increase the share of a risky

asset over that of another asset in the same portfolio. These authors study the implications of this definition

in the efficiency of the market portfolio. LMW, on the other hand, analyze econometrically the implications

of extending stochastic dominance and portfolio efficiency to a conditional, potentially dynamic, setting.

These authors make allowance for serial and cross dependence between investment portfolios and develop

hypothesis tests for conditional stochastic dominance with the aim of uncovering stochastically maximal

investment strategies conditional on other explanatory factors. Related tests for stochastic dominance and

portfolio efficiency are found in Post (2003), Kopa and Post (2009) or Scaillet and Topaloglou (2010), among

others.

The statistical methods necessary to test for stochastic dominance of an arbitrary order are based on

empirical processes and complex asymptotic theory. A seminal contribution is Barrett and Donald (2003),

that develop tests for stochastic dominance between independent random variables in an independent and

identically distributed (iid) framework. The asymptotic distribution of their family of test statistics is

that of a Gaussian process with covariance function that depends on functions of the cumulative marginal

distributions of the random variables, and hence cannot be tabulated. These authors propose a bootstrap

procedure and a simulation method based on Hansen’s (1996) p-value transformation to approximate the

asymptotic distribution of the test. Their method also makes allowance for different sample sizes for each
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random variable. The limitations of this method for the analysis of time series, as most financial applications,

are obvious and led LMW to extend the method to propose consistent tests of stochastic dominance under

general sampling schemes that include serial and mutual dependence between random variables. These

authors work in a parametric framework in which the response variables can be linear functions of sets of

explanatory variables that can contain lags of the response variables. Their method also permits to work

with residuals of parametric models, and therefore, to develop tests of conditional stochastic dominance.

Unfortunately, the estimation of model parameters invalidates the asymptotic theory developed in Barrett

and Donald (2003) due to an extra term produced by estimation uncertainty that remains in the asymptotic

distribution of the test. LMW solve this problem by implementing subsampling methods to approximate

this distribution. This resampling method produces consistent estimates of the critical values of the test not

only under the least favourable case given by the equality of functions but also on the boundary of the null

hypothesis, see also Linton, Song and Whang (2009). The formulation of these authors is very flexible and

allows for general conditioning schemes. The parametric nature of the method, potentially affected by model

misspecification, and the choice of block size in the subsampling approximation of the critical values of the

test are subject to criticism and discussion. A related test, in this case for marginal stochastic dominance

under serial dependence, is proposed by Scaillet and Topaloglou (2010). These authors derive consistent

estimates of the critical values by means of block bootstrap methods. The test statistic is computed using

complex linear and mixed integer programming formulations.

The main contribution of this paper is to develop hypothesis tests of stochastic dominance of arbitrary

orders under general conditioning schemes and that, unlike LMW, do not need of parametric specifications

of the data generating process. By a transformation of the stochastic dominance measure in terms of

lower partial moments we can apply the asymptotic theory on empirical processes for martingale difference

sequences introduced in Delgado and Escanciano (2007). These tests make allowance for general forms of

serial and mutual dependence between stationary processes. Also, due to their nonparametric nature, the

asymptotic distribution of the tests does not suffer from estimation effects. A very appealing feature is

that the asymptotic critical values can be consistently estimated by the p-value transformation method, see

Hansen (1996) or van der Vaart and Wellner (1996, section on Multiplier Central Limit Theorems). The

method is shown to work well for sample sizes as small as fifty observations and for high orders of stochastic

dominance.

The application of these tests is to determine the efficiency of ten portfolios representing US indus-

trial sectors: Nondurables, Durables, Manufactures, Energy, High Technology, Telecommunications, Shops,

Health, Utilities and Others, conditional on the performance of the market portfolio. Our results show

that the Utilities sector dominates stochastically the rest of sectoral portfolios for any order of stochastic

dominance. The only exception is Energy that is stochastically efficient of orders one and two. This result

is reinforced under market distress situations, in which all the sectors are first stochastically dominated
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by Utilities. In these situations of market distress we find that Nondurables also first order stochastically

dominates the rest of industrial sectors but Utilities.

The paper is structured as follows. Section 2 introduces the definition of stochastic dominance under

general conditioning schemes and proposes hypothesis tests for stochastic dominance of arbitrary orders.

Section 3 derives the asymptotic theory for these tests and discusses a p-value transformation method to

approximate consistently the critical values of the test. In Section 4 we carry out a Monte Carlo simulation

experiment to study the finite sample performance of the proposed tests. Section 5 applies this testing

method to assess stochastic dominance between US industrial sectors conditional on market performance.

Section 6 concludes; proofs and tables are gathered in an appendix.

2 Conditional Stochastic Dominance in Dynamic Models

This section extends the definition of stochastic dominance to general conditioning schemes and proposes

consistent hypothesis tests for this condition based on nonparametric methods. Let (Y A
t , Xt)t∈Z and

(Y B
t , Xt)t∈Z be two different R1+k strictly stationary multivariate time series processes, with an infor-

mation set It = {(Y A
s−1, Y

B
s−1, Xs), t−m+ 1 ≤ s ≤ t} at time t, i.e. It ∈ Rl, l = (k + 2)m. Let F (y) be the

unconditional cumulative distribution function (cdf) corresponding to Yt and FIt(y) = P{Yt ≤ y|It} the

distribution function conditional on the set It. The indexes A and B denote the random variables Y A
t and

Y B
t . These random variables are defined on a compact set Ω ⊂ R and It on a compact set Ω′ ⊂ Rl such

that (Yt, It) ∈ Ω̃ = Ω× Ω′.

The definition of unconditional γ−stochastic dominance of Y B
t by Y A

t for γ ≥ 1 is

ΨA
γ (y) ≤ ΨB

γ (y), for all y ∈ Ω ⊂ R, (1)

with strict inequality for some y, see Levy (2006); Ψγ(y) =
∫ y

−∞ Ψγ−1(τ)dτ with Ψ1(y) = F (y). By

integrating by parts Ψγ(y), this definition can be expressed in terms of lower partial moments (LPM), see

Stone (1973), Porter (1974) or Fishburn (1977). Condition (1) is equivalent to LPMA
γ−1(y) ≤ LPMB

γ−1(y),

with LPMγ(y) =
∫ y

−∞(y−τ)γdF (τ), for τ ≤ y, τ, y ∈ Ω ⊂ R. This definition can be extended to conditional

stochastic dominance. Let ΨIt,γ(y) =
∫ y

−∞ ΨIt,γ−1(τ)dτ with ΨIt,1(y) = FIt(y).

Definition: Y A
t γ-stochastic dominates Y B

t conditional on It, if and only if

ΨA
It,γ(y) ≤ ΨB

It,γ(y), for all y ∈ Ω and t ∈ Z. (2)

It is simple to show that the relationships between orders of stochastic dominance in the unconditional

world also hold conditionally on each It. Thus, first stochastic dominance implies second stochastic dom-
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inance and second stochastic dominance implies third stochastic dominance and so on. Further, for first

order, the concepts of conditional stochastic dominance and multivariate stochastic dominance are closely

related. Multivariate stochastic dominance was studied theoretically in O’Brien and Scarsini (1991), Atkin-

son and Bourguignon (1982) and for applications to income distribution in McCaig and Yatchew (2007)

among others. In fact, it can be also shown that for γ = 1 conditional stochastic dominance of Y A
t over

Y B
t given It, that is, F

A
It
(y)−FB

It
(y) ≤ 0, is a sufficient condition for the multivariate stochastic dominance

of the random variable (Y A
t , It) over (Y B

t , It) for some t fixed. This result is immediate by noting that

multivariate stochastic dominance is equivalent to P{Y A
t ≤ y, It ≤ x} ≤ P{Y B

t ≤ y, It ≤ x}, with

P{Yt ≤ y, It ≤ x} = E[1(Yt ≤ y)1(It ≤ x)] = E[E[1(Yt ≤ y)|It]1(It ≤ x)] = E[FIt(y)1(It ≤ x)]. (3)

Now, it follows that the multivariate stochastic dominance condition is equivalent to

E[(FA
It (y)− FB

It (y))1(It ≤ x)] ≤ 0.

Hence, conditional stochastic dominance of first order implies the multivariate counterpart. This condition

also shows that multivariate stochastic dominance of first order is not sufficient to have conditional stochastic

dominance since the conditional distribution of Y A
t can be dominated by that of Y B

t for certain y in the

domain of these random variables.

Define now LPMY
It,γ

(y) =
∫ y

−∞(y − τ)γdFY
It
. The characterization of conditional stochastic dominance

follows analogously from the unconditional case. Thus, conditional stochastic dominance is satisfied when

LPMA
It,γ−1(y) ≤ LPMB

It,γ−1(y), for all y ∈ Ω and t ∈ Z.

An alternative characterization of conditional stochastic dominance is in terms of the class of all von

Neumann-Morgenstern type utility functions, u(y) with y ∈ Ω, see Lemma 1 in Fishburn (1977), Shalit

and Yitzhaki (p. 671, 1994) for second stochastic dominance, or Definition 2 in LMW. The extension

to multivariate stochastic dominance for n-variate increasing utility functions is in Lehmann (1955) and

Theorem 2 in Scarsini (1988). The following proposition extends these ideas to stochastic dominance

conditional on the set It. For convenience, for the pair (Yt, It) we shall write E(u, FIt) =
∫∞
−∞ u(y)dFIt(y).

Proposition 1:

(i) If A stochastically dominates B of first order, conditional on It, then E(u, FA
It
) ≥ E(u, FB

It
) for all

t ∈ Z, and every nondecreasing real valued function u(y), with y ∈ Ω.

(ii) If A stochastically dominates B of second order, conditional on It, then E(u, FA
It
) ≥ E(u, FB

It
) for

all t ∈ Z, and every nondecreasing and concave real valued function u(y), with y ∈ Ω.

(iii) If A stochastically dominates B of third order, conditional on It, then E(u, FA
It
) ≥ E(u, FB

It
) for
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all t ∈ Z,and every nondecreasing and concave real valued function u(y), with y ∈ Ω, for which the third

derivative is negative.

In the study of portfolio choice under uncertainty risk-neutrality is characterized by increasing utility

functions, risk-aversion by concave utility functions, and increasing risk-aversion by concave functions with

negative third derivatives; hence the equivalence between stochastic dominance and optimal portfolio choice

under uncertainty for rational investors satisfying the von Neumann-Morgenstern axioms. Similarly, The-

orem 3 in Fishburn (1977) can be easily extended to show the connection between stochastic dominance

and mean-risk dominance in this general conditioning scheme; a portfolio that dominates another port-

folio stochastically also mean-risk dominates the portfolio conditional on It. Equally, if a portfolio is in

the mean-risk efficient frontier it is also stochastically efficient. These results highlight the importance of

developing hypothesis tests for stochastic dominance conditional on the information set It.

Klecan, McFadden and McFadden (1991), Anderson (1996), Davidson and Duclos (2000), and more

recently, Barrett and Donald (2003) were the first to develop hypotheses for arbitrary orders of stochastic

dominance in an iid setting. Their test, using LPM notation, is defined as

sup
y∈Ω

Dγ−1(y) ≤ 0, with Dγ−1(y) = LPMA
γ−1(y)− LPMB

γ−1(y).

The stationary version of this test under the presence of serial dependence in the data is developed in

Scaillet and Topaloglou (2010). LMW, on the other hand, focus on dynamic tests of conditional stochastic

dominance based on the analysis of residuals of time series regression models. This residual filtering implies

two problems: first, the researcher needs to propose appropriate parametrizations of Y A
t , Y B

t and of their

relation to the variable Xt defining the information set It; and second, the test for stochastic dominance be-

tween residuals has no power against processes whose stochastic dominance is impinged by their dependence

on It. The following example illustrates this.

Example: Let Y A = β0 + βA
1 X + εA and Y B = β0 + βB

1 X + εB , with X a univariate random variable,

εA and εB mutually independent normal random errors, β0 ∈ R and 0 < βA
1 < βB

1 < ∞. The relevant

information set is It = X. Since FB
X (y) ≤ FA

X (y), for all y ∈ Ω and x ∈ X, the random variable Y B first

stochastic dominates Y A conditional on X. LMW propose, instead, a residual test between Ỹ A = β0 + εA

and Ỹ B = β0 + εB obtained after filtering out the dependence on X. The null hypothesis of stochastic

dominance is not rejected in either direction, since both Ỹ A and Ỹ B have the same distribution. The

Monte-Carlo section also illustrates the lack of power of LMW’s method against this type of alternatives.

The following family of tests considers stochastic dominance conditional on It in a nonparametric fashion.

Let dt,γ−1(y) = (y − Y A
t )γ−11(Y A

t ≤ y)− (y − Y B
t )γ−11(Y B

t ≤ y), and define DIt,γ−1(y) = E[dt,γ−1(y)|It].

It is simple to see that DIt,γ−1(y) = LPMA
It,γ−1(y) − LPMB

It,γ−1(y). Our test of conditional stochastic
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dominance is

H0,γ : DIt,γ−1(y) ≤ 0 for all y ∈ Ω and t ∈ Z vs. HA,γ : DIt,γ−1(y) > 0, for some y ∈ Ω or t ∈ Z. (4)

By strong stationarity of (Y A
t , It) and (Y B

t , It), see assumption A.1 below, it follows that FIt(y) =

P{Y1 ≤ y|I1}; equally LPMIt,γ(y) = LPMI1,γ(y) for all y ∈ Ω. The hypothesis H0,γ can be expressed in

terms of the information set I1. Now, all the information contained in It for all t ∈ Z, is reflected by all

possible values in Ω′ that the random variable I1 can take. The hypothesis is

H0,γ : DI1,γ−1(y) ≤ 0 for all (x, y) ∈ Ω̃ vs. HA,γ : DI1,γ−1(y) > 0, for some (x, y) ∈ Ω̃. (5)

Under H0,γ , Y
A
t γ−stochastically dominates Y B

t conditionally on the set It, for all t ∈ Z. Rejection of

this hypothesis implies that B is not dominated by A for an order γ. If H0,γ holds then H0,γ+i must hold

too for all i > 0. For simplicity in our analysis we will focus on the least favorable case, that abusing of

notation, it will be also denoted H0,γ : DI1,γ−1(y) = 0, for all (x, y) ∈ Ω̃. This test can be modified to test

for stochastic dominance conditional on a certain set defined by a fixed x ∈ Ω′. The relevant conditional

test, for Ĩ1 = {I1 ≤ x} with x fixed, is

H̃0,γ : DĨ1,γ−1(y) = 0, for all y ∈ Ω vs. H̃A,γ : DĨ1,γ−1(y) > 0 for some y ∈ Ω. (6)

Barrett and Donald (2003) and particularly LMW discuss the problem of assuming equality of functions

and argue that the convergence of test statistics of Kolmogorov-Smirnov and Cramér-von Mises type is

not uniform over the probabilities under the null hypothesis given by the inequality condition. The latter

authors solve this problem by using subsampling methods to approximate the relevant null and alternative

hypotheses. This resampling method has the particular advantage of exhibiting more power for the boundary

of the null hypothesis for some forms of alternative hypotheses. On the other hand, and as discussed by

these authors as well, subsampling does not make use of the full sample, and as such it may lose power for

alternatives that are far from the boundary. In our case, in order to use theory on empirical processes for

martingale difference sequences we restrict ourselves to the least favorable case as most of existing literature

on stochastic dominance hypothesis testing.

3 Asymptotic Theory of the Tests

The assumptions on the underlying serial dependence structure are given by the following conditions;

A.1: {It, Y A
t }t∈Z and {It, Y B

t }t∈Z are strictly stationary and ergodic processes.
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A.2: The joint cdfs of (I1, Y
A
1 ) and (I1, Y

B
1 ) are uniformly continuous on Rk+1. Under H0,γ , the sequence

dt,γ−1(·) is a Markov process, that is,

E[dt,γ−1(·)|ℑt] = DIt,γ−1(·),

where ℑt = σ(I ′t, I
′
t−1, . . .) is the σ−field generated by the information set up to time t.

A.3: The function dt,γ−1(·) is square integrable. Further, LPMIt,2(γ−1)(y) ≤ Cγ with 0 < Cγ < ∞, for all

t ∈ Z, and random variables Y A
t and Y B

t .

Define the empirical process

Sn,γ−1(x, y) =
1√
n

n∑
t=1

d̃t,γ−1(x, y), (7)

with d̃t,γ−1(x, y) = (dt,γ−1(y)−DIt,γ−1(y)) 1(It ≤ x) and covariance function

Kn,γ−1((x1, y1), (x2, y2)) =
1

n

n∑
t=1

d̃t,γ−1(x1, y1)d̃t,γ−1(x2, y2). (8)

Under these assumptions, for all (x, y) ∈ Ω̃, the process d̃t,γ−1(x, y) is a martingale difference sequence

with respect to the filtration ℑt = σ(I ′t, I
′
t−1, . . .), i.e. E[d̃t,γ−1(x, y)|ℑt] = 0. Therefore, applying a standard

central limit theorem (CLT) for martingales, see Hall and Heyde (1980), the finite-dimensional distributions

of Sn,γ−1(x, y) converge to those of S∞,γ−1(x, y), a Gaussian process with continuous sample paths and

covariance function

E[S∞,γ−1(x1, y1)S∞,γ−1(x2, y2)] = Kγ−1((x1, y1), (x2, y2)). (9)

Assumption A.1 and A.2 (and A.4 below) are necessary to prove the tightness of the empirical process

Sn,γ−1(x, y). The markovian property in A.2 permits to write the conditional expectation of dt,γ−1(y) in

terms of DIt,γ−1. By A.3 we can use central limit theorems for martingale difference sequences.

The asymptotic distribution of empirical processes similar to (7) based on iid observations is widely

studied in the literature, see Koul’s (2002) monograph. Our interest is in testing for stochastic dominance

between processes Y A
t and Y B

t that exhibit serial dependence of unknown form. This feature of data

invalidates standard methods. To overcome this, we build on the results by Delgado and Escanciano (2007)

on empirical processes for martingale difference sequences. These authors apply this theory for testing

for conditional symmetry in dynamic models. Next theorem extends the finite-dimensional convergence of

Sn,γ−1(x, y) to weak convergence in l∞(Ω̃), the space of all uniformly bounded real functions on Ω̃, which

is equipped with the sup-norm. We use the notation ⇒ for weak convergence. For a, b ∈ R, we write

a ∧ b = min (a, b). First, we need the following condition;

A.4: Kn,γ−1((x1, y1), (x2, y2)) converges almost surely to Kγ−1((x1, y1), (x2, y2)), uniformly over (x, y) ∈ Ω̃.
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Theorem 1. Under A.1-A.4, Sn,γ−1(x, y) ⇒ S∞,γ−1(x, y) in l∞(Ω̃), with S∞,γ−1(x, y) a zero-mean Gaus-

sian process with covariance function Kγ−1.

This theorem accommodates the presence of mutual dependence between Y A
t and Y B

t , and serial de-

pendence of each time series. Whereas the mutual dependence conditional on It is explicitly considered in

the asymptotic covariance function Kγ−1, the serial dependence is annihilated by the martingale difference

property of d̃t,γ−1(x, y). This result will allow us to determine the asymptotic distribution of the different

conditional stochastic dominance tests under the null hypothesis, and later, when studying the power of

the tests the asymptotic distribution for local alternatives.

Under H0,γ and assumptions A.1-A.2, DIt,γ−1(y) = 0 for all t ∈ Z and y ∈ Ω, and dt,γ−1(y) is a

martingale difference sequence with respect to the filtration {ℑt}t∈Z for each y ∈ Ω. Define

S0
n,γ−1(x, y) =

1√
n

n∑
t=1

dt,γ−1(y)1(It ≤ x), (10)

with covariance function

K0
n,γ−1((x1, y1), (x2, y2)) =

1

n

n∑
t=1

dt,γ−1(y1)1(It ≤ x1)dt,γ−1(y2)1(It ≤ x2). (11)

Corollary 1. Under H0,γ and A.1-A.4, the empirical process S0
n,γ−1(x, y) converges weakly in l∞(Ω̃) to a

zero mean Gaussian process, S0
∞,γ−1(x, y), with covariance function K0

γ−1 = E[S0
∞,γ−1(x1, y1)S

0
∞,γ−1(x2, y2)].

This corollary allows us to test for the null hypothesis of stochastic dominance for general conditioning

sets characterized by I1 and for specific conditional sets characterized by Ĩ1 = {I1 ≤ x}, for x ∈ Ω′ fixed.

Let T 0
n,γ(x) be a family of test statistics indexed by x ∈ Ω′, defined as T 0

n,γ(x) = sup
y∈Ω

S0
n,γ−1(x, y), and

T 0
n,γ = sup

x∈Ω′
T 0
n,γ(x). Under H0,γ defined as the least favorable case, and applying the continuous mapping

theorem (CMP), we have

T 0
n,γ

d→ sup
(x,y)∈Ω̃

S0
∞,γ−1(x, y). (12)

Under a weaker version of the test given by H̃0,γ , it follows that

T 0
n,γ(x)

d→ sup
y∈Ω

S0
∞,γ−1(x, y), (13)

for x ∈ Ω′ fixed.

Next, we show that the power of the tests H0,γ and H̃0,γ against a sequence of contiguous alternatives

is non-trivial. Let DIt,γ−1(y) =
hIt,γ−1(y)√

n
with hIt,γ−1(y) a family of functions defined on the real line such

that, for a fixed x ∈ Ω′, hn,γ−1(x, ·) = 1
n

n∑
t=1

hIt,γ−1(·)1(It ≤ x) → hγ−1(x, ·) = E[hI1,γ−1(y)|Ĩ1]P (Ĩ1) in
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L(Ω), with sup
y∈Ω

hγ−1(x, ·) > 0.

Proposition 2. Under A.1-A.4, and H̃A,γ defined by the set Ĩ1 = {I1 ≤ x} with x ∈ Ω′ fixed,

S0
n,γ−1(x, ·)− hγ−1(x, ·) ⇒ S0

∞,γ−1(x, ·), in l∞(Ω). (14)

The power of the corresponding test statistic T 0
n,γ(x) against local alternatives of this type is nontrivial

since the distribution of S0
n,γ−1(x, y) is shifted to the right for every x ∈ Ω′ fixed, and therefore

lim
n→∞

P

(
sup
y∈Ω

S0
∞,γ−1(x, y) > T 0

n,γ(x)

)
< α, (15)

for x ∈ Ω′ fixed, and α the significance level of the test. It is immediate to see now that if H̃0,γ is rejected

for the family of local alternatives introduced above, T 0
n,γ also has power to reject H0,γ .

This test can be easily extended to develop tests for stochastic dominance of order γ of a random variable

k∗ over the rest of available random variables in a set, indexed by k = 1, 2, . . . ,K. The hypothesis of interest

is ˜̃
H0,γ : max

k ̸=k∗
sup

(x,y)∈Ω̄

DIk∗k
1 ,γ−1(y) ≤ 0,

with the information set Ik
∗k

1 defined by (Y k∗

1 , Y k
1 , X1). Ω̄ is a compact set contained in the union of the sup-

ports of Ik
∗k

1 for k ̸= k∗. The test statistic is T 0
n,γ = max

k ̸=k∗
sup

(x,y)∈Ω̄

S0
n,γ−1,k∗k(x, y), with S0

n,γ−1,k∗k the relevant

empirical process, that under the null hypothesis converges in distribution to max
k ̸=k∗

sup
(x,y)∈Ω̄

S0
∞,γ−1,k∗k(x, y),

with S0
∞,γ−1,k∗k(x, y) the limiting Gaussian process corresponding to the test between k∗ and k. For sim-

plicity in the presentation the rest of results focus on bilateral hypothesis tests.

3.1 Approximation of the Asymptotic Critical Values

The asymptotic distribution of the process S0
n,γ−1 and hence of the test statistics T 0

n,γ−1(x) and T 0
n,γ−1 is

nonstandard due to the presence of nuisance parameters defining the covariance function K0
γ−1. Asymptotic

critical values for arbitrary γ−tests cannot be universally tabulated. Nevertheless, in this context these

nuisance parameters are completely determined by the cdf of the vector (Y A
1 , Y B

1 , I1). Thus, knowledge

of this distribution implies that the distribution of S0
∞,γ−1(x, y) can be approximated via Monte-Carlo

simulation methods, see Koul and Ling (2006, p. 7). For γ = 1, for example,

K0
0 ((x1, y1), (x2, y2)) = E[1(Y A

1 ≤ y1 ∧ y2)1(I1 ≤ x1 ∧ x2)]− E[1(Y A
1 ≤ y1)1(Y

B
1 ≤ y2)1(I1 ≤ x1 ∧ x2)]−

E[1(Y A
1 ≤ y2)1(Y

B
1 ≤ y1)1(I1 ≤ x1 ∧ x2)] + E[1(Y B

1 ≤ y1 ∧ y2)1(I1 ≤ x1 ∧ x2)],

10



with E[1(Y A
1 ≤ y)1(I1 ≤ x)] the joint cdf of (Y A

1 , I1) and E[1(Y A
1 ≤ y)1(Y B

1 ≤ y)1(I1 ≤ x)] the joint cdf

of (Y A
1 , Y B

1 , I1). For higher orders of γ the asymptotic covariance function is given by higher statistical

moments of the different cdfs.

In many circumstances the distribution of the vector (Y A
1 , Y B

1 , I1) is not known. In this case there are

several alternatives explored in the literature for testing for stochastic dominance, namely, simulation and

iid bootstrap methods as in Barrett and Donald (2003), subsampling and bootstrap as in LMW, and block

bootstrap for time series, as in Scaillet and Topaloglou (2010). For martingale difference sequences the

naive iid bootstrap technique does not work, nevertheless, simulation methods derived from the p-value

transformation in Hansen (1996) provide consistent estimates of the asymptotic critical values. This method

simplifies enormously the computation of critical values.

Now, we operate conditionally on the sample {(yAt , yBt , It)}nt=1, and define a conditional zero mean Gaus-

sian process S∗
n,γ−1(x, y) with covariance functionK∗

n,γ−1((x1, y1), (x2, y2)) =
1
n

n∑
t=1

dt,γ−1(y1)dt,γ−1(y2)1(It ≤

x1 ∧ x2), with (x1, y1), (x2, y2) ∈ Ω̃. This process can be generated from

S∗
n,γ−1(x, y) =

1√
n

n∑
t=1

dt,γ−1(y)1(It ≤ x)vt, (16)

with vt an external standard normal distribution, and (x, y) ∈ Ω̃.

Theorem 2. Let T ∗
n,γ(x) = sup

y∈Ω
S∗
n,γ−1(x, y) and T 0∗

n,γ = sup
x∈Ω′

T ∗
n,γ(x). Under H0,γ defined by the least

favorable case, and A.1-A.4,

T ∗
n,γ(x)

d→ sup
y∈Ω

S0
∞,γ−1(x, y), (17)

for every x ∈ Ω′ fixed; and

T 0∗
n,γ

d→ sup
(x,y)∈Ω̃

S0
∞,γ−1(x, y). (18)

Let p∗n,γ−1(x) = P

(
sup
y∈Ω

S∗
n,γ−1(x, y) > Tn,γ(x)

)
and p∗n,γ−1 = P

(
sup

(x,y)∈Ω̃

S∗
n,γ−1(x, y) > T 0

n,γ

)
. The-

orem 2 implies that under H̃0,γ , lim
n→∞

p∗n,γ−1(x) = α; under the more general null hypothesis defined in

(5) the appropriate condition is lim
n→∞

p∗n,γ−1(x) ≤ α. The same argument holds for p∗n,γ−1 and H0,γ . The

asymptotic distribution of these test statistics is not directly observed but by operating conditionally on the

sample, see Hansen (1996), it can be approximated to any degree of accuracy. The algorithm to compute

the p-value of the test is as follows;

Algorithm:

1. Construct a grid of l1× l2 points contained in the compact space Al1×l2 ⊂ Ω̃, and execute the following

steps for b = 1, . . . , B.

11



2. Generate {vt}nt=1 iid N(0, 1) random variables.

3. Set S
∗(b)
n,γ−1(x, y) =

1√
n

n∑
t=1

dt,γ−1(y)1(It ≤ x)vt, for (x, y) ∈ Al1×l2 .

4. Set T
∗(b)
n,γ (x) = sup

y∈Al2

S
∗(b)
n,γ−1(x, y).

5. Set T
∗0(b)
n,γ = sup

x∈Al1

T
∗(b)
n,γ (x).

For x ∈ Ω′ fixed and under H0,γ , this algorithm yields a random sample of B observations from the

distribution of T 0
n,γ(x) and T 0

n,γ . Using Glivenko-Cantelli and assumptions A.1-A.4, the empirical p-values

conditional on the sample,

p̂∗n,γ−1(x) =
1

B

B∑
b=1

1(T ∗(b)
n,γ (x) > T 0

n,γ(x)),

and p̂∗n,γ−1, defined analogously, converge in probability to p∗n,γ−1(x) and p∗n,γ−1, respectively, as B → ∞.

By Theorem 2, these measures converge to the true asymptotic p-values as n → ∞.

4 Monte-Carlo Simulation Exercise

In this section we consider three different Monte Carlo simulation experiments to assess the accuracy of

the subsampling of LMW and of our nonparametric method to approximate the critical values of stochastic

dominance tests of orders one, two and three. The first simulation experiment studies stochastic dominance

for a straightforward cross-sectional regression model with different intercept and slope parameters. The

second experiment studies the test for a GARCH(1,1) structure in the second conditional moments of both

random variables. Finally, experiment three shows the effect of misspecifying the data generating process

on the subsampling and nonparametric stochastic dominance tests. These tests are also compared in terms

of empirical power. For this, we study alternatives to the first and second exercise.

The subsampling approximation consists on dividing the original samples of Y A
t and Y B

t of size n

in subsamples of size b, with b → ∞ and b/n → 0, and computing the different stochastic dominance

test statistics for the residuals series of each subsample. Each of the test statistics obtained from each

subsample produces an observation of the empirical subsampling distribution of the test statistic that is

compared against the test statistic obtained from the sample of size n to obtain the p-value. To highlight the

effect of the subsampling parametric method compared to the proposed nonparametric method we assume

known model parameters in exercises 1 and 2. In these cases the distortion in the reported size is entirely

due to subsampling approximations and not to estimation effects. This scenario is the most unfavorable to

our nonparametric proposal.

For the first experiment the data generating process is

Y j
i = αj

0 + βjXi + εji , with j = A,B. (19)
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The error terms, εj , are assumed to be mutually independent such that all the dependence between the

random variables Y A and Y B is through the regressor X; εj are random variables that follow standardized

Student-t distributions with ν degrees of freedom. The choice of this distribution is to add flexibility to the

model and to better approximate the behavior of innovations encountered in the modeling of financial time

series, see Bollerslev (1987). Table 1 shows the accuracy of both subsampling and the p-value transformation

method to approximate the nominal size of the test for αA
0 = αB

0 = 0 and βA = βB = 1. While LMW’s

method underestimates the size of the test our method slightly overestimates it, especially for ν = 5. The

empirical size of the tests improves as the sample size increases but yields less accurate results for higher

orders of γ. The presence of heavy tails in the error distribution also distorts slightly the size of the different

tests.

The second experiment studies stochastic dominance for

Y A
t = αA

0 + aAt , with aAt = (hA
t )

1/2εAt , (20)

following a GARCH(1,1) process given by hA
t = βA

0 +βA
1 (a

A
t−1)

2+βA
2 h

A
t−1, and εAt is an iid random variable

with a Student-t distribution with ν degrees of freedom. The process Y B
t is defined analogously for αB

0 , and

βB
0 , βB

1 and βB
2 . In order to be under the null hypothesis we consider as before αA

0 = αB
0 = 0 and the same

GARCH process. Table 2 shows a better approximation of the nonparametric method to the nominal size

under independence between Y A
t and Y B

t . The results in this table for the strong cross dependence case

are mixed, though. Whereas our method overestimates the size of the test, subsampling underestimates it.

For the third experiment, since the interest is in gauging misspecification effects on the tests for stochastic

dominance we estimate the model parameters for computing the test statistic as well as for the subsampling

stage. The data generating processes are Y j
t = αj

0 + ρjY j
t−1 + Y j

t−1ε
j
t , j = A,B, with αA

0 = αB
0 =

ρA = ρB = 0. We estimate, instead, an homoscedastic AR(1) process that misspecifies the conditional

heteroscedasticity existing in the process. This is known to produce inefficient estimates of the model

parameters and inadequate inferences. Interestingly, Table 3 shows that for the subsampling method these

effects are important for first stochastic dominance (serious oversized estimates) but not so for higher orders

of dominance. The nonparametric method, on the other hand, reports a rather accurate empirical size for

the three orders of stochastic dominance studied. As in the previous two examples, sample size, degrees of

freedom and correlation parameter have a slight distorting effect on the estimated size of the test, consistent

with what theory predicts. Overall, the above simulations illustrate a similar (exercises 1 and 2) and better

(exercise 3) performance of the nonparametric alternative based on empirical processes compared to the

subsampling benchmark in the literature.

[INSERT TABLE 1, 2 AND 3 ABOUT HERE]
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The following small exercise to analyze the empirical power of the tests under different alternative

hypotheses supports these findings. As before, to highlight the effect of subsampling compared to the

nonparametric method the different model parameters are assumed to be known. There is no estimation

stage in the following simulations. Table 4 reports the rejection probability for three different alternative

processes to model (19). These are defined by αB
0 = 0, βB = 1.25; αB

0 = 0, βB = 1.5 and αB
0 = 0.25,

βB = 1. Whereas in the first two models the stochastic dominance of A by B is impinged by a higher β

parameter, in the third model it is due to a higher intercept that shifts the distribution of Y B
t to the right.

This experiment shows that both subsampling and the p-value transformation are more sensitive to small

variations in the intercept than in the slope parameter. More importantly, and as discussed in the example

in Section 2, for first stochastic dominance the subsampling method shows no power against alternatives

given by higher values of the slope regression parameter. These processes are under the null hypothesis in

the framework of LMW. Our method, on the other hand, has power against these processes.

[INSERT TABLES 4 AND 5 ABOUT HERE]

The power study for the heteroscedastic case considers process (20) with αA
0 = 0 and (βA

0 , β
A
1 , β

A
2 ) =

(0.05, 0.10, 0.85), and

Y B
t = 0.1 + 0.5Y B

t−1 + aBt , with aBt = (hB
t )

1/2εBt , (21)

with hB
t a GARCH(1,1) process with same parameters as hA

t .

Since αA
0 < αB

0 , it is not difficult to see that B is not dominated by A stochastically, and hence the

processes Y A
t and Y B

t are under the alternative hypothesis. The simulations confirm this and show the

power of the subsampling method to reject the null hypothesis. The power in this case is only due to the

difference in intercepts. The nonparametric method, on the other hand, captures differences in intercept

and slope parameters and hence reports a power that is about three times as high as that of subsampling.

The good performance of our test in terms of size and power reinforce their usefulness in finite-sample

applications.

5 Application: Stochastic Dominance Conditional on the Market

Portfolio

In this section we apply our nonparametric tests of stochastic dominance to US sectoral portfolios con-

ditional on the performance of the market portfolio. The data set consists of monthly excess returns on

the ten equally-weighted industry portfolio obtained from the data library in Kenneth French’s website,

and of monthly excess returns on the market portfolio constructed as a value-weight return on all NYSE,

AMEX, and NASDAQ stocks (from CRSP) minus the one-month Treasury bill rate. The period under
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study is January 1960 to December 2009. Sectors are Nondurables, Durables, Manufactures, Energy, High

Technology, Telecommunications, Shops, Health, Utilities and Others. We implement two different tests for

each order of stochastic dominance γ = 1, 2, 3: a conditional test based on the performance of the market

portfolio and a test conditional on market distress, that is, on the event {Xt ≤ 0}, with Xt denoting market

portfolio excess return.

Table 6 shows that the Utilities sector dominates stochastically the rest of portfolios on industrial sectors

for any order of stochastic dominance and conditional on the performance of the market portfolio. The only

exceptions are Energy and Telecommunications that are not dominated for first and second order, but are

so from order three onwards. This result indicates that the Utilities sector is the dominant portfolio for

risk-averse investors exhibiting increasing levels of risk aversion. Note that we do not need to run the reverse

hypothesis test for Energy and Telecommunications because these portfolios are third order dominated by

Utilities.

It is worth mentioning that this analysis is performed under the least favorable case, that is, the size of

the test is less or equal to the true size of the stochastic dominance test defined by the composite inequality

constraint in (5). The implications of this difference in hypotheses are that rejections of our null hypothesis

imply rejections of the true stochastic dominance test; hence, the above results very strongly suggest that

Energy and Telecommunications are not dominated stochastically. Unfortunately, the results suggesting the

no rejection of the null hypothesis could be a bit inconclusive for p-values higher but close to the nominal

size α. Nevertheless, Table 6 reports large p-values, in some cases close to unity, providing clear evidence

of no rejection of the null hypothesis, and hence of no significant statistical effect of considering the least

favorable case rather than the test in the boundary of the null hypothesis, as stated in (5).

Under distress, defined by the occurrence of negative market portfolio returns, Utilities dominates the

rest of sectors for any order of stochastic dominance. In this situation, Nondurables also performs remark-

ably, only dominated by Utilities. For completeness, we also show the performance of this sector against the

rest of portfolios in normal periods. The results are less conclusive; Nondurables third order stochastically

dominates the remaining sectors but Energy.

6 Concluding Remarks

In order for the concept of stochastic dominance to be fully operational it needs to be exploited dynamically.

While there are many influential methods to test the hypothesis of stochastic dominance in an uncondi-

tional or marginal setting, there are just a few methods that aim to do this dynamically or conditionally

on an information set. Moreover, these conditional stochastic dominance tests rely heavily on assuming

an appropriate parametric structure for the dependence between the variables and hence are subject to

misspecification issues.

This paper presents a nonparametric test for conditional stochastic dominance that accommodates very

15



easily the presence of dynamics in the variables without having to impose strong assumptions on the

specific form of these dynamics. The method is, however, computationally more intensive than existing

parametric methods. The asymptotic theory of the test is simple to derive and critical values can be

approximated by existing p-value simulation methods. The test has good finite-sample performance and

is easy to implement under a variety of conditional settings. The application to studying investment

performance on sectoral indices shows that Utilities stochastically dominates most of industry sectors for

arbitrary orders of stochastic dominance and all of them for γ > 2. Under market distress (negative market

portfolio returns) Utilities dominates all the sectors for any arbitrary order.

Further research goes in the direction of extending the proposed test from the least favorable case to

the boundary of the null hypothesis.

16



Mathematical appendix

Proof of Proposition 1: The proof of this result follows similarly from the unconditional case, see Lemma

1 in Fishburn (1977). �

Proof of Theorem 1: For the proof of this theorem we use Theorem A.1. in Delgado and Escanciano

(2007). The process d̃t,γ−1(x, y) = (dt,γ−1(y)−DIt,γ−1(y))1(It ≤ x) is a martingale difference sequence for

all y ∈ Ω and t ∈ R, with respect to the filtration ℑt = σ(I ′t, I
′
t−1, . . .). This follows from assumption A.2.

Further, from A.3, d̃t,γ−1(y) is square integrable, that is, E[d̃2t,γ−1(y)|ℑt] < ∞, for all y ∈ Ω. Now, applying

a standard central limit theorem (CLT) for martingales, see Hall and Heyde (1980), the finite-dimensional

distributions of Sn,γ−1(x, y) converge to those of a zero mean Gaussian process with continuous sample

paths and covariance function Kγ−1. To show the tightness of the process we need to prove that conditions

W1 and W2 in Theorem A.1 in Delgado and Escanciano (2007) are satisfied.

(W1) By assumption A.1, {Y A
t , It}t∈Z and {Y B

t , It}t∈Z are strictly stationary and ergodic processes.

Also, by A.4., Kn,γ−1((x1, y1), (x2, y2)) converges almost surely to Kγ−1((x1, y1), (x2, y2)), uniformly for all

(x, y) ∈ Ω̃. Thus, W1 is satisfied.

(W2) For every compact subset Ω̃C ⊂ Ω̃, the family d̃t,γ−1(x, y) is such that Sn,γ−1 is a mapping from

the probability space to l∞(Ω̃C) and for every ε > 0 there exists a finite partition Hε = {Hk; 1 ≤ k ≤ Nε}

of Ω̃C , with Nε being the elements of such partition, such that

∫ ∞

0

√
log(Nε)dε < ∞, (22)

and

sup
ε∈(0,1)∩Q

αn,γ−1(Hε)

ε2
= OP (1), (23)

with

αn,γ−1(Hε) = max
1≤k≤Nε

1

n

n∑
t=1

E

[∣∣ sup
mk,nk∈Hεk

|d̃t,γ−1(xmk, ymk)− d̃t,γ−1(xnk, ynk)|
∣∣2∣∣ℑt

]
. (24)

Define the semimetric d2(mk, nk) = |DI1(ymk)−DI1(ynk)|+ |FX(xmk)−FX(xnk)| for mk = (xmk, ymk)

and nk = (xnk, ynk). By A.2, the joint distribution functions of (I1, Y
A
1 ) and (I1, Y

B
1 ) are uniformly

continuous on R1+k, and hence uniformly equicontinuous. This guarantees that for any ε > 0 we can form

a partition Hε = {Hk; 1 ≤ k ≤ Nε} of Ω̃ in ε−brackets Hk = [mk, nk]. The set {Hk}Nε

k=1 covers the compact

space Ω̃, with mk ≤ nk and d2(mk, nk) ≤ ε2. For every q ∈ N, q ≥ 1, when ε = 2−q we denote the previous

partition by Hq = {Hqk; 1 ≤ k ≤ Nq ≡ N2−q}. From standard results on V C−classes, see van der Vaart

and Wellner (1996), condition (22) holds for these partitions.

To prove (23) we need to show the conditional quadratic variation of the empirical process αn,γ−1 on

the finite partition Hq of Ω̃C .
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From (24) it follows that

αn,γ−1(Hq) ≤ (25)

max
1≤k≤Nq

∣∣ 1
n

n∑
t=1

E

[
sup

mk,nk∈Hqk

(dt,γ−1(ymk)− dt,γ−1(ynk))
21(It ≤ xmk)

∣∣ℑt

] ∣∣+ (26)

max
1≤k≤Nq

∣∣ 1
n

n∑
t=1

E

[
sup

mk,nk∈Hqk

d2t,γ−1(ynk)1(xmk < It ≤ xnk)
∣∣ℑt

] ∣∣+ (27)

max
1≤k≤Nq

∣∣ 1
n

n∑
t=1

E

[
sup

mk,nk∈Hqk

(DIt,γ−1(ymk)−DIt,γ−1(ynk))
2
∣∣ℑt

] ∣∣. (28)

By the definition of the semimetric d2(mk, nk) for Hk = [mk, nk] we have (FX(xmk) − FX(xnk))
2 +

(DIt,γ−1(ymk)−DIt,γ−1(ynk))
2 < ε2. Now, by A.2 and given that I1 is a finite set, the marginal distribution

function FX is uniformly equicontinuous. Therefore, expression (28) is bounded in probability. Expression

(27) is also bounded in probability and is proved by considering the expectation conditional on ℑt and A.3

that assumes LPMIt,2(γ−1)(y) ≤ Cγ < ∞, for random variables Y A
t and Y B

t . Finally, expression (26) is

upper bounded by

max
1≤k≤Nq

∣∣ 1
n

n∑
t=1

E
[
((ymk − Y A

t )γ−11(Y A
t ≤ ymk)− (ynk − Y A

t )γ−11(Y A
t ≤ ynk))

2
∣∣ℑt

]
1(It ≤ xmk)

∣∣+ (29)

max
1≤k≤Nq

∣∣ 1
n

n∑
t=1

E
[
(ymk − Y B

t )γ−11(Y B
t ≤ ymk)− (ynk − Y B

t )γ−11(Y B
t ≤ ynk))

2
∣∣ℑt

]
1(It ≤ xmk)

∣∣. (30)

Each of these expressions can be similarly studied separately. Thus, (29) is bounded by

max
1≤k≤Nq

∣∣ 1
n

n∑
t=1

(
LPMA

It,2(γ−1)(ymk) + LPMA
It,2(γ−1)(ynk)

)
1(It ≤ xmk)

∣∣. (31)

By A.3, LPMA
It,2(γ−1)(y) ≤ Cγ < ∞, for all t ∈ Z; and by A.1, expression (31) is bounded in probability,

given γ. Hence W2 is satisfied and Theorem 1 is proved.

�

Proof of Corollary 1: Under H0,γ , DI1,γ−1(y) = 0 for all (x, y) ∈ Ω̃. Now, the proof immediately follows

from Theorem 1. �

Proof of Proposition 2: Let DIt,γ−1(y) =
hIt,γ−1(y)√

n
with hIt,γ−1(y) a family of functions defined

on the real line such that, for a fixed x ∈ Ω′, hn,γ−1(x, ·) = 1
n

n∑
t=1

hIt,γ−1(·)1(It ≤ x) → hγ−1(x, ·) =

E[hI1,γ−1(y)|Ĩ1]P (Ĩ1) in L(Ω), with sup
y∈Ω

hγ−1(x, ·) > 0.

From Theorem 1 it follows that

Sn,γ−1(x, y) =
1√
n

n∑
t=1

dt(y)1(It ≤ x)− 1

n

n∑
t=1

hIt,γ−1(y)1(It ≤ x) ⇒ S∞,γ−1(x, y),
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in l∞(Ω̃). By construction, Sn,γ−1(x, y) = S0
n,γ−1(x, y) − hn,γ−1(x, y), since 1√

n

n∑
t=1

dt(y)1(It ≤ x) =

S0
n,γ−1(x, y). Now, for x fixed, hn,γ−1(x, ·) → hγ−1(x, ·) in L(Ω), and then

S0
n,γ−1(x, ·)− hγ−1(x, ·) ⇒ S0

∞,γ−1(x, ·),

provided that

Kn,γ−1((x1, y1)(x2, y2)) = K0
γ−1((x1, y1)(x2, y2)) + oP (1),

uniformly on Ω. This condition holds from assumption A.4.

�

Proof of Theorem 2: Define a Gaussian process S∗
n,γ−1 with covariance functionK∗

n,γ−1((x1, y1), (x2, y2)) =

1
n

n∑
t=1

dt,γ−1(y1)1(It ≤ x1)dt,γ−1(y2)1(It ≤ x2), with (x1, y1), (x2, y2) ∈ Ω̃. This process can be generated

from

S∗
n,γ−1(x, y) =

1√
n

n∑
i=1

dt,γ−1(y)1(It ≤ x)vt, (32)

with vt a standard normal distribution, and (x, y) ∈ Ω̃.

Let W denote the set of samples w = {(yAt , yBt , It)}nt=1 for which A.1-A.4 are satisfied. Take any

w ∈ W . Now, operate conditionally on w, so all the randomness appears in the iid N(0, 1) variables. Note

that S∗
n,γ−1 is a mean-zero Gaussian process since E[S∗

n,γ−1|w] = E[ 1√
n

n∑
i=1

dt,γ−1(y)1(It ≤ x)vt|w] = 0,

conditional on w ∈ W . Under H0,γ , the covariance function of this process satisfies

E[S∗
n,γ−1(x1, y1)S

∗
n,γ−1(x2, y2)|w] =

1

n

n∑
t=1

E[dt,γ−1(y1)dt,γ−1(y2)1(It ≤ x1)1(It ≤ x2)v
2
t |w],

that for fixed x ∈ Ω′, is equal to

1

n

n∑
t=1

dt,γ−1(y1)dt,γ−1(y2)1(It ≤ x) = K0
n,γ−1((x1, y1)(x2, y2)).

Now, define T ∗
n,γ(x) = sup

y∈Ω
S∗
n,γ−1(x, y) and T 0∗

n,γ = sup
x∈Ω′

T ∗
n,γ(x). By A.4, K0

n,γ−1((x1, y1)(x2, y2)) con-

verges almost surely to K0
γ−1((x1, y1)(x2, y2)), uniformly on Ω̃. Then, the finite-dimensional distributions

of S∗
n,γ−1(x, y) converge to those of S0

∞,γ−1(x, y). The tightness of S∗
n,γ−1(x, y), conditional on w ∈ W ,

follows from the proof of Theorem 1 and Corollary 1. Since P (W ) = 1, S∗
n,γ−1(x, y) ⇒ S0

∞,γ−1(x, y) in

l∞(Ω̃). By the continuous mapping theorem applied to the supremum functional the results in the theorem

hold. �
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