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Abstract
Purpose This study was designed to assess changes in
glucose metabolism in rats administered single or repeated
doses of MDMA.
Methods Two different experiments were performed: (1) A
single-dose study with four groups receiving 20 mg/kg,
40 mg/kg, saline or heat, and (2) a repeated-dose study
with two groups receiving three doses, at intervals of 2 h, of
5 mg/kg or saline. Rats were imaged using a dedicated
small-animal PET scanner 1 h after single-dose administra-
tion or 7 days after repeated doses. Glucose metabolism
was measured in 12 cerebral regions of interest. Rectal
temperature and blood glucose were monitored.
Results Peak body temperature was reached 1 h after
MDMA administration. Blood glucose levels decreased
significantly after MDMA administration. In the single-dose
experiment, brain glucose metabolism showed hyperactiva-
tion in cerebellum and hypo-activation in the hippocampus,
amygdala and auditory cortex. In the repeated-dose exper-
iment, brain glucose metabolism did not show any signifi-
cant change at day 7.

Conclusion These results are the first to indicate that
MDMA has the potential to produce significant hypogly-
caemia. In addition, they show that MDMA alters glucose
metabolism in components of the motor, limbic and
somatosensory systems acutely but not on a long-term basis.
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Introduction

The recreational drug 3,4-methylenedioxymethamphet-
amine (MDMA), also known as “ecstasy”, is a synthetic
analogue of amphetamine. MDMA produces a characteris-
tic set of psychoactive effects and has the potential to
produce untoward neuropsychiatric sequelae in some
individuals [1, 2]. Numerous studies also indicate that
MDMA has serotonin neurotoxic potential.

Acutely, MDMA acts mainly by increasing the release of
serotonin (5-HT), dopamine and noradrenaline from brain
monoamine-containing presynaptic terminals [3–5]. It also
prolongs the presence of these neurotransmitters in the
synaptic cleft by inhibiting monoaminergic reuptake mech-
anisms and monoamine oxidase activity [6–8]. MDMA
abuse has been linked with cognitive and psychopatholog-
ical disorders, as well as memory impairment [9, 10]. As
alluded to above, in a variety of animal species, MDMA
produces persistent reductions in presynaptic 5-HT neural
markers, including tryptophan hydroxylase, 5-HT itself and
its metabolite, 5-hydroxyindoleacetic acid [2, 11–16], and
the 5-HT transporter SERT [17]. Although increased
monoaminergic release and the neurotoxic effects of
MDMA have been widely reported [1, 11, 18–20],
relatively few imaging studies of the effect of ecstasy on
brain function have been published [9, 21–23].
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Positron emission tomography (PET) and single-photon
emission computed tomography (SPECT) permit imaging
of the serotonergic and dopaminergic systems, as well as
blood flow and metabolism, and are ideally suited for
studying the potential neurotoxic effects of MDMA in the
living brain. Several markers for these systems (SERT, 5-
HT1A, 5-HT2A) are currently being investigated [24, 25].
Buchert et al. have proposed that MDMA-induced func-
tional alterations of the serotonergic system may affect the
glucose metabolism of cortical and subcortical structures
[26]. However, possible effects of MDMA on regional
brain glucose metabolism and blood glucose levels have
received relatively little attention.

The acute and long-term effects of MDMA on blood
glucose levels and cerebral glucose metabolism in vivo in
rats have not been previously described. In the present
study, two groups of animals were imaged at different
times: 1 h after a single MDMA dose, to study brain
metabolism during the acute and rapid release of mono-
amines, and 7 days after MDMA administration, to study
the effect of MDMA withdrawal on brain glucose metab-
olism at a time when a 50% loss in 5-HT and its metabolites
has been observed in rats [27]. A preliminary version of
these results has been reported [28].

Materials and methods

Animals, drug administration and experimental protocol

Adult female Dark Agouti (DA) rats (Harlan Iberica,
Barcelona, Spain) weighing 138–185 g were housed in
individual cages at a constant temperature (24±0.5°C)
with a 12-h light/dark cycle, and fed with commercial
rodent laboratory chow (Letica) and water ad libitum. The
animals were deprived of food but allowed free access to
water for more than 6 h before the PET scan, as in protocols
with humans. All animal procedures were performed in
compliance with the European Communities Council
Directive of 24 November 1986 (86/609/EEC) and were
approved by the Institutional Animal Care and Use
Committee of the Hospital.

Racemic MDMA, obtained from the National Institute
on Drug Abuse (NIDA) (Research Triangle Park, NC,
USA), was dissolved in saline (0.9% NaCl) and adminis-
tered intraperitoneally (i.p.).

We conducted two different experiments:

1. Single-dose: 22 animals were divided into four groups.
Five received 20 mg/kg, six received 40 mg/kg and
four received saline. A separate group of seven animals
was heated to 38.5–39.0°C for 1 h to evaluate a
possible contribution of hyperthermia to brain glucose

metabolism as compared to those animals with
MDMA-induced hyperthermia. PET scans were per-
formed 1 h after MDMA injection.

2. Repeated-dose: Nine animals were divided into two
groups. Six received three doses of MDMA (5 mg/kg)
every 2 h and three received three doses of saline at the
same time points. PET scans were performed 7 days
after administration.

In all cases, rectal temperature (°C) was recorded using
a digital thermometer coupled to a lubricated rectal probe.
In the heated group, body temperature was continuously
monitored and maintained at 38.5–39.0°C by a thermostat-
ically controlled heating lamp and an electric blanket. The
time required to reach the temperature setting point
averaged ∼50 min.

Blood glucose (mg/dl) was measured with Gluco-Touch
strips at −30, 0, 10, 20, 30 and 60 min in the single-dose
experiment. In the repeated-dose experiment, blood glucose
was also measured at 2, 3, 4, 5, 6 and 7 h after the first drug
administration.

Figure 1 summarises the experimental protocol.

FDG-PET study

Animals were scanned for 90 min in a dedicated small
animal PET scanner, 35 min after administering [18F]
fluorodeoxyglucose (FDG) (66.19±6.25 MBq) via the tail
vein. Since the study was not longitudinal, we sacrificed the
animals by cervical dislocation before imaging, as proposed
by the Institutional Animal Care and Use Committee of the
hospital.

Imaging was performed with the piPET system [29],
whose detectors consist of 26×22 arrays of BGO crystals
coupled with optical grease to the face of a Hamamatsu
R3941 position-sensitive photomultiplier tube (PSPMT).

Fig. 1 Experimental protocol: Black arrows show rectal temperature
and blood glucose measurements. Dotted and dashed arrows indicate
MDMA administration and FDG PET scan, respectively
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Each crystal is 2 mm×2 mm×10 mm long, polished on five
sides and finely ground on its entrance end. The detectors
were 18 cm apart. Tomographic images were reconstructed
using a 3D ordered subsets expectation maximisation
algorithm (20 iterations, 5 subsets), creating 43 102×102
tomographic images that spanned the 55 mm
diameter×45 mm high imaging volume of the scanner
[30]. The voxel size is 0.55×0.55×1.1 mm3, and the spatial
resolution in these images is 1.65 mm FWHM isotropic.
The energy window was 300–650 keV, and decay and
deadtime corrections were applied. The usefulness of the
piPET imaging device has been previously reported [31].

The PET study in the repeated-dose experiment was
performed in seven animals instead of nine owing to the death
of two rats after the third dose of MDMA. In the single-dose
experiment, PET study could be performed in all the animals.

Regions of interest (ROIs) were chosen according to ROIs
described in humans [26, 32]. Twelve ROIs were manually
drawn on coronal sections: cerebellum, brain stem, thalamus,
hippocampus, caudate-putamen, frontal cortex, amygdala,
somatosensory cortex, visual cortex, auditory cortex, superior
colliculus and whole brain. Because of the low anatomical
resolution of PET images, ROIs were placed by identifying the
3D coordinates of each structure in a rat brain atlas [33] and
locating the corresponding position in the PET image (Fig. 2).

A background ROI was also drawn outside the brain area.
The activity of this ROI was very low in all the PET studies,

indicating a small contribution from random coincidence
events and from scatter. To normalise FDG uptake, tissue
activity was corrected by subtracting background and dividing
by whole brain activity. Results are expressed as a percentage
(%) ([FDG uptake=(study ROI/whole brain)×100].

Statistical analysis

In both experiments, glucose brain metabolism data were
analysed by means of one-way analysis of variance
(ANOVA) followed by contrast tests. Data normality and
homoscedasticity were previously assessed by Kolmogorov-
Smirnov and Levene’s tests. Body temperature and blood
glucose data were studied by means of Student’s t tests.

Results

Effects of a single dose of MDMA

Effects on behaviour

The animals exhibited stereotypical behaviour 15–20 min
after MDMA administration in both the 20 and the 40 mg/
kg group, reaching a maximum after 30–45 min. This
involved head weaving, salivation, pilo-erection and in-
creased locomotor activity. Animals in the saline group did

Fig. 2 Rat brain sagittal, coro
nal and axial sections
corresponding to the same slice
of the rat brain atlas (a) and the
PET image (b). ROIs were
placed by identifying the 3D
coordinates of each structure on
the rat brain atlas and locating
the corresponding position
in the PET image (green, frontal
cortex; pink, cerebral cortex;
blue, thalamus; yellow, hippo
campus). Atlas images have
been reprinted from Paxinos G,
Watson C. The rat brain in
stereotaxic coordinates, 4th ed.
San Diego, CA: Academic
Press; 1998, with permission
from Elsevier
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not show any of these changes. In contrast, animals in the
heated group showed a decrease in motor activity.

Two rats from the single-dose group (one receiving 40 mg/kg
and another receiving 20 mg/kg) died 1 h after MDMA
administration. Although these rats died 60min after theMDMA
injection, we were still able to perform the FDG-PET scan.

Effects on body temperature

Following single-dose MDMA administration, animals
showed an increase in rectal temperature ranging from 1.99±
0.17°C for the 20 mg/kg dose group to 2.56±0.164°C for the
40 mg/kg dose group (p<0.05, compared with the saline
group). In all animals, maximum temperature was reached
60 min after MDMA administration (Fig. 3). Saline had no
effect on rectal temperature. Heated animals maintained their
temperature at between 38.5° and 39.0°C for 60 min, similar
to that observed in MDMA-treated animals Fig. 4.

Effects on blood glucose level

Blood glucose decreased significantly 1 h after a single dose of
MDMA, showing changes of −26.0±9.8 and −54.4±
25.3 mg/dl for the 20 mg/kg and 40 mg/kg MDMA doses,
respectively (mean±SEM, p<0.05, compared with the saline
group) (Fig. 5). Blood glucose levels also decreased in the
heated group as compared with the saline group (increase of
−17.67±5.45, p<0.05, compared with the saline group).
Bivariate correlation showed an association between the
degree of hypoglycaemia and higher temperature at 60 min
(p<0.01).

Effects on brain glucose metabolism

The ANOVA analysis revealed significant differences
between groups in the single-dose experiment (1 h after

MDMA administration) in the cerebellum (F=5.989;
p=0.001), hippocampus (F=3.212; p=0.026), amygdala
(F=4.919; p=0.004) and auditory cortex (F=2.856;
p=0.04). Percent uptake differences between the different
groups are shown in Table 1.

Figure 6 shows sagittal, coronal and axial sections of the
PET scan of a representative MDMA rat (40 mg/kg), where
the higher uptake of FDG in the cerebellum is noticeable.
Figure 7 shows axial sections of the PET scan of the same
MDMA rat (40 mg/kg).

Effects of repeated doses of MDMA

Effects on behaviour

As in the previous experiment, animals showed salivation,
pilo-erection and increased locomotor activity. Locomotor
stimulant effects were more apparent as additional doses
were administered.

Two rats from the repeated-dose group died after the
third MDMA dose.

Fig. 3 Rectal temperature of rats injected with a single dose of
MDMA (20 or 40 mg/kg) or saline. Values are expressed as mean±SEM
(*p<0.05, compared with saline group)

Fig. 4 Rectal temperature of rats injected with three doses of MDMA
(5 mg/kg) or saline. Values are expressed as mean±SEM (*p<0.05,
compared with the saline group). Solid arrows indicate MDMA or
saline administration. Dashed arrow indicates glucose saline solution
administration (1.5 mg/kg) in MDMA treated rats

Fig. 5 Influence of a single dose of 20 or 40 mg/kg MDMA on blood
glucose. Values correspond to mean±SEM (*p<0.05, compared with
the saline group)
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Effects on body temperature

Figure 4 shows the effect of repeated doses of 5 mg/kg
MDMA on rectal temperature. After the first dose, rectal
temperature increased by 0.98±0.13°C (p<0.005, com-
pared with the saline group), followed by a decrease over
the next hour. After the second MDMA dose (at
120 min), the temperature rose again by 2.56±0.22°C
compared with the saline control group (p<0.005). The
third dose produced a less evident temperature increase (1.87
±0.33°C) (p<0.005, compared with the saline group).

Effects on blood glucose level

As in the previous experiment, blood glucose levels
decreased in the repeated-dose group, reaching a minimum
(56.50±21.14 mg/dl) 1 h after the second dose. With the
third MDMA dose, blood glucose decreased rapidly to

30.5±23.04 mg/dl 60 min later. Owing to severe
hypoglycaemia, two animals received a glucose–saline
solution (i.p.) (1.5 mg/kg) 5 h after the first MDMA dose.
Control rats in the saline group did not require glucose–
saline infusion.

Effects on brain glucose metabolism

The ANOVA of data corresponding to the repeated-dose
experiment (7 days after MDMA administration) did not
reveal significant hyper- or hypo-activation areas (Table 2).

Discussion

To the best of our knowledge, this is the first report to
demonstrate significant hypoglycaemia shortly after
MDMA. In addition, this is the first study to examine

Table 1 ROI analysis in the single dose experiment: tissue activity has been normalised to whole brain activity and results are showed as a
percentage

Saline (n=4) Heated (n=7) 20 mg/kg MDMA (n=5) 40 mg/kg MDMA (n=4) p valuea

Cerebellum 109.11±4.96 111.3±1.54 127.78±3.39* (+16%) 133.64±8.07* (25%) 0.001
Thalamus 114.2±2.07 118.64±1.94 115.99±3.15 111.73±0.70 0.196
Brain stem 110.49±0.82 115.96±2.88 118.35±3.38 125.02±7.27 0.348
Hippocampus 98.62±4.47 107.53±2.78 95.91±3.01 99.71±3.36 0.026
Frontal cortex 89.04±5.98 88.74±1.74 96.28±3.84 93.81±5.51 0.095
Caudate putamen 103.13±3.40 106.06±1.77 106.71±1.73 105.51±6.76 0.397
Visual cortex 106.87±4.44 104.6±2.48 97.37±1.88 93.61±4.56* ( 13%) 0.062
Superior colliculus 132.16±3.43 126.68±1.80 126.31±1.29 135.03±8.88 0.512
Amygdala 94.43±2.69 85.08±2.47* ( 9%) 85.7±2.53* ( 9%) 86.4±3.53 0.004
Somatosensory cortex 92.18±4.29 89.77±1.33 96.17±5.14 94.4±5.76 0.150
Auditory cortex 99.15±7.53 100.9±1.46 93.87±4.16 84.68±3.10* ( 15%) 0.040

n represents the number of animals in each group. Values are expressed as mean±SEM. Percent uptake differences are shown in parentheses.
*p<0.05 versus saline group
a p value obtained by one way ANOVA

Fig. 6 Brain sagittal, coronal and axial sections of the PET scan 1 h after MDMA administration. FDG uptake is noticeably increased in
cerebellum
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glucose metabolism in the rat brain in vivo using FDG-PET
following MDMA administration.

Female Dark Agouti rats were used as they are deficient
in the enzyme involved in demethylenation of MDMA

(debrisoquine hydroxylase, coded by the gene CYP2D2)
and thus provide a good model of the human CYP2D6 poor
metaboliser phenotype, in which clinical complications are
more likely to occur [20, 34, 35]. Vincent-Viry et al.

Fig. 7 Brain axial sections of
the PET scan 1 h after MDMA
administration (40 mg/kg). Th
thalamus, MC motor cortex,
SSC somatosensory cortex,
Ast visual cortex, CdP striatum,
AA amygdala, AL anterior limbic
area, Cb cerebellum

Table 2 ROI analysis in the
repeated dose experiment:
tissue activity has been
normalised to whole brain
activity and results are showed
as a percentage

n represents the number of
animals in each group. Values
expressed as mean±SEM
a p value obtained by one way
ANOVA

3 doses of saline (n=3) 3 doses of 5 mg/kg MDMA (n=4) p valuea

Cerebellum 122.55±2.63 112.75±3.23 0.077
Thalamus 121.41±6.57 112.39±1.74 0.185
Brain stem 118.04±9.23 112.85±2.60 0.560
Hippocampus 91.92±2.54 95.22±2.57 0.414
Frontal cortex 104.48±4.44 99.6±3.54 0.423
Caudate putamen 101.16±0.72 98.2±1.71 0.220
Visual cortex 100.47±2.37 105.81±3.47 0.294
Superior colliculus 129.49±5.24 134.55±4.50 0.496
Amygdala 98.59±4.42 95.44±1.45 0.475
Somatosensory cortex 108.29±7.86 101.89±6.73 0.563
Auditory cortex 104.04±3.96 95.52±1.92 0.087
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demonstrated that the liver of the female Dark Agouti rat
cleared debrisoquine at a significantly slower rate than that
of the male [36]. This suggests that females have lower
debrisoquine hydroxylase activity, which is consistent with
the evidence that liver microsomes in female Dark Agouti
rats have lower debrisoquine oxidising activity than those
in males [37]. Low activity of the debrisoquine hydroxylase
enzyme will result in a lower rate of demethylenation,
higher plasma levels of MDMA and therefore a greater risk
of acute toxicity [38].

The experimental design was chosen in accordance with
the literature. The delay of 1 h before performing the PET
study is appropriate given the acute and rapid release of
monoamines during the peak period after MDMA admin-
istration [39, 40]. The delay of 7 days is based on the 50%
loss of 5-HT and its metabolites observed after a single
dose of MDMA [27]. To rule out any possible confounding
effect of hyperthermia on brain glucose metabolism, we
also performed PET scans in a group of rats heated for 1 h,
the same period as was used in the single-dose experiment.

Physiological changes

Following MDMA administration, several physiological
changes were observed, including hyperthermia, tachycar-
dia and increased locomotor activity. This pattern of
physiological responses and stereotypical behaviours is
indicative of serotonergic effects of MDMA [19, 20].

In the present study, MDMA induced an increase in rectal
temperature of approximately 2.56°C 1 h after drug injection
at the highest dose (40 mg/kg), which is in agreement with
previous studies using the same dose [27, 41, 42]. Fifty
minutes after the drug administration, two rats (one receiving
20 mg/kg and another receiving 40 mg/kg) suffered from
tremor, muscular rigidity, bruxism and tachycardia. Finally,
these animals experienced severe respiratory depression and
died. Similar effects have been observed in humans suffering
acute adverse responses to MDMA [43, 44].

To our knowledge, there is no either previous report on
the effect of MDMA on peripheral blood glucose levels in
rats. We observed a severe decrease in the peripheral blood
glucose level after MDMA administration. Moreover, we
showed an association between the degree of hypoglycae-
mia and higher temperatures. Malignant hyperthermia has
been previously associated with hyperglycaemia. Several
works regarding hepatic metabolism during porcine malig-
nant hyperthermia have shown a large release of glucose
and potassium from the liver [45, 46]. The hypoglycaemia
detected in our study may have been due to severe acute
hepatotoxicity induced by MDMA, suggesting that the liver
could be more sensitive to MDMA at higher temperatures.
This effect increased when MDMA action was prolonged
by repeated dosing. MDMA has been reported to be a cause

of severe acute hepatotoxicity that can be followed by acute
hepatic failure in humans [47]. Jaundice, a high level of
serum transaminase activity, hypoglycaemia and low
prothrombin activity have been reported in a relatively
high number of cases of liver damage in young people after
taking ecstasy [48]. We observed significant hypoglycaemia
in those animals treated with MDMA, not only 1 h after
taking the drug, but also 7 h later. This effect may have
been due to an increased use of glucose, higher release of
insulin or liver damage caused by MDMA. Several
mechanisms have been proposed for the liver damage after
MDMA, including influence of MDMA on body temper-
ature regulation, direct toxic effects of the drug on liver
cells or the genetic vulnerability of some individuals to
amphetamines and amphetamine derivatives [49]. Although
hepatotoxicity in association with MDMA is becoming
increasingly recognised, the fact that continued supplemen-
tation was required to maintain blood glucose levels
suggests that acute hepatic failure was the cause. However,
more studies are necessary to understand the underlying
mechanism of the liver damage produced by MDMA.

Short-term effects on brain glucose metabolism

The ROI analysis showed an increase in FDG uptake in the
cerebellum in the single-dose experiment. This increase may
reflect an acute and rapid release of 5-HT, dopamine and other
neurotransmitters and/or inhibited re-uptake, widely reported
in humans and small animals in the cortex, hippocampus and
striatum [15, 43]. We also detected hypo-activation in the
amygdala, similar to that reported by Obrocki et al., which
may be associated with discomfort or unpleasant stimuli
[32], and in components of the somatosensory cortex, similar
to that described by Gamma et al. [21]. Two previous studies
have evaluated the effects of a single dose of MDMA
(1.7 mg/kg) on regional cerebral blood flow in MDMA-
naïve healthy human subjects, measured with H2

15O-PET.
MDMA has been reported to produce changes in regional
blood flow: increases in the ventromedial frontal and
occipital cortex, inferior temporal lobe and cerebellum, and
decreases in the motor and somatosensory cortex, temporal
lobe including left amygdala, cingulate cortex, insula and
thalamus [21]. In addition, these changes were associated
with pronounced mood enhancement, increased extroversion
and intensification of sensory perception [50]. An autoradio-
graphic 2-deoxy-D[14C]glucose (2DG) study [19] showed
marked 2-DG uptake in components of the motor system of
the rat similar to that observed in our study, which indicates a
rise in glucose metabolism and brain activity. Our data
indicate that a dedicated small animal PET scanner could be
suitable for studies of drug dependence, since we obtained
results similar to those shown by autoradiographic 2DG
techniques.

922 Eur J Nucl Med Mol Imaging (2007) 34:916 925

7



Hyperthermia

MDMA-induced 5-HT neurotoxicity can be separated from
any possible confounding effects of MDMA-induced
hyperthermia. We observed no significant changes in
cerebral glucose metabolism when rats underwent hyper-
thermia (38.5–39°C) as compared with the saline control
group, except for a slight reduction in FDG uptake in the
amygdala, which may have been related to the discomfort
secondary to the use of the heat lamp and electric blanket.
Similar results were previously obtained using quantitative
2DG autoradiography in hyperthermic rats (40.2±0.3°C)
[51]. These authors reported glucose utilisation to be
minimally altered or slightly higher in the thalamus and
neocortex. Changes in regional cerebral metabolism have
also been studied with FDG-PET in humans during steady-
state hyperthermia [52]. This study reported a significant
increase in FDG in the hypothalamus, thalamus, corpus
callosum, cingulated gyrus and cerebellum, as well a
significant decrease in the caudate, putamen, insula and
posterior cingulum. We did not observe this precise
constellation of changes in glucose metabolism in rats.
However, differences in MDMA dose and both cognitive
and sweating abilities between humans and animals should
be considered before comparing the results.

In our study, animals which were administered a single
dose ofMDMA showed significant changes in FDG uptake in
several brain areas, as compared with the heated group. We
found changes in components of the motor (cerebellum),
limbic (hippocampus and amygdala) and somatosensory
system (visual and auditory cortex). These differences suggest
that the changes in brain glucose metabolism observed in our
study were not due to hyperthermia per se, but were a direct
effect of MDMA. Furthermore, these results agree with the
metabolic changes in different brain regions of the rat reported
by Wilkerson and London using quantitative autoradiography
of 2DG [19]. These metabolic changes could reflect the
action of MDMA on the serotonergic and dopaminergic
systems that, if extrapolated to humans, could be related to
persistent neuropsychiatric syndromes after chronic exposure
to MDMA, such as psychosis, mood disturbance, anxiety
disorders and cognitive deficits [53].

Long-term effects on brain glucose metabolism

Regarding long-term effects, the present study showed no
changes in brain glucose metabolism persisting after
1 week. Using high-performance liquid chromatography,
O’Shea et al. showed that a single dose of MDMA
produces an important decrease in 5-HT and 5-HIAA in
the cortex, hippocampus and striatum in rats, which is still
present 7 days later [27]. However, we were unable to find
equivalent changes in glucose metabolism after 1 week.

To our knowledge, only three reports have used FDG-
PET to study the specific neurotoxicity of chronic use of
ecstasy in humans [32]. The glucose metabolic uptake of
the ecstasy user group was reduced in the amygdala and
hippocampus (a brain region known to be consistently
affected by MDMA in animals treated with this drug) and
striatum. The reduction in the striatum and amygdala of
ecstasy users was significantly higher in those who initiated
consumption before the age of 18 years. However, no
significant differences were found when cumulative doses
of ecstasy and glucose metabolism were compared [32].
Although we found no changes in brain glucose metabo-
lism in rats after 1 week, it must be pointed out that our
study used adult rats and that these results could be
different in adolescent rats, which may show more
pronounced MDMA effects on glucose metabolism, as
highlighted by Obrocki et al. [32].

Limitations of the study

Our study has several limitations. The first is the low
anatomical resolution of the PET images. Measurements of
metabolic activity by this technique in small regions may
not be entirely accurate, since ROI activity could be
contaminated by that of surrounding brain regions. In
future studies, metabolic activity could be improved if
partial volume effects were to be corrected by defining the
ROI on a registered MRI scan of the same animal.

Second, the sample size was relatively small owing to the
extremely labour intensive nature of FDG-PET studies. No
control animals died due to the protocol. Despite the low
sample size, the number of animals in each group proved
sufficient to detect significant changes in glucose metabolism.

Third, the dosage regimens used in our animals can be
considered fairly high for one single injection, and may not
be comparable to those used by most humans. However, the
doses presently employed are comparable to those used by
other investigators studying the effects of MDMA in small
laboratory animals, and there are humans who use high
repeated doses.

Fourth, the study was performed in female rats. Little is
known about gender differences in the effects of MDMA.
We did not check the rat oestrous cycle although we are
conscious that ovarian hormones may be an important
factor in the modulation of the sensitivity and reactivity of
the serotonergic neurotransmission system [54]. However,
liver metabolism may make a greater contribution to the
differences in the responsiveness to MDMA [55]. Indeed,
the liver of the female Dark Agouti rat cleared debrisoquine
hydroxylase at a significantly slower rate than that of the
male, and resulting in a lower rate of demethylenation,
higher plasma levels of MDMA and therefore a greater risk
of acute toxicity [36].
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Conclusion

In summary, we observed significant hypoglycaemia after
MDMA administration and, by using a dedicated small
animal PET scanner, we were able to detect changes in
components of the motor, limbic and somatosensory
systems 1 h after MDMA administration but not after
1 week, thus indicating possible alteration of brain glucose
metabolism immediately after administration.
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