
Synchronization of PIM in iPhone andEvolution implementing a task applicationbased on CouchDBAuthor: Miguel Angel Rodelas DelgadoTutor: Dr Andrew U. FrankMay 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/30043068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1INFORMACIÓN SOBRE EL PROYECTO FINDE CARRERA REALIZADO EN ERASMUS
Autor Miguel Ángel Rodelas DelgadoTutor Dr. Andrew U. FrankUniversidad Technische Universität WienCoordinador Académico Ascensión Gallardo AntolínCotutor en UCIIIM Ascensión Gallardo AntolínFecha de lectura 31 de Mayo del 2010Cali�cación obtenida Matrícula de Honor

RESUMEN
IntroducciónEl aumento del número de dispositivos móviles en los úl-timos años, tales como portátiles, móviles y notebooks,han creado una nueva necesidad. El usuario quiere ac-ceder a sus datos independientemente del lugar donde seencuentre: tanto en su ordenador personal en casa, conuna conexión rápida y segura, como cuando se encuentraen el exterior, con conexiones débiles e intermitentes y debaja velocidad.La conexión a una red no es siempre posible. Normal-mente, hay problemas en las llamadas cuando se entra aun gran edicio o cuando se circula por las autovías. Laconexión de datos es aún peor, siendo ésta en la actual-idad aún bastante cara para el usuario medio. Debidoa esto, el usuario preferirá descargar los datos una vez ysincronizar en vez de pagar por cada acceso.En este contexto aparece el problema de la sincronizaciónde datos. Es necesario mantener los dispositivos actual-izados y operacionales incluso cuando no hay disponibleuna conexión. Los cambios hechos mientras que el dispos-itivo está desconectado tienen que ser transmitidos a los2

3demás dispositivos implicados tan pronto como se recuperela conexión.La información a sincronizar podría incluir todos los posi-bles tipos de datos existentes en estos dispositivos, talescomo fotografías, música o documentos. Sin embargo, esteproyecto �n de carrera se centra en la sincronización de lainformación personal del usuario: contactos, calendarios,tareas, notas y correos electrónicos. Este conjunto de in-formación personal de un usuario es normalmente conocidocomo PIM, de sus siglas en inglés Personal InformationManagement.La sincronización de información personal conlleva una se-rie de dicultades propias de las características de este tipode datos. Serán descritos estos retos mediante un sencilloejemplo, una lista de contactos, en la sección 1.2. Entreotros, nos encontraremos el problema de cómo almacenarla información, cómo diferenciar los diferentes registros ocómo resolver con�ictos cuando el mismo elemento ha sidomodi�cado en diferentes dispositivos.El objetivo de este proyecto �n de carrera es el de conseguirla sincronización de la información personal del usuarioentre uno de los teléfonos móviles más vendidos actual-mente, el iPhone de Apple, y una de las aplicaciones deescritorio más utilizadas en Linux, Evolution. Habrá quesolventar bastantes problemas en el camino debido a quela API (Interfaz de programación de la aplicación, de lassiglas en inglés: Application Programming Interface), ylos servicios en general ofrecidos por Apple, siguen unapolítica bastante cerrada y restrictiva. Dentro de las solu-ciones existentes, encontraremos que la sincronización no

4es posible para las tareas de forma bidireccional, por loque desarrollaremos nuestro propio gestor de tareas capazde ser sincronizado entre el iPhone y Evolution. Para elloutilizaremos una nueva base de datos, CouchDB, que seráexplicada con mayor detalle en las siguientes secciones.Estándares y protocolosEl proyecto �n de carrera comienza con un estudio detal-lado de los diferentes estándares y protocolos existentespara la sincronización de datos. En particular, son pre-sentados los siguientes:� SyncML (Synchronization Markup Language): proto-colo de sincronización basado en mensajes XML (eX-tensible Markup Language).� WebDAV (Web-based Distributed Authoring and Ver-sioning): conjunto de extensiones para HTTP (Hy-perText Transfer Protocol) que permiten la edición ygestión de �cheros en servidores web remotos.� CalDAV (Calendar Distributed Authoring and Ver-sioning): la extensión para calendarios, permitiendoel acceso a calendarios remotos.� iCalendar: éstandar existente para la representaciónde información relativa a calendarios.� ActiveSync: protocolo de sincronización propietariodesarrollado por Microsoft. Utilizado en la actualidadtambién por grandes empresas como Google o Appleque adquirieron la licencia para su uso.

5� LDAP (Lightweight Directory Access Protocol): pro-tocolo de aplicación para la consulta y modicación dedatos usando servicios de directorios sobre TCP/IP.Partes de la soluciónA continuación se estudian las partes involucradas en lasolución, detallando cuales son las opciones que ofrecencada uno a la hora de sincronizar la información personal.Son principalmente tres:� Teléfono móvil: la solución se centrará en iPhone,pero también serán comentadas las alternativas vál-idas para Android. Se diferenciarán entre solucionesnativas y aquellas que hacen uso de aplicaciones ex-ternas.� Aplicación de escritorio que gestiona la informaciónpersonal: Evolution. Igualmente, soporta algunos es-tándares, como WebDAV, de forma nativa, mientrasque necesita el uso de programas externos para otros,como SyncML.� Servidor para la sincronización de las partes anteri-ores: consideraremos tanto alternativas a instalar ennuestros propios servidores, como soluciones comer-ciales. Entre las posibilidades para un servidor pro-pio, los candidatos tienen que soportar los estándaresSyncML (para contactos) y CalDAV (para calendar-ios), al ser las únicas alternativas posibles para la sin-cronización de estos datos entre el teléfono y Evolu-tion. Respecto a soluciones comerciales, Google es la

6mejor alternativa en cuanto a facilidad de uso y e�-ciencia.Hasta este punto sólo se ha hablado de protocolos para lacomunicación de los cambios entre los diferentes disposi-tivos. También es importante analizar dónde y cómo es al-macenada la información. Este proyecto compara y detallalas bases de datos relaciones, las bases de datos orientadasa objetos y los sistemas de control de versiones en relacióna sus ventajas en cuanto a un sistema de sincronización.Finalmente, CouchDB, una base de datos orientada a ob-jetos es elegida, debido a sus buenas características parala replicación y la gestión de con�ictos, procesos primor-diales en la sincronización de datos, más importantes quela estructuración de los datos en sí.Solución propuesta y sus limitacionesLa parte más difícil de un proceso de sincronización es ladetección y resolución de con�ictos. Un con�icto ocurrecuando el mismo elemento ha sido modi�cado en diferentesdispositivos. Al sincronizar, hay que detectar este con�ictoy resolverlo de forma que no se pierda información o queésta sea errónea.En la sincronización de información personal, la situaciónideal es la fusión de los datos siempre que esta operaciónsea compatible. Por ejemplo, si en el dispositivo A seañade un nuevo campo de correo electrónico y en el dis-positivo B se añade un nuevo teléfono para un mismocontacto, al sincronizar ambos dispositivos deberían de

7disponer de ambos campos en ese contacto. Cualquierotra solución sería subóptima.El mayor problema aparece cuando esta fusión no es posi-ble. Por ejemplo, el dispositivo A modi�ca un número deteléfono de un contacto y el dispositivo B hace lo mismo 5minutos después. Para resolver este tipo de con�ictos, lasolución más lógica es seguir la política �El más recientegana�, ya que es la información más actualizada de lasdos opciones disponibles. Para poder actuar de este modonecesitaríamos una etiqueta de tiempo que nos permita enel servidor comparar y elegir el más reciente.Ésta sería la solución ideal para la sincronización de in-formación personal. Sin embargo, no es posible llevarla acabo en la práctica ya que ninguna de las tres partes im-plicadas cumple los requisitos necesarios. Por una parte,los clientes no añaden los campos necesarios (la etiquetade tiempo y el identi�cador único). Por otra parte, losservidores no soportan la política �El más reciente gana�y la fusión está normalmente bastante limitada.Implementación de la soluciónComo se ha comentado anteriormente, la única posibilidadpara sincronizar el iPhone y Evolution mediante nuestropropio servidor y con alternativas de código abierto, es eluso de los estándares SyncML para contactos y CalDAVpara calendarios. En el servidor se pueden utilizar op-ciones que soportan ambos protocolos, como eGroupware,o servidores dedicados, como Funambol para SyncML yDAViCal para CalDAV.

8Si usar un servidor comercial no es un gran problema,la combinación de Google (para contactos y calendarios)y Toodledo (para tareas) puede constituir una buena al-ternativa. Al ser la opción que mejor funciona, nos cen-traremos en su desarrollo, intentando solucionar el prob-lema de sincronización de tareas, no posible en este casoentre Evolution y el servidor.Para ello, desarrollaremos una nueva aplicación de gestiónde tareas, consistente en una aplicación web para iPhone,un plugin para Evolution y un servidor basado en CouchDBcon una interfaz web para la gestión de dichas tareas.Aplicación webPara el desarrollo de la aplicación web se utiliza CouchApp,un conjunto de scripts que permiten construir aplicacionesbasadas en CouchDB utilizando HTML y CSS para laparte de presentación, y JavaScript para la implementaciónde la funcionalidad. Esta aplicación utiliza la libería JQuerypara realizar las consultas Ajax a la base de datos.De esta forma se construye una interfaz web que permiteañadir, eliminar y consultar tareas almacenadas en unabase de datos CouchDB. Si la aplicación web es cargadadesde el iPhone, se muestra una versión adaptada al dis-positivo móvil, que hace más fácil la gestión de las tareas.Plugin para EvolutionPara poder sincronizar las tareas entre Evolution y CouchDBserá necesario el desarrollo de un nuevo plugin. Este pluginse basará en dos librerías ya existentes:

9� Couchdb-glib: una librería basada en GLib que per-mite el acceso a bases de datos CouchDB.� Evolution-couchdb: Evolution backend para el accesoa bases de datos CouchDB.Será necesario programar el backend para calendario y, enparticular, para las tareas, ya que la única parte imple-mentada que existe es la de contactos.Para añadir una nueva funcionalidad a Evolution primerohay que utilizar EPlugin. El objetivo es mostrar unanueva ventana de con�guración cuando una lista de tareassea creada, ofreciendo al usuario la posibilidad de utilizarCouchDB como sistema de almacenamiento. Este pro-ceso se realiza en un documento XML y es detallado en elproyecto en la sección 5.2.2.2.A continuación, hay que desarrollar el backend para cal-endarios. Para ello es necesario presentar primero EDS(Evolution Data Server). EDS gestiona el acceso a con-tactos, calendarios y tareas. Es un elemento CORBA quepermite el acceso concurrente de varios clientes a la mismainformación con noti�caciones de cambios. Puede ser ex-tendido a través de la creación de plugins para diferentestipos de fuentes de contactos/calendarios/tareas (en estecaso en particular, CouchDB) mediante la programaciónde una librería compartida que será cargada al inicio deEDS.Para la creación de esta librería para tareas almacenadasen CouchDB necesitamos desarrollar el backend para cal-endarios. Este backend se encarga de la comunicación en-tre EDS y la fuente de calendarios/tareas en particular.

10En este caso tendrá que traducir las operaciones realizadasen Evolution (crear una nueva lista de tareas, añadir unanueva tarea, ...) a las operaciones necesarias en la basede datos y viceversa.Replicación y gestión de con�ictosDe esta forma podremos crear nuevas listas de tareas al-macenadas en CouchDB. El último paso consiste en sin-cronizar la base de datos local del ordenador personalque ejecuta Evolution con la base de datos en el servidor.CouchDB ofrece la operación de replicación. Este procesopuedo ser automatizado y programado, en este proyectose describe cómo realizarlo desde la interfaz web ofrecidapor CouchDB.Para �nalizar, la aplicación tiene que implementar la políticaadecuada para la gestión de con�ictos. CouchDB elige unaversión como ganadora, dejando la versión perdedora al-macenada hasta que se realice un proceso de compactado.Por lo tanto, la aplicación es la responsable de recuperarestos datos si la opción de fusión de los datos es posible,como se mencionó anteriormente.Este proyecto �n de carrera desarrolla la parte de tareas,permitiendo la sincronización entre iPhone y Evolution deeste tipo de información mediante el uso de CouchDB. Sepropone como posible línea de trabajo a seguir el trasladareste sistema al resto de datos que componen la informaciónpersonal (contactos, calendarios, notas, mails), de maneraque todo trabaje en un sistema totalmente implementadoen código abierto y con la posibilidad de gestionar nue-stro propio servidor, sin depender de servidores comer-

11ciales donde la privacidad y la gestión de nuestros datosno es la óptima.

List of Figures
1.1 Personal Information ManagementSynchronization 171.2 Replication as key of a synchroniza-tion system 182.1 Typical sync required scenario . . . 212.2 SyncML Synchronization Process . 263.1 Solutions parts: mobile phone, desk-top application and the sync system. 293.2 iPhone Settings for Contacs, Mail,Calendars, 314.1 Con�ict resolution time line 405.1 Synchronization system based on ourown server 455.2 Solution based on commercial servers 495.3 Solution based on CouchDB for tasks 505.4 Solution architecture 5112

LIST OF FIGURES 135.5 Web Application 525.6 Web page version for iPhone 535.7 Task plugin for Evolution-CouchDB 575.8 Con�guration window for a new tasklist 615.9 New task and task list windows . . 625.10 CouchDB view for the task list . . . 625.11 Replication scenario 635.12 Replication con�guration 636.1 Proposed Solution based on CouchDBcompletely 66

Contents
1 Introduction 161.1 Thesis Motivations . 161.2 Thesis Objectives . 171.3 Thesis Outline . 182 Literature Review 202.1 User requirements . 202.2 The PIM synchronization challenge 212.3 Standards . 232.3.1 The SyncML Protocol . 242.3.2 WebDAV . 262.3.3 CalDAV . 272.3.4 iCalendar . 283 Solution Parts 293.1 Mobile Phones Sync Capabilities 303.1.1 iPhone . 303.1.2 Android . 333.2 Desktop Applications Sync Capabilities 333.3 Synchronization Servers . 343.3.1 Based on own servers . 343.3.2 Commercial servers . 353.4 Storage Systems . 3514

CONTENTS 154 Solution: Approach 394.1 Con�ict Resolution . 394.1.1 Merging . 404.1.2 Newer wins . 404.2 Limitations . 414.2.1 Limitations due to the clients 414.2.1.1 iPhone . 414.2.1.2 Evolution . 414.2.2 Limitations due to the servers 425 Solution: Implementation 445.1 Synchronization Systems . 445.1.1 Our own server: SyncML and CalDAV 445.1.1.1 Server: eGroupware or Funambol+DAViCal . . 455.1.1.2 iPhone: Funambol SyncML client and nativeCalDAV . 465.1.1.3 Evolution: GroupDAV and SyncEvolution . . . 475.1.2 Commercial servers: Google and Toodledo 485.1.2.1 iPhone . 485.1.2.2 Evolution . 495.2 The missing link: a task application based on CouchDB 505.2.1 Task Manager Web Application 515.2.1.1 CouchApp . 515.2.1.2 The task manager web application 525.2.2 CouchDB in Evolution Tasks 555.2.2.1 Installation . 555.2.2.2 Development of a task plug-in for Evolution . . 565.2.2.3 Evolution con�guration to manage CouchDB tasklists . 615.2.3 Replication . 636 Conclusions 65

Chapter 1IntroductionIn this chapter it is going to be described the motivations, objectives and theoutline of the thesis.In the motivation part, the problem of synchronization is presented. The in-crease of personal devices and the fact that connections are not always availablemake necessary the design of a synchronization system. Data must be consistentin every device.In the objectives part, the aim of the thesis is presented. A synchronizationsolution between the iPhone and Evolution (a personal information managerfor Linux) is looked for, trying to achieve it through open source protocols andwith our own server. In the way to this solution, a missing link will be found,so a tasks lists application based on CouchDB is developed.In the outline part the structure of the thesis is presented. Each chapter isbrie�y described and the outline is argued.1.1 Thesis MotivationsEvery user manages a series of information in his daily life. That is contacts,calendars, mails, tasks and notes. The problems arise when you have severaldevices, for example a mobile phone (iPhone) and a laptop, and each one ofthese devices manages these data with its own applications (Evolution on thelaptop). It is evident that the user will like to have the PIM (Personal Infor-mation Management) data up-to-date in every device, that means to have themsynchronized (see �gure 1.1).Synchronization is a fundamental component in every wireless network; datamust be accordant when accessed by multiple users who are not always con-nected. Every data changed in one device should be re�ected in all others as16

CHAPTER 1. INTRODUCTION 17

Figure 1.1: Personal Information Management Synchronizationsoon as they are online. For example, when a phone number is added in some-one's device, it should be re�ected in the other devices contacts list.Synchronization process is crucial nowadays because wireless devices are notalways connected. Coverage is not universal, connections often get dropped anddata contracts in mobile phones are still too expensive. These devices have to beable to work o�ine and synchronize with the world when they are back online.There are several commercial solutions for the most common mobile phones, butthey are sometimes quite expensive and they only work under certain conditions.I �x in this thesis the missing parts in the existing solutions for synchronizationbetween iPhone and Evolution. The biggest challenges come from the iPhonewith its closed operation system, making synchronization di�cult based on opensource software.1.2 Thesis ObjectivesThe aim of this thesis is to design a system able to synchronize the PIM databetween the iPhone and one of the most common desktop application in Linux,Evolution in GNOME. The intention is to use open source alternatives whereverit is possible.To achieve this goal, the parts involved in the solution are studied. Those arethe iPhone, Evolution and the tested servers. Then, an approach to the solutionis made, describing which will be the ideal behaviour for a PIM synchronizationsystem. Taking into account the limitations of the involved parts, a implemen-tation of the solution is made, �nding a missing link in this system. To �x that,a task lists application is built using CouchDB as storage system due to its goodreplication features.The clients need to store the data locally in order to work o�ine. When theycome back online, a replication process is needed between the local database in

CHAPTER 1. INTRODUCTION 18

Figure 1.2: Replication as key of a synchronization systemthe client and the database in the server. In this way it is achieved a consistentstate in the data, sending each other the changes made meanwhile the connectionwas not possible. In this replication process, con�icts can occur. The same itemhas been changed in both instances of the database and a decission has to betaken in order to leave data in a consistent way (see �gure 1.2). The optimalsolutions in order to resolve these con�icts will be presented.1.3 Thesis OutlineThis section describes brie�y the contents of each chapter:Chapter 1: IntroductionThe introduction chapter is divided into three parts. A general introduction ismade and the motivations, goals and structure of the thesis are discussed.Chapter 2: Literature ReviewThis chapter is composed by three parts: The �User requirements� part explainswhere the problem of synchronization comes from. The �PIM synchronizationchallenge� describes the typical problems found in the synchronization of con-tacts and other personal information. Finally, in �Standards� are presented theprotocols involved in the implemented solutions.Chapter 3: Solution PartsThis chapter is divided into four parts: �Mobile Phones Sync Capabilities�describes the synchronization protocols available for the iPhone and Android,�Desktop Applications Sync Capabilities� makes the same with Evolution, �Syn-chronization servers� presents the synchronization protocols supported by thetested servers and, �nally, �Storage systems� introduces CouchDB comparing itwith other kind of databases and arguing why it has been chosen for the tasksapplication to develop.

CHAPTER 1. INTRODUCTION 19Chapter 4: Solution: ApproachThe main challenge in a synchronization system is the con�ict resolution. Thischapter describes in its �rst part how this con�ict resolution is optimal for aPIM synchronization system. The second part presents the limitations found inthe involved parts in order to achieve this ideal system.Chapter 5: Solution: ImplementationThis chapter is divided into two main parts. The �rst one implements the syn-chronization systems with existing solutions, di�erentiating between commercialservers and our own server. In this implementation, a missing link is found re-garding the task lists synchronization. In order to �x that, the second partexplains the development of a task application based on CouchDB. This appli-cation is composed of a web user interface, accessing the database through aJavaScript, and a plugin for Evolution, accessing CouchDB with a task backendbuilt for this purpose.Chapter 6: ConclusionsThe conclusions achieved in the development of this thesis.

Chapter 2Literature ReviewThis chapter describes where the problem of contact synchronization comesfrom, what is already known about this problem and what other methods havebeen tried to solve it. Taking into account the user requirements and the syn-chronization challenges, the existing standards for synchronization will be pre-sented focusing in the open source alternatives.2.1 User requirementsThe proliferation of mobile computing devices makes necessary the access tothe data wherever the users are: in powerful and internet-connected machinesusually in house or the o�ce and where these powerful connections are notavailable, most frequently with a mobile phone or laptop outside, often onlyweakly or intermittently connected to a network.Connecting to a network is not always possible. Very frequently, you can lose acall when entering inside a building or when you are driving by a highway. Datacoverage is even worse. Moreover, mobile operators usually charge per byte orminute, so users will naturally prefer downloading once and syncing over payingper each access.In this context appears the inherent problem of data synchronization. It isnecessary to keep all the devices up-to-date and operational even when notonline. Changes made when the device is o�ine should be re�ected in theother devices as soon as the connectivity is available. You can observe a typicalsynchronization scenario in the �gure 2.1. This sync session can occur in thebackground without the attention of the user.To achieve this synchronization, a data synchronization protocol is needed. Itmust identify the changes quickly, resolve possible con�icts and propagate up-dates to various synchronizing devices. The information to synchronize include20

CHAPTER 2. LITERATURE REVIEW 21

Figure 2.1: Typical sync required scenarioevery kind of �le available in these devices, as music, pictures or documents,but the most common requirement for users is to synchronize the personal in-formation: that is contacts, calendars, todo/tasks, mails and notes. This kindof information presents several particularities that will be studied in the section2.2.2.2 The PIM synchronization challengeTo understand the challenge presented in PIM synchronization, a practical ex-ample is going to be studied: a list of contacts, one small piece of many appli-cations and one of the main piece of our solution.The �rst point to consider is how the data are stored: as a plain text �le, a XML�le, a database or in an object store. Being a list compound of several contacts,we are going to store it in separate records. Each record will be built withdescriptive information about a contact: name, address, phone number, and soon. Here, the �rst problem comes up. There could be two contacts with thesame name or with the same address. To di�erentiate them, a unique identi�eris needed. So we aggregate a new �eld to each record with this identi�cation.The information to store would be something similar to the table 2.1.Database replication is a well understood problem, but PIM data is specialin many ways. The challenge involves keeping the list of contacts correct aschanges are made. Some changes are made on the server (if it exists) and somechanges are made on a mobile device. Next, through some simple scenarios, it

CHAPTER 2. LITERATURE REVIEW 22Contact ID Name Address Phone Number102 Stefan Müller Neuforgasse,13 0043611545454215 Jane Smiths Währinger Strasse,55 0043665464687Table 2.1: Example of typical contact recordsis going to be presented the most common problems in PIM synchronization.ADDING A CONTACTTo achieve e�cient data synchronization, only changes to the data must be sent- we want to send only the new records. For that, you need to pick out the newcontacts from all the others. A possible solution would be to add a timestampto the table and track the last time you synchronized.In other way, the new record needs a Global Unique ID (GUID), and yet themobile device does not have access to records being added by others users onother devices. To guarantee the uniqueness of the key value some solutions arepossible. One mechanism is to use Universal Unique Identi�ers (UUIDs) � longstrings of alphanumeric values constructed from device-speci�c and time-speci�cdata in such a way as to be guaranteed unique. Another way is to partition theset of possible keys across the mobile devices.DELETING A CONTACTThis scenario presents even more di�culties than the last one. The mobile userdeletes the record from the list of contact on her mobile device. That deleteoperation needs to be sent up to the other devices as soon as possible, but therecord is no longer present to be sent.To make delete action synchronization possible, you would need to hold a track-ing table that keeps deleted rows around until the delete operation has beensent to the other devices. After a con�rmation from these devices, the trackingtable has to be cleared out in order to not send it again.UPDATING A CONTACTAn update operation about the same contact has been made in two synchroniz-ing devices, but the �rst one to update their local data is unable to synchronizehis device until the next day, while the second one synchronizes immediately.When the �rst device synchronizes the next day, a con�ict occurs. The correctbehaviour would be not replacing the newer data (sent by the second one before)if we are talking about di�erent devices of the same user. In other situation, adi�erent rule could be applied.The synchronization system needs to identify the fact that a con�ict has oc-curred: the same record has been changed in two di�erent mobile devices, and

CHAPTER 2. LITERATURE REVIEW 23just applying the changes in the order they are synchronized does not alwaysdo the right thing. It should take the right action to resolve the con�ict: in thiscase, keep the later of the two times.OTHER TASKS TO TAKE INTO ACCOUNTThis is a substantial list of tasks for a synchronization system to implement,but there are more. These scenarios were well-de�ned and with a set of rules.The devices share the same data format and all the conditions were ideal. Inthe real world, things change:� Not always is possible a GUID. Many of the most common exchange for-mats for PIM data (as vCard 2.1/3.0 or vCalendar) don't include a manda-tory UID property.� Without a GUID, it is necessary to compare the content of items to identifymatches. The problem arises when many di�erent representations of thesame information are allowed. Moreover, some devices are more limitedthan other ones. For example, a desktop software can support photo andseveral email addresses while a mobile is not able to support that.� Previously to the synchronization, it is not possible to know which fea-tures are supported by the other peer, so any assumptions can be made.The solution must be interoperable with existing devices. The part moreproblematic could be when receiving an item back from an unknown peer.If a property is missing, has it been removed by the user or has the peerbeen unable to store it?Moreover, in a real environment we will �nd many users, intermittent wirelessnetworks, no access to the devices and so on, in comparison with a test scenario.Performance must be considered as well. The system must be optimized to scaleup to many users synchronizing simultaneously, providing separate thread poolsto manage database connections; con�gurable timeouts to ensure that resourcesare used properly and a long etcetera.Finally, other features can be necessary too. Perhaps some changes are moreurgent than others, and need to be synchronized with higher priority than theremainder; maybe secure authentication at each point in the chain is mandatoryor data need to be encrypted.2.3 StandardsThis chapter presents the most important standards for data synchronization.These standards will constitute the basis for the solutions presented in the thesis.First, SyncML is introduced, being a common data synchronization protocol.

CHAPTER 2. LITERATURE REVIEW 24Then, WebDAV is described, an HTTP extension for editing and managing �lescollaboratively on remote web servers. For calendar, a special extension exists,CalDAV. It allows us to access scheduling information on a remote server. Forstoring this information, a special format is used, iCalendar, a standard torepresent events, meeting requests and so on.Data synchronization is de�ned as �the process of establishing consistency amongdata from a source to a target data storage and vice versa and the continuousharmonization of the data over time�. To be successful in this process, thetwo sets of data need to be modi�ed properly and a con�ict resolution policymust be followed. A con�ict occurs when the same data element is modi�ed inboth sets in an inconsistent way, being these con�icts the main challenge in thesynchronization process.For this communication process it is necessary a synchronization protocol. Themain characteristics of this protocol have to be the following ones:� Identify a particular database or a single record in a data base with theaddressing of the data sets.� Communicate modi�cations with standard commands de�ned for this goal.� Required features, transport protocol and so on for exchanging these mod-i�cations.In general, each company has used its own data synchronization protocols un-til now. These proprietary solutions only work in a subset of devices, beingable to access only to a small set of networked data. The absence of a singlesynchronization standard poses many problems for end users, device manufac-turers, application developers and service providers. With this purpose - thedevelopment and promotion of a single, common data synchronization protocolused industry-wide � SyncML was born.2.3.1 The SyncML ProtocolSyncML is a speci�cation for a common data synchronization framework basedon the exchange of XML-based messages between networked devices. SyncML issponsored by companies like Motorola, Nokia, Ericsson, IBM and many others.The SyncML speci�cations include:� A representation protocol, which de�nes the XML messages format.� A synchronization protocol which de�nes how SyncML messages shall becombined together in order to accomplish a synchronization session.� The binding for di�erent transport protocols (HTTP, OBEX).

CHAPTER 2. LITERATURE REVIEW 25� A protocol for device managementThe typical scenario is a client-server architecture, where the client contains async agent and usually sends its modi�cations �rst. The server implements boththe server-side synchronization agent and the synchronization logic includingprocedures to interpret the modi�cations, to discover and manage con�icts andto generate return messages.SyncML de�nes seven synchronization modes:� Two-way sync: the most common mode whereby client and server ex-change modi�cations on their data.� Slow sync: mode used for recovering from an inconsistent state. All theclient database records are compared, �eld by �eld, with the ones on theserver.� One-way sync from the client only, from the server only.� Refresh sync from the client only, from the server only: in these modes theclient or the server sends its entire database which replaces its databasein the other.� Server alerted sync: the server sends an alert to the client notifying it ofthe mode to be used.Other basic concepts about SyncML are the following ones:Synchronization anchors: used to know which was the last synchronizationsuccessfully completed. Two anchors are needed: the last anchor repre-senting the last sync performed and the next anchor representing the cur-rent sync. These anchors are exchanged at the beginning of the session.The server can detect if the last synchronization encountered problemscomparing the given Last with the stored anchor. If they do not match,client and server are out of sync.ID Mapping: server and client usually use a di�erent ID for the same item, sothe server needs to keep a mapping table between the client Local UniqueIDs (LUID) and the server Global Unique IDs (GUID).Con�icts: the same item has been modi�ed on both server and client. Theclient is noti�ed of the error condition by means of a status code.Security: SyncML allows two authentication methods: basic and MD5.Addressing: entities involved in synchronization (databases, items, etc) can beaddressed through a named convention based on URIs (Uniform resourceIdenti�cation)

CHAPTER 2. LITERATURE REVIEW 26

Figure 2.2: SyncML Synchronization ProcessDevice capabilities: the server can apply proper optimizations according tothe remote device resources and features (e.g. database types, availablememory, and transmission speed). They should be sent only if requested.The complete SyncML synchronization process requires three steps (see �gure2.21):� The initialization where device characteristics and synchronization re-quirements (as type of sync, protocol features supported, which databaseneeds to be synced) are sent. Packages from #0 to #2 in the �gure.� The modi�cations sent as a well formed XML document, with a header(including the routing info, database addressing and protocol versioning)and a body (with one or more sync commands). Packages from #3 to #4.� The client mapping step, composed of the packages #5 and #6, updatesthe mapping table in the server.2.3.2 WebDAVWebDAV means Web-based Distributed Authoring and Versioning. It is a setof extensions to HTTP (Hypertext Transfer Protocol) to allow users to edit andmanage �les collaboratively on remote web servers. It is a standard de�ned inRFC 4918 with an incremental update de�ned in RFC 2518.Its main features are:1Source: http://max.berger.name/research/syncml/syncmlTimeline.png

CHAPTER 2. LITERATURE REVIEW 27� Locking: for overwrite prevention.� Properties: information about the author, modi�ed date, etcetera.� Name space management.� Collections: creation, removal and listing of resources.The protocol de�nes new methods and headers for HTTP. For example, COPYfor copying one resource from one URI to another or LOCK to put a lock on theresource. You can �nd all the added methods and headers and its function inthe RFC mentioned above.This standard has many implementations in Linux. For example, KDE hasnative WebDAV support. This means that Konqueror or any other KDE appli-cation can access to a WebDAV server without external components.Among the di�erent existing extensions, the most useful ones for this thesis are:� For calendaring, CalDAV: A protocol allowing calendar access via Web-DAV. CalDAV models calendar events as HTTP resources in iCalendarformat, and it models calendar containing events as WebDAV collections.� For groupware, GroupDAV. It allows client/server groupware systems tostore and fetch objects (calendar entries, contacts . . .) instead of webpages.Next, CalDAV and the iCalendar format will be studied in more detail becausethey are main pieces in the solutions shown in this thesis.2.3.3 CalDAVAs I mentioned above, CalDAV is a calendaring extension to WebDAV. It is anInternet standard, de�ned in RFC 4791, allowing a client to access schedulinginformation on a remote server. Multiple clients can access to the same informa-tion, so cooperative planning and information sharing is possible through thisstandard.The format used for storing the data is iCalendar. You can �nd more detailedinformation about this format in the section 2.3.4.The architecture followed by CalDAV consist on data (events, tasks, free-busy,info and notes) stored in directories (collections) where multiple items (re-sources) reside.Among the existing implementations, we can �nd it working on the iPhone(�rmware 3.0 and forward versions) and Evolution.

CHAPTER 2. LITERATURE REVIEW 282.3.4 iCalendariCalendar is a standard, de�ned in RFC 5545, for representing meeting requests,tasks or any other kind of scheduling information. Its main purpose is the shar-ing of calendars, being independent of the transport protocol (email, WebDAV,SyncML).The extension used for this �le format is .ics.The �rst line of an iCalendar object must be BEGIN:VCALENDAR, and the lastline END:VCALENDAR. The body is made up of a list of calendar properties andone or more calendar components. An example for a task could be:BEGIN:VCALENDARVERSION:2.0PRODID:-//ABC Corporation//NONSGML My Product//ENBEGIN:VTODODTSTAMP:20100130T134500ZSEQUENCE:2UID:uid4@host1.comORGANIZER:MAILTO:unclesam@us.govATTENDEE;PARTSTAT=ACCEPTED:MAILTO:jqpublic@example.comDUE:20100415T235959STATUS:NEEDS-ACTIONSUMMARY:Submit Income TaxesEND:VTODOEND:VCALENDARIt is a task due on April 15, 2010 with summary Submit Income Taxes , andjqpublic@example.com as attendee. The �eld SEQUENCE:2 means the elementhas been modi�ed twice since it was created.

Chapter 3Solution PartsThe development of a solution for this thesis involves three main elements.In this chapter, they will be presented and studied, detailing their principalfeatures.First, we have a mobile phone. The solutions will be focused on iPhone butAndroid will be considered as well. Second, we have a desktop applicationto manage our personal information. Here, Evolution will be the chosen one.To achieve the PIM synchronization between these two elements, the mobilephone and the desktop application, a third system is required. I will focus on asolution based on our own server, without depending of third-party companies,but commercial solutions will be presented as an alternative of them when theydo not complete all our requirements.For this synchronization system based on our own server, three alternatives ex-ist in order to store the information. There will be compared the relationaldatabases, the object-oriented databases and the version management systems.CouchDB, a object-oriented database, will be the chosen one for the task appli-cation because of its good replication features.
Figure 3.1: Solutions parts: mobile phone, desktop application and the syncsystem. 29

CHAPTER 3. SOLUTION PARTS 30For the communication between devices, the standard protocols presented inthe literature review, SyncML and CalDAV, will be used.So let's start with the synchronization capabilities of our two main elements,the mobile phone and the desktop application.3.1 Mobile Phones Sync CapabilitiesThe iPhone does not have a full and intuitive solution for PIM synchronization.The di�erent personal information (contacts, calendars, tasks . . .) have to besynchronized by means of di�erent methods. This section presents the capa-bilities this phone o�ers us, completing it with the possibilities for Android,where the openness in the operating system results in an easier synchronizationprocess.3.1.1 iPhoneThe possibilities to synchronize contacts and calendars in this device are verylimited, even more if the intention is to make it using open source solutions.To describe the capabilities for synchronization in iPhone, I am going to dis-tinguish between native capabilities and capabilities achieved by third-partyapplications. Take into account that some of these features are only availablefor iPhone OS 3.0 and forward versions.NATIVE SOLUTIONSIf you go to Settings�Mail, contacts, calendar �Add account in your iPhone,you will �nd the following options related with synchronization (see �gure 3.2):� For contacts and calendars:� Microsoft Exchange: It uses the Exchange ActiveSync protocolwhich provides push synchronization of contacts, calendars and emailsbetween ActiveSync-enabled devices. It is a proprietary protocol, butlicensed to some mobiles companies as Apple for iPhone or Googlefor Android. This feature can be used to synchronize the iPhone withany Microsoft Exchange server or with your Google account. Thereis an open source alternative, OpenXchange, but the plugin neededin the server for making it work with the iPhone is not available forthe community version, the paid version is required.� Mobileme: a paid subscription-based collection of online servicesand software o�ered by Apple. It includes storage, address book,calendar, gallery, web site hosting and some other services.

CHAPTER 3. SOLUTION PARTS 31

Figure 3.2: iPhone Settings for Contacs, Mail, Calendars, ...� For contacts in Other:� LDAP (Lightweight Directory Access Protocol): an application pro-tocol for querying and modifying data using directory services run-ning over TCP/IP. It is a service very used in companies to haveaccess to the enterprise address book, but it is not suitable for syn-chronization because it is not able to work o�ine.� For calendars in Other:� CalDAV: this standard protocol has been presented already in thesection 2.3.3 on page 27. It allows users to synchronize their iPhonecalendars with a CalDAV server.� Subscribed calendar: it adds events from a public calendar. Onlyone-way synchronization, not valid for a full synchronization solution.� For mails: there are several options. You can con�gure accounts for Gmail,Yahoo mail, AOL and many others.� For notes: the native application is very simple. It does not allow anykind of synchronization natively. Through iTunes it is possible to syncthem with MAC OS X Mail or Microsoft Outlook.To sum up, the native capabilities are much reduced. The only possibilityrelated with open source appears in calendars, with the use of the standard pro-tocol CalDAV. If we relax this condition, the open source alternative, the freeoption could be the use of Google to synchronize contacts and calendar throughMicrosoft Exchange. If you need other alternatives, you can use OpenXchangetogether with its plugin for iPhone or Mobileme from Apple, paying the required

CHAPTER 3. SOLUTION PARTS 32amount. For mails the solution is almost complete. However, there are not na-tive support for todo lists on this phone.THIRD-PARTY APPLICATIONSTo complete the iPhone synchronization capabilities, some applications havebeen built. However, due to Apple's restrictions policy, these applications arevery limited.� For contacts:� SyncML: this standard protocol for synchronization has alreadybeen described in the subchapter 2.3.1 on page 24 of this thesis.There are several applications that let you to synchronize your con-tacts in the iPhone with a SyncML server. For example, Funambolor Synthesis.� For calendars:� SyncML: until the iPhone SDK 4, no calendar API was available.At the moment of writing this thesis, the iPhone OS 4 is still not inthe market, so the existing applications are not able to synchronizewith calendar in iPhone.� For tasks/todo:� There are dozens of todo applications available for iPhone. Some ofthem, as Toodledo, let you to synchronize tasks with Microsoft Out-look, Apple's iCal and other online todo lists. However, for Evolutionthe synchronization can be made only in one way, from the cloud toEvolution. This missing link will be �xed with the creation of a taskapplication able to synchronize with Evolution in the two ways. Formore details, go to the section 5.2 on page 50.To conclude, at the moment only contacts can be synchronized with third-partyapplications in the two ways. With the task application developed in this thesisand the openness of the calendar API (on the iPhone OS 4), the possibilitiesfor a complete synchronization in the iPhone are going to be increased.As it has been detailed, there is not a simple way to synchronize your personalinformation in iPhone. The only open source alternative appears with the useof a SyncML client for contacts and the con�guration of CalDAV for calendars.Let's compare it with other of the most famous operating systems for mobilephones at the moment, Android from Google.

CHAPTER 3. SOLUTION PARTS 33WebDAV LDAP CalDAV Google OthersMail x IMAP, POP, Exchange, . . .Contacts x x xCalendar x x xTasks x xMemos x xTable 3.1: Synchronization capabilities for the di�erent resources in Evolution.3.1.2 AndroidAndroid is an open source operating system and software stack for mobile de-vices, being the project led by Google. The fact to be an open source solutioninvolves not to �nd so many restrictions as in the iPhone OS, although thesystem is quite oriented to use Google services.Contacts, calendars and mails are synchronized automatically with your Googleaccount. This synchronization with Google services can be completed with anapplication for the synchronization of tasks (e.g. gTask).If you prefer to store your data in an own server instead of Google servers, theuse of a SyncML client is an option. For example, Funambol is an open sourceand quite complete server. It lets you to synchronize contacts, calendars, tasksand notes with any SyncML server.To �nallize with the most common standard protocols for PIM synchronization,the support for CalDAV at the present is not so good in Android. There is anapplication, Calendar (CalDAV) Sync for Android by Hypermatix, with someproblems at the present1.3.2 Desktop Applications Sync CapabilitiesThe synchronization capabilities of two of the most famous operating systems formobile phones at the present, iPhone OS and Android OS, have been presentedin the section 3.1 . Now, I am going to present the synchronization solutionsthat desktop applications in Linux o�er us to �nd common points between them.Let's start with the o�cial personal information manager and workgroup in-formation management tool for GNOME, Evolution. It is composed for mail,calendars, contacts, tasks and memos. The table 3.1 collects the synchronizationcapabilities for each one of these resources.Those are the possibilities to synchronize Evolution with other devices in theversion 2.28.3 of the application. The synchronization with Exchange servers1More details in http://wiki.davical.org/w/CalDAV_Clients/Calendar_Sync_for_Android

CHAPTER 3. SOLUTION PARTS 34can be made with the use of WebDAV as well. Moreover, with the installa-tion of speci�c plugins other alternatives can be used. The plugin system forEvolution will be discussed in detail in the section 5.2.2.2 on page 56, wherean extension for this application will be built to allow synchronization with thetask application to be created in this thesis.There are also external tools, like SyncEvolution, to synchronize data with Evo-lution. It is able to synchronize contacts, appointments, tasks and memos witha SyncML server using this standard.3.3 Synchronization ServersNow that we know the synchronization capabilities of iPhone and Android in themobile phone side, and Evolution in the desktop application side, we have to �ndthe common protocols that let us to achieve the synchronization between thesedevices. We di�erentiate here between solutions based on our own server wherethe information resides on it and commercial solutions where our information isin an external server, no administrated for us.Finally, with the available alternatives we will be able to propose a solution andtest in di�erent scenarios in the following chapters.3.3.1 Based on own serversDue to the limited options presented by the iPhone, the only chance to synchro-nize contacts with Evolution using our own server is through a SyncML server.There are several open source servers supporting SyncML at present. In thisthesis eGroupware is going to be tested , a groupware server with support forSyncML and CalDAV.For calendars, the only chance to access iPhone appointments is through theCalDAV protocol, so we need a server with CalDAV support. There are speci�cservers, like DAViCal, or other kind of servers which are able to work with thisstandard, like eGroupware mentioned above.Once the address book and the calendar information is in the server, the syn-chronization options with Evolution are:� GroupDAV: it uses WebDAV to access to the contacts and calendars inthe server. It is not useful because it only works when a connection isavailable, not o�ine.� SyncEvolution: an external tool to synchronize PIM via the SyncMLprotocol.

CHAPTER 3. SOLUTION PARTS 35Relaxing the open source requirement, an OpenXchange server could be a goodoption. You need to acquire the paid version and install the extension called�OXtender for Business and Mobility�. The synchronization will be madethrough the ActiveSync protocol, a no open source synchronization protocol,as it was mentioned in the iPhone capabilities chapter. However, this solutionlet you have your own server and synchronize contacts and calendar in an easyway. You can �nd more information and prices on the next link:http://www.open-xchange.com/en/mobility-solutions-en3.3.2 Commercial serversThere are many options to store your PIM data in commercial servers, most ofthem are not free. For the scenario required, with the iPhone and Evolution asdevices to synchronize, a good option is Google services.Contacts, calendars and mails in your iPhone can be synchronized with yourGoogle account using the ActiveSync protocol, without requiring a third-partyapplication running in your device. The con�guration process is described inthe section 5.1.2.1 on page 48.Google also o�ers a task service integrated with its calendar. There is a cus-tomized web page when access the service with the iPhone. However, if youwant to work o�ine and synchronize when the connection is available, you needan external application (e.g. GeeTasks).The problem with this solution is the synchronization between Google serversand Evolution. This is based on a plugin for Evolution that only works online,not being possible to manage your calendars and contacts when no connectionis available.3.4 Storage SystemsUp to this point of the thesis, only protocols for the communication of thechanges between devices have been presented. Other important point to takeinto account is the storage system used in each one of these devices. In thissection, CouchDB, the object-oriented storage system chosen for the task appli-cation to be built, will be described comparing it with relational databases andversion management systems.This comparation is focused on the synchronization features these systems presents.CouchDB has been chosen because of its good replication process. For the goalof this thesis, the synchronization of PIM, replication is more important thandata structure. So CouchDB will be detailed arguing its advantages in compar-ison with other systems.

CHAPTER 3. SOLUTION PARTS 36CouchDB has been designed to build modern software applications that tend tobe web-based, document-oriented and distributed in nature.During the last decades, relational database management systems have beenused to build almost every application. There are lightweight, inexpensive andwell-document solutions with this model - like the open source MySQL - used inmillions of web sites. Its main characteristic is a strict schema-based structure.This is ideal for some scenarios � like transaction systems � but it is not optimalfor new projects like blogs, wikis or forums which �t better with a document-oriented database.The main features of CouchDB are:� Document-oriented database management system.� Javascript-based view model for aggregating and reporting on data.� Incremental replication with bi-directional con�ict detection and resolu-tion.� Developed in Erlang OTP, a programming language with excellent con-currency features.These features are going to be described in more detail as follows:DOCUMENT-ORIENTED DATABASEThe database is composed of documents. Each document is made up of �eldsand values. These values can be strings, numbers, dates, boolean or even listsof objects. Attachments can be included as well. For example, a documentrepresenting a task could be similar to this one:�Summary�: �Buy milk��Due date�: �1.June��Description�: �Go to the supermarket and buy 2 litres of milk�There is not a strict schema, each document can be di�erent. The relationalmodel is based on a set of tables, each of them with a prede�ned schema. InCouchDB that does not exist. If another task does not have �Due date� this�eld can be omitted and a �NULL� value is avoided. In addition, if any changeis necessary in the structure of a relational database, a lot of di�culties appeardue to dependencies and integrity issues. All of this is not a problem in adocument-oriented database.Needless to say, this model presents some disadvantages too, like the lack of a de-�ned structure and unnecessary replication of data across documents. However,the performance of relational databases can be almost modeled with CouchDB.For example, entity relationships2.2Visit this link for more detail:http://wiki.apache.org/couchdb/EntityRelationship

CHAPTER 3. SOLUTION PARTS 37Each document has a unique ID and metadata maintained by the database sys-tem, like the revision number. The documents are stored in the database on a�at address space.JAVASCRIPT VIEW ENGINETo recover unstructured data and show them in a useful and interesting way,views were designed. Views are the method of aggregating and reporting ondocuments in a database. They are de�ned inside a design document and arereplicated too. For an optimal performance, requested views are up-to-date in-crementally.REPLICATION AND CONFLICT DETECTION AND RESOLU-TIONCouchDB is a peer-based distributed database system. Documents and designscan be replicated, so full database applications can be distributed and main-tained up-to-date when connectivity is possible.CouchDB peers do not have to be con�gured or tracked. No record is kept ofwhich peer any particular document or revision come from. That is an importantdi�erence with version management systems, like git, where each peer has to beexplicity tracked.This replication is incremental again to improve the performance of the system.The process only examines documents updated since last replication. For eachdocument updated, only changed �elds are sent across the network. Partialreplicas are possible too, �ltering with a JavaScript function.In case of con�ict in the replication process, each database instance determinis-tically decides which document is the winner. Only this document can be shownin views, while losing con�icts remain in the database until a deleted or purgedoperation during the compaction.To resolve the con�icts several options are possible: manually, depending on thenature of the data and the con�ict or by automated agents. If resolved con�ictsresult in more con�icts, the system accommodates them in the same manner,determining the same winner and maintaining document semantics.OTHER INTERESTING FEATURESCouchDB has not locking mechanism. The �rst to commit succeed. The nextones get a con�ict error, the latest revision is shown and they have the possibilityto make the changes again.The documents are not overwritten. There are a main revision and the othersare stored for archival purposes. That is similar to a revision control system.However, the programmers cannot assume the existence of this history becausethe compact option used to recover some wasted space deletes them.

CHAPTER 3. SOLUTION PARTS 38As it could be expected, CouchDB implements the ACID (Atomicity, Consis-tency, Isolation and Durability) properties.To complete all this features, a RESTful HTTP API is available. It lets anyplatform that supports HTTP requests to interact with CouchDB without anyclient library to be installed.To make the administration easier, a web-based administration tool is available,Futon. From there it is possible to create, modify or delete databases anddocuments. Compaction, replication and test are possible using an easy webuser interface. You can access it in your local installation with the next URL:http://127.0.0.1:5984/_utils/.

Chapter 4Solution: ApproachThis chapter describes an approach to the ideal solution for the required sce-nario. This ideal solution presents the following main features:� Synchronization of every PIM data: mails, contacts, calendars, tasks,memos.� Based on open source software.� The information resides in an own server.� Automatically synchronization of the data when coming back online.� Simple con�guration process.These are desired features for the system to implement. Together with these,there are other many features like security, fail tolerance, scalability and a longetcetera. But the main challenge in the synchronization process and the basisof a synchronization system is the con�ict detection and resolution. When acon�ict is detected, several options are possible. This chapter compares theseposibilities depending on the context. To conclude, the known limitations ofthe involved parts are described in order to implement a real solution.4.1 Con�ict ResolutionThis challenge of con�ict resolution in a synchronization process is going to bedescribed in this section with a simple example. The most suitable solutionswhen a con�ict is detected in PIM synchronization are mainly two: mergingand the �newer wins�. Find more details below.39

CHAPTER 4. SOLUTION: APPROACH 40

Figure 4.1: Con�ict resolution time lineThe scenario is composed of two devices: A and B which want to have theirPIM data synchronized. The device A creates a new contact (V1) with the �eldsName:John and Number:555 in the time slot (1). When it comes back online,it synchronizes with the device B, so now both devices have the new contact intime slot (2).4.1.1 MergingDuring the time slot (3), the device A updates the contact adding a new mail�eld (V2a). The device B updates it too with a new address �eld (V2b). Whenthey are able to synchronize again, a con�ict has to be detected. The sameelement has been changed in two di�erent devices. For this particular situationthe best solution is to merge the elements, because the changes made are notincompatible, as it is shown in the time slot (4). If we had chosen only one ofthe modi�ed versions as winner, we would have lost information added by theuser. That had not been the optimal solution.4.1.2 Newer winsIn the case above the changes were compatible, but what happen if the changescannot be merged? For example, the device A changes its number to 347 in thetime slot (5), while the device B changes its number to 999 in the time slot(6). When they sinchronize again, a con�ict occurs. But this time mergingis not possible because the �eld changed is the same in both devices. For theresolution of this con�ict, we need a time stamp in order to know which one wasthe last in applying the changes. The solution that �ts best would be to resolvethe con�ict with the newer as winner. The last change made by the user in itsdevices would be the desired to remain after the synchronization.

CHAPTER 4. SOLUTION: APPROACH 41To sum up, the con�ict resolution for PIM data will consist on merging if it ispossible or the �newer wins� policy if merging is not possible.4.2 LimitationsIt has been described above the desired behaviour for a synchronization system,but the implementations already available present several di�erences with regardto this ideal situation. The main limitations in the clients and the servers studiedin this thesis are detailed next.4.2.1 Limitations due to the clients4.2.1.1 iPhoneThis mobile phone does not o�er native applications for all the PIM requiredfor a user. There are mails, contacts, calendars and memos applications, butthere is not a task list application, so a third-party one is needed.Regarding the native synchronization capabilities, there are no possibilities fortasks and memos. Moreover, if you want to use SyncML as synchronization stan-dard, you have to run a third-party application, so the process is not automaticand it has to be started by the user. Other limitation regarding SyncML comesfrom Apple's policy avoiding third-party applications to access to the calendar(until the iPhone OS 4). This restriction only leaves CalDAV as possibility withopen source alternatives.To �nish, the iPhone does not add a UID and Time Stamp �elds to the contactscreated. The UID is needed for the identi�cation of a particular item and thetime stamp for the con�ict resolution, to know which one was the newer change.Observing the logs generated by the SyncML clients in the iPhone, you can checkthat any of these �elds are presents. The vCard �le generated by the applicationonly contents the most common �elds for this kind of PIM, but any informationfor a good con�ict resolution. This limitation makes the con�ict resolution inthe server in an optimal way almost impossible.4.2.1.2 EvolutionWhen using eGroupware as server, a option to load the PIM data into Evolutionis with the GroupDAV connector. However, this option only works when aconnection is available, showing an error if an update is made o�ine. Thereforethis alternative has to be rejected, because it does not suit with synchronizationrequirements.The only option to synchronize with open source software is SyncEvolution.This application works pretty well with SyncML, but it is not integrated in

CHAPTER 4. SOLUTION: APPROACH 42Evolution and the user has to run it every time he wants to synchronize hisdata.If you choose Google services, the plugin available for Evolution only worksonline, being not possible to manage your calendars and contacts when beingo�ine.4.2.2 Limitations due to the serversThe tested servers don't follow the rule mentioned above for the con�ict resolu-tion, where the best option is merging when it is possible and the �newer wins�policy when merging is not an option.The eGroupware server can be con�gured to manage the con�ict with SyncMLbetween the following alternatives:� The client wins con�icts and overwrites the server data.� The server wins con�icts and overwrites the client data (by default).� Merge data� the client can only add new information to Contacts� the client can only change attendee's state or append new informationto Events� deleted entries will be added by the server again� Duplicate entries of con�icting entries are created from both versions.� The client can never change server data but have its own version.� The sever reverts all changes the clients report.As you can observe, the merging option is very limited. For example, if youdelete a contact from the iPhone and synchronizes it, the contact appears againin your phone, because deleted entries are added again by the server for themerging con�ict resolution option. Moreover, no �newer wins� policy exists, soeven in the case clients add a time stamp, not con�ict resolution in this way ispossible.Other of the tested servers, the SyncML Funambol server, doesn't support thispolicy as well. The only options for con�icts resolution are where the clien-t/server wins and the merging policy.The best alternative regarding the con�ict resolution seems to be Google. Merg-ing is well supported and where merging is not an option, Google duplicates thecon�icting �eld keeping both values. Evolution is able to show a �eld withseveral values, but the iPhone only shows one of the values of each �eld.

CHAPTER 4. SOLUTION: APPROACH 43To sum up, the existing options don't manage the con�ict resolution in an opti-mal way for PIM data. On the one hand, the clients don't add the required �elds(time stamp and UID) to the created items. On the other hand, tested serversdon't support the �newer wins� policy and merging presents several problemswith unnecessary replication and loss of data as result.

Chapter 5Solution: ImplementationThe solution proposed in this thesis is based on the union of di�erent existingsolutions. The goal is to achieve a synchronization system able to synchronizethe PIM data between the iPhone and Evolution. Two possibilities are takeninto account: one based on our own server and other one where the informationresides in an external server.A missing link is found in this system. There are not available solutions fora two-way synchronization of tasks between iPhone and Evolution. A taskapplication is built to �x this missing link. It is based on CouchDB, with a webapplication accesing to the database via JavaScript and a plugin for Evolution.The plugin adds to this application the capacity to store task lists on a CouchDBdatabase.5.1 Synchronization SystemsThis section describes the implementation of the synchronization systems work-ing with Evolution and the iPhone. As I mentioned above, two alternativesare considered. If you need to keep your data out of external servers and youwant to have the possibility to manage your PIM data when you are o�ine,the section 5.1.1 describes how to implement it. However, if that is not a bigproblem, the section 5.1.2 describes a more simple system to implement basedon Google services.5.1.1 Our own server: SyncML and CalDAVSeveral combinations of the available tools work together for achieving a basicsynchronization between the devices, although all of them are based on thesame standards: SyncML for contacts and CalDAV for calendars (tasks and44

CHAPTER 5. SOLUTION: IMPLEMENTATION 45

Figure 5.1: Synchronization system based on our own servermemos are not supported natively for iPhone). Next it will be described theprocess to con�gure the three elements of the system: the server, the iPhoneand Evolution.5.1.1.1 Server: eGroupware or Funambol+DAViCalThe easiest option is to use a Groupware server. This kind of servers usuallysupport SyncML and CalDAV, with a complete web user interface for the man-agement of PIM. In this thesis I will use eGroupware because it is very easy toinstall and use.Other alternative is to use a SyncML server (e.g. Funambol) and a CalDAVserver (e.g. DAViCal) connected between them (e.g. CalDAV connector forFunambol). However, this option requires more con�guration and it is morecomplex that the option above.The eGroupware version used in this thesis is 1.6.003. To install the package for aUbuntu/Debian distribution, add the following content to your /etc/apt/sources.list:deb http://download.opensuse.org/repositories/server:/eGroupWare/[Distribution]/ ./Replace [Distribution] with Debian_5.0, xUbuntu_8.04, xUbuntu_9.04 orxUbuntu_9.10. Update the repositories and install it:$ sudo apt-get update$ sudo apt-get install egroupware

CHAPTER 5. SOLUTION: IMPLEMENTATION 46For other distributions there are packages as well. The installation process is de-scribed in the next link: http://www.egroupware.org/wiki?wikipage=ManualSetup. Basicallyyou should go to the URL: http://localhost/egroupware and follow the instructionson the web.eGroupware installs Postgres as default database. However, other relationaldatabases can be used as well. I will use MySQL because it has an easiercon�guration process. You may install the necessary packages with:$ sudo apt-get install mysql-server mysql-client php5-mysqlRestart apache2 to load the new extension for PHP and you will be now ableto choose MySQL as database in your eGroupware installation.If everything has gone alright, you can login in the web user interface andmanage your contacts, calendars, mails, etc. The user should have the �syncml�and �groupdav� options activated by the administrator in order to synchronizethe PIM.In the next section, the iPhone will be con�gured to synchronize contacts andcalendars with this server.5.1.1.2 iPhone: Funambol SyncML client and native CalDAVAs it was mentioned in the section 3.1.1 on page 30, the only possibility tosynchronize contacts with a open source alternative in the iPhone is the useof a SyncML client. There are several free alternatives in the App Store asFunambol or Synthesis SyncML. I will use Funambol because of its facility tobe con�gured.For calendars, the CalDAV native support will be used to synchronize with oureGroupware server.CONTACTSOpen the Funambol application and go to Settings. In Account you can �ndthe following �elds:� Server: http://[your IP or domain name]/egroupware/rpc.php� Username: the name of the user you want to synchronize its PIM.� Password: the password for the user typed above.Coming back to Settings, you �nd Contacts. Enter and con�gure the following�elds:

CHAPTER 5. SOLUTION: IMPLEMENTATION 47� Sync Direction: you can choose between �Two-Way�, �Server to phone�and �Phone to server�.� Remote Name: ./contactsEverything is ready now for the �rst synchronization. Go to the �rst screenand push �Sync Contacts�. A �Synchronization successful� message appears isall has gone alright. If there are some errors, you can �nd more information inSettings�Log.CALENDARAs it was shown in the �gure 3.2 on page 31, the iPhone has native support for aCalDAV server. Go to Settings�Mail,Contacts,Calendar�Add Account... and chooseOther�Add CalDAV Account. A con�guration window appears with the following�elds:� Server: the IP or domain name of the eGroupware server.� User Name: the name of the user you want to synchronize its PIM.� Password: the password for the user typed above.� Description: a optional description of the server.Push Next and the iPhone will try to verify the CalDAV account information.If a message appears asking if you want to try setting up the account withoutSSL, push Continue. The veri�cation fails because �Advanced Settings� arerequired. Enter there and type the next con�guration parameters:� Use SSL: OFF 1� Port: 80� Account URL: http://[server IP]/egroupware/groupdav.php/[user name]/calendarThere is an application for the iPhone (not free, not open source) to managethe information stored in a eGroupware server. Its name is iGroupMind. Anextension in the server is required in order to make it work.5.1.1.3 Evolution: GroupDAV and SyncEvolutionThis section explains the necessary steps to synchronize your eGroupware serverwith Evolution. As it was mentioned in the Evolution Sync Capabilities section,we will use SyncEvolution.1You can con�gure the server to use SSL if it is required.

CHAPTER 5. SOLUTION: IMPLEMENTATION 48SyncEvolution is a command-line application that works with SyncML as pro-tocol to achieve the synchronization between the eGroupware server and Evolu-tion. It is able to synchronize contacts, calendar, tasks and memos. A graphicaluser interface called �Sync� is available. Install this application with the follow-ing command:$ sudo apt-get install syncevolution sync-uiThe easiest way to con�gure it is with the graphical user interface. Open theapplication and go to the section Change or edit sync service. There adda new service with the following options:� Name: eGroupware� User Name: the name of the user you want to synchronize its PIM.� Password: the password for the user typed above.� Server address: http://[server IP]/egroupware/rpc.php� Contacts URI: ./contacts� Appointments URI: ./calendarsOnce eGroupware has been con�gured, you can push the Sync now button andthe synchronization will take place.5.1.2 Commercial servers: Google and ToodledoIf the option to store your PIM in an external server is not a big problemand when you use Evolution you have a connection available, there is anotheralternative for the synchronization of the iPhone and Evolution. It is based onGoogle for contacts and calendars, and Toodledo for tasks (see �gure 5.2).You need an account in Google and Toodledo for this process. The con�gurationin the iPhone and Evolution is described in the next sections.5.1.2.1 iPhoneFor contacts and calendars synchronized with Google, go again to Settings�Mail,Contacts,Calendar�Add Account..., but this time choose Microsoft Exchange astype of new account. This will use the ActiveSync protocol for the synchroniza-tion. Enter the following parameters:� Email: your full google email account address.

CHAPTER 5. SOLUTION: IMPLEMENTATION 49

Figure 5.2: Solution based on commercial servers� Username: your full google email account address.� Password: your google account password.Tap Next. If a �Unable to Verify Certi�cate� message appears, choose Accept.When a new Server �eld appear,enter m.google.com and tap Next again. Youwill be asked about which Google services you want to synchronize with yourphone (Mail, contacts and Calendars).For tasks synchronization with Toodledo, an application (not free) with thisname exits for this phone in the App Store. Remember that the iPhone doesnot support tasks lists natively, so an external application is needed.5.1.2.2 EvolutionThis PIM desktop application supports Google services thanks to a plugin al-ready included in the version used in this thesis. Just add a new address bookand calendar with your google account user name and password in Evolution,but take into account that you can only manage your personal information whenbeing online.For synchronizing Toodledo and Evolution, �rst you have to enable the liveiCal link in Tools&Services�iCal at the web page. They give you a URL youshould enter in a new WebDAV tasks list.If you have a look again to the �gure 5.2, you can observe the synchronizationbetween the Toodledo server and Evolution is only one-way, from the server toEvolution.

CHAPTER 5. SOLUTION: IMPLEMENTATION 50

Figure 5.3: Solution based on CouchDB for tasksTo �x this missing link, a new task manager is going to be created based onCouchDB as storage system (see �gure 5.3). This program will be the basisfor a future improvement in the graphic above, making contacts and calendarswork like the task manager to implement. To see how this application has beenbuilt, go to the section 5.2.5.2 The missing link: a task application based onCouchDBThe task manager is going to be based on a web user interface, where taskscan be added and removed, and a plugin for Evolution making the managementof tasks possible from this program. For the storage, CouchDB is going to beused. This database o�ers several advantages for the replication process, asit was mentioned on the section 3.4 on page 35. At the moment of writingthis thesis CouchDB is not implemented on the iPhone, so the access to theapplication has to be made through the Safari browser available in the phone.A future improvement could be the development of an iPhone application ableto store the data locally. Like this, it would work o�ine and the synchronizationcould take place when it comes back online.In this chapter, the development of the web page is explained, accessing CouchDBthrough JavaScript. Then, the plugin for Evolution is developed using thecouchdb-glib and evolution-couchdb libraries available to interact with thisdatabase. Finally, the replication process is detailed to synchronize both devices(see �gure 5.4).

CHAPTER 5. SOLUTION: IMPLEMENTATION 51

Figure 5.4: Solution architecture5.2.1 Task Manager Web ApplicationIn this subchapter I will explain how the task manager web application has beenbuilt. First, CouchApp is presented � a set of scripts designed to bring clarityand order to the freedom of CouchDB's document-based approach. This toolhas been used to create the web application. Second, the main �les that composethis application will be analyzed and the functionality of the application will beshown.5.2.1.1 CouchAppAs I said above, CouchApp is a set of scripts that allow complete, stand-aloneCouchDB applications to be built using just HTML and JavaScript.CouchApp is a Python module and requires Python to be installed in yoursystem. In Linux and Mac OS X Python is usually preinstalled. To check it,you have to introduce the next command in the terminal. If you get an error,Python needs to be installed.$ python -VNext, python-setuptools is needed to install CouchApp. Introduce the nextcommand in Ubuntu. If you use another distribution or you don't have a packagemanager, you will need to build it from the source.$ sudo apt-get install python-setuptoolsNow, we can use easy-install to install CouchDB, SimpleJSON and CouchAppPython modules:

CHAPTER 5. SOLUTION: IMPLEMENTATION 52

Figure 5.5: Web Application$ sudo easy_install couchdb$ sudo easy_install simplejson$ sudo easy_install couchappCouchApp is installed and you can build CouchDB application in a simple wayusing only HTML and JavaScript.5.2.1.2 The task manager web applicationThe main part of the code shown here is an example of the book �BeginningCouchDB� by Joe Lennon (Chapter 10: Developing CouchDB applications withCouchApp). The code has been modi�ed to make it compatible with Evolutionand to adapt it to the iPhone.This web application allows you to create and delete tasks, displaying any ex-isting tasks when it loads. It has been built using HTML and CSS for thepresentation part and JavaScript for the functionality part. The applicationuses the jQuery JavaScript library as well as some extensions to this library tomake the Ajax requests to the CouchDB. The �nal result is shown in the �gure5.5.You can �nd the source code in my repository. To clone it to your local machine,type2:$ git clone git://gitorious.org/tasks-evolution-couchdb/couchdb-task-web.gitTo make this code work, �rst you have to generate a CouchApp application withthe next command:2If you do not have git, install it with$ sudo apt-get install git-core

CHAPTER 5. SOLUTION: IMPLEMENTATION 53

Figure 5.6: Web page version for iPhone$ couchapp generate tasksIt creates a new tasks database and the default �les for the aplication in anew directory called tasks. Overwrite the existing �les in this directory withthe cloned �les and be sure to remove the �le called language in the tasksdirectory. This �le causes a fail in the view of the application.The next command pushs all these documents to the web server o�ered byCouchApp to make them accessible via a web browser.$ couchapp push . http://127.0.0.1:5984/tasksIf you go to this URL, http://127.0.0.1:5984/tasks/_design/tasks/index.html,you can access to the web user interface. If this web page is accessed on theiPhone, an adapted version appears, in order to make its usage easier (see �g-ure 5.6). Next, I will explain how this application was developed. Go to thesection 5.2.2 on page 55 if you want to skip this part and con�gure Evolutiondirectly.To add and delete tasks in CouchDB, a JavaScript �le is needed in order toimplement the access to the database. This �le is placed on the tasks direc-tory generated, under the _attachments/script subdirectory wit the namemain.js:

CHAPTER 5. SOLUTION: IMPLEMENTATION 541 $. CouchApp (funct ion (app) {2 $ (' form#add_task ') . submit (f unc t i on (e) {3 e . preventDefau l t () ;4 var newTask = {5 summary : $('#summary ') . va l () ,6 record_type : " http ://www. f r e ed e skt op . org /wik i/ S p e c i f i c a t i o n s / desktopcouch/task "7 }8 i f (newTask . summary . l ength > 0) {9 app . db . saveDoc (newTask , { su c c e s s : f unc t ion (resp) {10 $ (' u l#my_tasks ') . append ('< l i id="'+newTask . _id+'"> '11 +'<div c las s="summary">'+newTask . summary+'</div>'12 +'<div c las s=" l i nk "> '13 +'Delete'15 +'</div>'16 +'<div c las s=" c l e a r "></ c l e a r> '17 +'</ l i> ') ;18 $('#'+newTask . _rev) . c l i c k (f unc t i on () {19 i f (confirm ("Are you sure you want to d e l e t e t h i s task ?")) {20 var delTask = {21 _id : newTask . _id ,22 _rev : newTask . _rev23 }24 app . db . removeDoc (delTask , {}) ;25 $('#'+newTask . _id) . show () . fadeOut (2000) ;26 var del_count = pa r se Int ($('# task_count span ') . html () , 10) ;27 del_count−−;28 $('#task_count span ') . html (del_count) ;29 re turn f a l s e ;30 }31 }) ;32 $ (' u l#my_tasks l i : l a s t ') . hide () . fade In (1500) ;33 $('#summary ') . va l (' ') ;34 var task_count = par se In t ($('#task_count span ') . html () , 10) ;35 task_count++;36 $('#task_count span ') . html (task_count) ;37 }}) ;38 } e l s e {39 a l e r t ('You must ente r a d e s c r i p t i o n to c r e a t e a new task ! ') ;40 }41 }) ;4243 app . view (" get_tasks " , { su c c e s s : f un c t ion (j son) {44 j son . rows .map(f unct i on (row) {45 $ (' u l#my_tasks ') . append ('< l i id="'+row . value . _id+'"> '46 +'<div class="summary">'+row . key+'</div>'47 +'<div class=" l i n k "> '48 +'Delete'50 +'</div>'51 +'<div class=" c l e a r "></ c l e a r> '52 +'</ l i> ') ;53 $('#'+row . value . _rev) . c l i c k (f unc t ion () {54 i f (confirm ("Are you sure you want to de l e t e t h i s task ?")) {55 var delTask = {56 _id : row . value . _id ,57 _rev : row . value . _rev58 }59 app . db . removeDoc (delTask , {}) ;60 $('#'+row . value . _id) . show () . fadeOut (2000) ;61 var del_count = pa r se In t ($('#task_count span ') . html () , 10) ;62 del_count−−;63 $('# task_count span ') . html (del_count) ;64 re turn f a l s e ;65 }66 }) ;67 }) ;68 $('# task_count span ') . html (j son . rows . l ength) ;69 }}) ;70 }) ;With $.CouchApp(function(app)) {}); I am opening an instance of CouchApp.This code set up the database and design document variables. Within this func-tion, the submit event is captured, avoiding the default option and substitutingit for the creation of a new document, where a �eld summary is set from thevalue entered for the user in the text area available on the web.If the user has not entered anything in the text area, an error message is shown.It there are not any errors, the document is saved to the database. If CouchDBreports succeed in this operation, the new task is added on the list showed in

CHAPTER 5. SOLUTION: IMPLEMENTATION 55the web page, the text area is cleared and the counter is incremented.We need a view to be able to retrieve the tasks from the database. If this viewdoes not exist, the application does not maintain the state between sessions.The views are contained under the directory with this name. In this case, thename of the view is get_tasks, so a subdirectory with this name is necessary.Within this directory there is a �le called map.js. It just recovers the summary�eld of the tasks stored in the database.Coming back to the main.js �le within the _attachments/script subdirectory,the code part starting with app.view("get_tasks", {}) loads existing datafrom CouchDB into the web page using the view described above. To �nish, a�Delete� button is added. It lets you delete any task from the database.This JavaScript �le is included in the HTML document (index.html) togetherwith the libraries needed for the access to CouchDB.5.2.2 CouchDB in Evolution TasksTo add the possibility to store tasks lists in Evolution using CouchDB as database,a plugin needs to be developed. This plug-in will be based on two packages al-ready available for Evolution:� Couchdb-glib: a GLib-based library to allow access to CouchDB databases.� Evolution-couchdb: Evolution backend to access CouchDB databases,used for UbuntuOne integration.At the moment of writing this thesis the o�cial packages only support contacts.With the next steps, I added the calendar backend and the required methodsto make them work with tasks.First, the installation of these packages, modi�ed to support tasks, is detailed.Then, the changes made are explained and, �nally, its functionality is shown.Let's start with the installation.5.2.2.1 InstallationIf you want to check the o�cial GNOME source code (without tasks supportingat the moment of writing this thesis), you can �nd it in:$ git clone git://git.gnome.org/couchdb-glib$ git clone git://git.gnome.org/evolution-couchdbLike on the web page, the code used in this chapter can be downloaded frommy repository. It is the code of the o�cial packages modi�ed to implement thecalendar backend for tasks support. Clone it in your local machine with thenext commands:

CHAPTER 5. SOLUTION: IMPLEMENTATION 56$ git clone git://gitorious.org/tasks-evolution-couchdb/couchdb-glib.git$ git clone git://gitorious.org/tasks-evolution-couchdb/evolution-couchdb.gitNow you should have two directories called evolution-couchdband couchdb-glib.To build from the source you need to install some dependencies. For couchdb-glib, $ sudo apt-get install gnome-common gtk-doc-tools libjson-glib-devlibsoup2.4-dev libsoup-gnome2.4-dev uuid-dev libgnome-keyring-devlibdbus-glib-1-dev libcurl4-openssl-devFor evolution-couchdb,$ sudo apt-get install libebook1.2-dev libecal1.2-dev libedata-book1.2-devlibedata-cal1.2-dev evolution-data-server-dev evolution-devAfter installing the required dependencies, enter in each directory and build thesource with the next commands3:$./autogen.sh$ make$ sudo make installIf the installation has been successful, Evolution supports now tasks stored ina CouchDB database. Let's explain how it was made.5.2.2.2 Development of a task plug-in for EvolutionTo add some new functionality to Evolution, EPlugin4 has to be used, a smalland simple system for extending this program. The objective is to show a newcon�guration window when a tasks list is created in Evolution with the optionto use CouchDB as storage database. In this window the needed informationfor the interaction with the database will be entered and Evolution will becon�gured to save and recover tasks from CouchDB. The �nal result is shownin the �gure 5.7.The de�nition of a plugin for Evolution is made in a XML �le. You can �nd itin the evolution-couchdb directory, under the plugin subdirectory with thename org-gnome-evolution-couchdb.eplug.xml.in.3First, couchdb-glib and, second, evolution-couchdb, because this one requires couchdb-glibto be built.4http://www.go-evolution.org/EPlugin

CHAPTER 5. SOLUTION: IMPLEMENTATION 57

Figure 5.7: Task plugin for Evolution-CouchDB1 <?xml version=" 1 .0 "?>2 <e−plugin− l i s t>3 <e−plug in id=" org . gnome . evo l ut i on . couchdb " type=" sh l i b " _name="CouchDB sou rc e s "4 lo c a t i on="@EVOLUTION_PLUGINS_DIR@/ l i bo r g−gnome−evo lut ion−couchdb . so" load−on−s t ar tup=" f a l s e " l o c a l e d i r = "@LOCALEDIR@" system_plugin=" true ">5 <author name="Rodrigo Moya" email=" rodr ig o . moya@canonical . com"/>6 <author name="Miguel Rodelas" email="miguel . rodelas@gmail . com"/>7 <_descr ipt ion>A plug in to setup CouchDB Contacts and Tasks .</_de sc r ipt ion>8 <hook c l a s s=" org . gnome . evo l ut ion . addressbook . c o n f i g : 1 . 0 ">9 <group ta r g e t=" source " id="com. nove l l . evo l ut i on . addressbook . c on f i g .accountEditor " >10 <item type=" item" path=" 00 . g en er a l /10 . d i sp lay /00 . couchdb " f a c t o ry="plugin_couchdb_contacts "/>11 </group>12 </hook>13 <hook c l a s s=" org . gnome . evo l ut ion . ca l endar . c o n f i g : 1 .0 ">14 <group ta r g e t=" source " id=" org . gnome . evo lut i on . ca l endar . c a l enda rP r ope r t i e s " >15 <item type=" item_table" path=" 00 . g en e r a l /00 . source /99 . couchdb " f a c t o ry="plugin_couchdb_tasks "/>16 </group>17 </hook>18 </e−plug in>19 </e−plugin− l i s t>The <e-plugin> element de�nes an EPlugin. Observe that several of these tagscan be packaged in the same XML �le under the <e-plugin-list> element. Theproperties of this plugin are the following ones:� id: A unique string identifying this plugin.� type: The type name of the plugin loader. In this case, �shlib� meaningShared Library Loader. It requires one extra parameter, location.� location: it contains the full path-name of a shared object to load. liborg-gnome-evolution-couchdb.so in this case.� name: A short name for the plugin.We can �nd the following elements inside this tag:

CHAPTER 5. SOLUTION: IMPLEMENTATION 58� author: The authors' name and mail.� description: A longer description of the plugin's purpose.� hook: A list of all the hooks this plugin wishes to hook into.For this CouchDB plugin we have two hooks, one for contacts (developed byRodrigo Moya) and another one for tasks (developed by me). Let's study thetasks one, the added for the purpose of this thesis. It is a con�guration page hookwhich allows us to enter the required con�guration information in Evolution forthe interaction with the CouchDB database.The <group> element represents a group of con�guration items and it is com-posed of two elements:� id: The name of the con�guration window to which this hook applies.� target: The type of target this con�guration window applies to. This willnormally be tied directly to the speci�c con�guration window itself.The properties for the <item> element are as followed:� type: The menu item type.� path: The path to the con�guration item in question. It will place theitem in the right order.� factory: the factory method used to create the GtkWidget elements forthis con�guration item. In our case, plugin_couchdb_tasks. This methodwill create the con�guration windows as we want to build it. You can �ndthe implementation of this method in the same plugin subdirectory underthe �le named couchdb-tasks-source.c together with other requiredmethods for the plugin.Now that the plugin has been built and the con�guration window is shown whenCouchDB is chosen like new tasks list type, let's implement the calendar back-end. For that, �rst Evolution Data Server needs to be brie�y presented.EVOLUTION DATA SERVEREvolution Data Server (EDS) manages the access to the address book, calendarand tasks information available for Evolution and other applications. It is aCORBA element which allows concurrent access by several client applications tothe same data together with noti�cations of changes. It can be extended with theaddition of plugins to manage di�erent kinds of address books/calendars/taskssources by writing a shared library, which will be loaded by EDS on startup.Calendar and tasks share the two libraries needed by the client to access thedata:

CHAPTER 5. SOLUTION: IMPLEMENTATION 59� libecal: It is the main client library for calendar and tasks, implementingall the necessary to open and manage this kind of sources.� libical: It parses iCalendar text and o�ers a set of tools for dealing withiCalendar.Our purpose is to add a new kind of source for tasks, CouchDB. So we have towrite a shared library and load it when EDS starts. To do this, a new calendarbackend need to be written.The calendar backend deals with the communication between EDS and thespeci�c calendar servers/types. There are backends for Groupwise, Exchange,Webcal, . . . The CouchDB backend has to traduce basically the operationsmake in Evolution (create a new tasks list, new task, delete task, . . .) to theoperations needed in the CouchDB database (create a new database, create anew document, delete a document, �ll in a document with the data required,. . .) and vice versa.To load a new backend in EDS, the shared library has to be installed in a knownplace5. When EDS loads the library, it looks for some named symbols:� eds_module_initialize: register all ECalBackendFactory-derived classes.These factories are responsible for creating backends of a given kind (events,tasks and journal), so a factory class for each kind must be registered. Foreach ECalBackendFactory-derived classes, three methods need to be im-plemented:� get_kind: returns the kind of the backends created by the factory.� get_protocol: returns the protocol used by the backends.� new_backend: creates a new backend for the given kind.� eds_module_shutdown: It cleans up all the memory used by the ex-tension.� eds_module_list_types: A list of the factory types implemented bythe extension.Extensions need to implement these methods for being loaded when EDS starts.You can �nd the implementation of these methods for the CouchDB backend inthe evolution-couchdb directory, under the calendar subdirectory with thename e-cal-backend-couchdb-factory.[ch].To complete the backend, the methods required to translate the API used byEDS calendar clients into CouchDB operations need to be implemented. Thisis made by writing a subclass of ECalBackend (for asynchronous mode). If syn-chronousmode would be required, the class to implement would be ECalBackendSync.5$evolution_prefix/lib/evolution-data-server-$VERSION/extensions

CHAPTER 5. SOLUTION: IMPLEMENTATION 60ECalBackend contains the following virtual methods, which need to be imple-mented by the CouchDB backend. You can �nd again the implementation forthis thesis under evolution-couchdb/calendarwith the name e-cal-backend-couchdb.c.� is_read_only: returns whether the calendar is read only or not.� get_cal_address: returns the email address of the owner of the calen-dar.� get_alarm_email_address: returns the email address to be used foralarms.� get_ldap_attribute: returns speci�c LDAP attributes.� get_static_capabilities: returns the capabilities provided by the back-end, like whether it supports recurrences or not, for instance.� open: opens the calendar/tasks list.� remove: removes the calendar/tasks list.� create_object: creates a new event/task in the calendar/task list.� modify_object: modi�es an existing event/task.� remove_object: removes an object from the calendar/task list.� discard_alarm: discards an alarm (removes it or marks it as alreadydisplayed to the user).� receive_objects: import a set of events/tasks in one go.� send_objects: send a set of meetings in one go, which means, for back-ends that do support it, sending information about the meeting to allattendees.� get_default_object: returns an empty object with the default valuesused for the backend.� get_object: returns an event/task, given its UID.� get_object_list: returns a list of events/tasks given a set of conditions.� get_timezone: returns time zone objects for a given TZID.� add_timezone: adds a time zone to the backend.� set_default_timezone: sets the time zone to be used as the default.� start_query: starts a live query on the backend.� get_mode: returns the current online/o�ine mode for the backend.

CHAPTER 5. SOLUTION: IMPLEMENTATION 61

Figure 5.8: Con�guration window for a new task list� set_mode: sets the current online/o�ine mode.� get_free_busy: returns Free/Busy information for a list of users.� get_changes: returns a list of changes made since last check.There are also a couple of internal methods, not used by clients, but by theECalBackend class itself, which are:� internal_get_default_timezone: returns the default time zone.� internal_get_timezone: returns a given time zone.Not every one of these methods should be implemented. The basic funcionality isachieved with open, remove, create_object, remove_object and start_query.See the �le mentioned above for more details.5.2.2.3 Evolution con�guration to manage CouchDB task listsFirst, open Evolution and go to the Task section. Click on New�New Task List.The window in the �gure 5.8 appears. The con�guration �elds are:� Type: �CouchDB�� Name: The name of your task list� Server: The kind of server to be used� Desktop CouchDB: this option is for a future integration withUbuntuOne, a storage application and service to enable users tostore and sync �les and personal information between computers.At present it is working with contacts, notes and �les already. Taskswill be added when the integration with Evolution is completed.

CHAPTER 5. SOLUTION: IMPLEMENTATION 62

Figure 5.9: New task and task list windows

Figure 5.10: CouchDB view for the task list� System-wide CouchDB� Remote CouchDB server: Introduce the IP address and the portof your CouchDB database installation. If this is in your local ma-chine, type here 127.0.0.1:5984, being 5984 the port by default.A new task list appears on the left. If you add a new task through the New�Taskoption, the window 5.9 is shown, where you can enter the details for this task6.In the same �gure you can appreciate the look of a list with several tasks.If we look at CouchDB using the same view created for the web page, the resultis shown in the �gure 5.10.So now it is possible to manage your task list from any place with a browseravailable (personal computers, mobile phones, laptops, . . .) and you can haveit synced with Evolution.6At the moment of writing this thesis, only the summary �eld is implemented. Tasks canbe added, removed and queried. The rest of �elds and more funcionalities will be added infollowing versions.

CHAPTER 5. SOLUTION: IMPLEMENTATION 63
Figure 5.11: Replication scenario

Figure 5.12: Replication con�guration5.2.3 ReplicationThe task manager application has been developed. It is composed of a web userinterface and a plug-in for Evolution. The question now is how to synchronizetasks in the scenario required, where Evolution is on a computer and the webapplication is installed in other device7, each one with its own database andwithout a permanent connection between them (see �gure 5.11). When theycome back online, they should make a replication.The replication process can be automated in the code if it is desired. This chap-ter explains how to replicate using Futon, the web user interface of CouchDB.You can access Futon in http://127.0.0.1:5984/_utils. Check in the Configurationsection, under the httpd options if bind_address is set to 0.0.0.0. By defaultthe CouchDB installation only accepts petitions in local. With this value of theparameter, any other machine can access to the CouchDB database, necessaryfor the replication process. These parameters are loaded from the �le local.ini(in /usr/etc/couchdb in a Ubuntu installation by default) but the easiest wayis to change it with Futon.Go to the Replicator section. You will �nd the con�guration �elds shown inthe �gure 5.12. As you can observe, the replication is only one-way. The two-way replication can be easily achieve making the process in both directions.Just choose tasks as local database and enter http://[IP device]/tasks asremote database and make the replication in both ways. Tasks existing in eachone of the local databases have to be now in both CouchDB instances.The task application is in a start state at the moment, so con�icts are notpossible in the way explained in this thesis because these items are composedonly of one �eld, summary. However, when the development is complete, there7Remember that the iPhone cannot access directly to a CouchDB database. It uses theweb application, residing in a server, to manage the tasks.

CHAPTER 5. SOLUTION: IMPLEMENTATION 64could be con�icts updating elements with several �elds. In this situation, theapplication needs to manage these con�icts in order to implement the �merging�and �newer wins� policies. CouchDB only chooses one of the versions as winnerwith a deterministic algorithm in every instance of the database, remaining theloser versions on it until a compaction operation. The user will lose data in ascenario with merging as possibility if nothing is done, the PIM application isthe responsible to merge the elements when possible or apply the �newer wins�policy in other case.

Chapter 6ConclusionsThis thesis has put in evidence several failures in the existing synchronizationsystems between the iPhone and Evolution. Most of these problems come fromthe use of a closed operating mobile system, the iPhone OS, with no manychances to open source solutions. Moreover, the desktop application to syn-chronize belongs to the Linux system, while almost every commercial solutionhas been thought to work on Windows. So the synchronization of PIM databetween these devices has meant a big challenge.First, any device includes an UID and time stamp �elds. That makes almostimpossible a synchronization system without unnecessary replications and loseof data. Together with this, any of the tested servers are able to manage a�newer wins� policy and merging is not well implemented in the majority ofthem.Several of the involved protocols only work when a connection is available, asGroupDAV, LDAP, WebDAV with Toodledo or the Evolution plugin for Google.That does not ful�ll the basis requirements of a synchronization system, whichessence is to let users work o�ine making the data consistent when coming backonline.In order to �x all these lacks, a new synchronization system based on CouchDBis proposed. Taking the task application developed in this thesis as a basis, thesame could be made with contacts, calendars and memos (see �gure 6.1). In thismoment, the UbuntuOne project is oriented in this way. It supports contactsalready and tasks will be added as soon as the implementation is completed.Moreover, our own server can be used with this project, not being necessary tostore our data in Ubuntu servers.Another improvement for this system would be the development of an iPhoneapplication able to store data locally in order to let us work when a connectionis not available. The synchronization with the CouchDB would be made whencoming back online, achieving a complete synchronization system.65

CHAPTER 6. CONCLUSIONS 66

Figure 6.1: Proposed Solution based on CouchDB completelyThat is the basis of a new PIM synchronization system with the con�ict detec-tion and resolution in an optimal way as main challenge to achieve. If you areinterested, you can follow the new updates for the application in the repositoriesmentioned in the thesis.

Bibliography[1] On the Scalability of Data Synchronization Protocols for PDAs and MobileDevices. (S.Agarwal D. Starobinski A. Trachtenberg).(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.5572&rep=rep1&type=pdf)[2] Developing and Managing Mobile Applications with SyncML and Funam-bol.(http://www.funambol.com/documents/Funambol_SyncML_Book.pdf)[3] Designing Mobile Applications: Why Sync Is Central.(http://www.sybase.com/�les/White_Papers/ias_wp_why_sync_is_central.pdf)[4] Why sync is so di�cult? By Jean-Gabriel Morard.(http://gigaom.com/2009/05/10/why-sync-is-so-di�cult/)[5] PIM Data Synchronization: Why is it so hard? Contributed by PatrickOhly.(http://lwn.net/Articles/333441/)[6] SyncML, Wikipedia(http://en.wikipedia.org/wiki/SyncML)[7] Developing and Managing Mobile Applications with SyncML and Funam-bol(http://www.funambol.com/documents/Funambol_SyncML_Book.pdf)[8] SyncML � "Building an Industry-Wide Mobile Data Synchronization Pro-tocol", White Paper, 2000(http://xml.coverpages.org/SyncML-WhitePaper.pdf)[9] SyncML � �SyncML Sync Protocol, version 1.1�, 2002(http://www.openmobilealliance.org/tech/a�liates/syncml/syncml_sync_protocol_v11_20020215.pdf)[10] SyncML � �SyncML Representation Protocol, version 1.1�, 2002(http://www.openmobilealliance.org/tech/a�liates/syncml/syncml_represent_v11_20020215.pdf)[11] Wikipedia. WebDAV(http://en.wikipedia.org/wiki/Webdav)67

BIBLIOGRAPHY 68[12] Beginning CouchDB, by Joe Lennon[13] CouchDB O�cial Website(http://couchdb.apache.org/)[14] EPlugin(http://www.go-evolution.org/EPlugin)[15] Evolution Data Server Architecture(http://www.go-evolution.org/EDS_Architecture)[16] Evolution. Developers information.(http://projects.gnome.org/evolution/developer.shtml)

