View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by Universidad Carlos Il de Madrid e-Archivo

Synchronization of PIM in iPhone and

Evolution implementing a task application
based on CouchDB

Author: Miguel Angel Rodelas Delgado
Tutor: Dr Andrew U. Frank

May 2010


https://core.ac.uk/display/30043068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

INFORMACION SOBRE EL PROYECTO FIN
DE CARRERA REALIZADO EN ERASMUS

Autor Miguel Angel Rodelas Delgado
Tutor Dr. Andrew U. Frank
Universidad Technische Universitat Wien

Coordinador Académico Ascension Gallardo Antolin

Cotutor en UCIIIM Ascension Gallardo Antolin

Fecha de lectura 31 de Mayo del 2010

Calificacion obtenida Matricula de Honor




RESUMEN

Introducciéon

El aumento del ntimero de dispositivos moéviles en los 1l-
timos anos, tales como portatiles, moéviles y notebooks,
han creado una nueva necesidad. El usuario quiere ac-
ceder a sus datos independientemente del lugar donde se
encuentre: tanto en su ordenador personal en casa, con
una conexion rapida y segura, como cuando se encuentra
en el exterior, con conexiones débiles e intermitentes y de
baja velocidad.

La conexion a una red no es siempre posible. Normal-
mente, hay problemas en las llamadas cuando se entra a
un gran edicio o cuando se circula por las autovias. La
conexion de datos es ain peor, siendo ésta en la actual-
idad atin bastante cara para el usuario medio. Debido
a esto, el usuario preferira descargar los datos una vez y
sincronizar en vez de pagar por cada acceso.

En este contexto aparece el problema de la sincronizacion
de datos. Es necesario mantener los dispositivos actual-
izados y operacionales incluso cuando no hay disponible
una conexion. Los cambios hechos mientras que el dispos-
itivo esta desconectado tienen que ser transmitidos a los



demas dispositivos implicados tan pronto como se recupere
la conexion.

La informacion a sincronizar podria incluir todos los posi-
bles tipos de datos existentes en estos dispositivos, tales
como fotografias, musica o documentos. Sin embargo, este
proyecto fin de carrera se centra en la sincronizacion de la
informacion personal del usuario: contactos, calendarios,
tareas, notas y correos electronicos. Este conjunto de in-
formacioén personal de un usuario es normalmente conocido
como PIM, de sus siglas en inglés Personal Information
Management.

La sincronizacion de informacion personal conlleva una, se-
rie de dicultades propias de las caracteristicas de este tipo
de datos. Seran descritos estos retos mediante un sencillo
ejemplo, una lista de contactos, en la seccion 1.2. Entre
otros, nos encontraremos el problema de cémo almacenar
la informacién, como diferenciar los diferentes registros o
como resolver conflictos cuando el mismo elemento ha sido
modificado en diferentes dispositivos.

El objetivo de este proyecto fin de carrera es el de conseguir
la sincronizacion de la informacion personal del usuario
entre uno de los teléfonos moviles mas vendidos actual-
mente, el iPhone de Apple, y una de las aplicaciones de
escritorio méas utilizadas en Linux, Evolution. Habra que
solventar bastantes problemas en el camino debido a que
la API (Interfaz de programacion de la aplicacion, de las
siglas en inglés: Application Programming Interface), y
los servicios en general ofrecidos por Apple, siguen una
politica bastante cerrada y restrictiva. Dentro de las solu-
ciones existentes, encontraremos que la sincronizacién no



es posible para las tareas de forma bidireccional, por lo
que desarrollaremos nuestro propio gestor de tareas capaz
de ser sincronizado entre el iPhone y Evolution. Para ello
utilizaremos una nueva base de datos, CouchDB, que seré
explicada con mayor detalle en las siguientes secciones.

Estandares y protocolos

El proyecto fin de carrera comienza con un estudio detal-
lado de los diferentes estandares y protocolos existentes
para la sincronizacion de datos. En particular, son pre-
sentados los siguientes:

o SyncML (Synchronization Markup Language): proto-
colo de sincronizacion basado en mensajes XML (eX-
tensible Markup Language).

« WebDAV (Web-based Distributed Authoring and Ver-
sioning): conjunto de extensiones para HTTP (Hy-
perText Transfer Protocol) que permiten la edicion y
gestion de ficheros en servidores web remotos.

« CalDAV (Calendar Distributed Authoring and Ver-
sioning): la extension para calendarios, permitiendo
el acceso a calendarios remotos.

— iCalendar: éstandar existente para la representacion
de informacion relativa a calendarios.

« ActiveSync: protocolo de sincronizaciéon propietario
desarrollado por Microsoft. Utilizado en la actualidad
también por grandes empresas como Google o Apple
que adquirieron la licencia para su uso.



« LDAP (Lightweight Directory Access Protocol): pro-
tocolo de aplicacion para la consulta y modicacion de
datos usando servicios de directorios sobre TCP/IP.

Partes de la soluciéon

A continuacion se estudian las partes involucradas en la
solucion, detallando cuales son las opciones que ofrecen
cada uno a la hora de sincronizar la informaciéon personal.
Son principalmente tres:

« Teléfono movil: la solucién se centrard en iPhone,
pero también seran comentadas las alternativas val-
idas para Android. Se diferenciarédn entre soluciones
nativas y aquellas que hacen uso de aplicaciones ex-
ternas.

« Aplicacion de escritorio que gestiona la informacion
personal: Evolution. Igualmente, soporta algunos es-
tandares, como WebDAYV, de forma nativa, mientras
que necesita el uso de programas externos para otros,
como SyncML.

« Servidor para la sincronizaciéon de las partes anteri-
ores: consideraremos tanto alternativas a instalar en
nuestros propios servidores, como soluciones comer-
ciales. Entre las posibilidades para un servidor pro-
pio, los candidatos tienen que soportar los estandares
SyncML (para contactos) y CalDAV (para calendar-
i0s), al ser las nicas alternativas posibles para la sin-
cronizacion de estos datos entre el teléfono y Evolu-
tion. Respecto a soluciones comerciales, Google es la



mejor alternativa en cuanto a facilidad de uso y efi-
clencia.

Hasta este punto so6lo se ha hablado de protocolos para la
comunicacién de los cambios entre los diferentes disposi-
tivos. También es importante analizar déonde y cémo es al-
macenada la informacion. Este proyecto compara y detalla
las bases de datos relaciones, las bases de datos orientadas
a objetos y los sistemas de control de versiones en relacion
a sus ventajas en cuanto a un sistema de sincronizacion.
Finalmente, CouchDB, una base de datos orientada a ob-
jetos es elegida, debido a sus buenas caracteristicas para
la replicacion y la gestion de conflictos, procesos primor-
diales en la sincronizacion de datos, més importantes que
la estructuracion de los datos en si.

Solucién propuesta y sus limitaciones

La parte mas dificil de un proceso de sincronizacion es la
deteccion y resolucion de conflictos. Un conflicto ocurre
cuando el mismo elemento ha sido modificado en diferentes
dispositivos. Al sincronizar, hay que detectar este conflicto
y resolverlo de forma que no se pierda informaciéon o que
ésta sea erronea.

En la sincronizacion de informacion personal, la situacion
ideal es la fusion de los datos siempre que esta operacion
sea compatible. Por ejemplo, si en el dispositivo A se
anade un nuevo campo de correo electréonico y en el dis-
positivo B se anade un nuevo teléfono para un mismo
contacto, al sincronizar ambos dispositivos deberfan de



disponer de ambos campos en ese contacto. Cualquier
otra solucion seria suboptima.

El mayor problema aparece cuando esta fusiéon no es posi-
ble. Por ejemplo, el dispositivo A modifica un namero de
teléfono de un contacto y el dispositivo B hace lo mismo 5
minutos después. Para resolver este tipo de conflictos, la
solucion més logica es seguir la politica “El méas reciente
gana’, ya que es la informacién més actualizada de las
dos opciones disponibles. Para poder actuar de este modo
necesitariamos una etiqueta de tiempo que nos permita en
el servidor comparar y elegir el més reciente.

Esta seria la solucion ideal para la sincronizacion de in-
formacion personal. Sin embargo, no es posible llevarla a
cabo en la practica ya que ninguna de las tres partes im-
plicadas cumple los requisitos necesarios. Por una parte,
los clientes no anaden los campos necesarios (la etiqueta
de tiempo y el identificador tnico). Por otra parte, los
servidores no soportan la politica “El més reciente gana”
y la fusion estd normalmente bastante limitada.

Implementacién de la solucién

Como se ha comentado anteriormente, la tnica posibilidad
para sincronizar el iPhone y Evolution mediante nuestro
propio servidor y con alternativas de codigo abierto, es el
uso de los estdndares SyncML para contactos y CalDAV
para calendarios. En el servidor se pueden utilizar op-
ciones que soportan ambos protocolos, como eGroupware,

o servidores dedicados, como Funambol para SyncML y
DAViCal para CalDAV.



Si usar un servidor comercial no es un gran problema,
la combinacion de Google (para contactos y calendarios)
y Toodledo (para tareas) puede constituir una buena al-
ternativa. Al ser la opcion que mejor funciona, nos cen-
traremos en su desarrollo, intentando solucionar el prob-
lema, de sincronizacion de tareas, no posible en este caso
entre Evolution y el servidor.

Para ello, desarrollaremos una nueva aplicacion de gestion
de tareas, consistente en una aplicaciéon web para iPhone,
un plugin para Evolution y un servidor basado en CouchDB
con una interfaz web para la gestion de dichas tareas.

Aplicacién web

Para el desarrollo de la aplicacion web se utiliza CouchApp,
un conjunto de scripts que permiten construir aplicaciones
basadas en CouchDB utilizando HTML y CSS para la
parte de presentacion, y JavaScript para la implementacion
de la funcionalidad. Esta aplicacion utiliza la liberia JQuery
para realizar las consultas Ajax a la base de datos.

De esta forma se construye una interfaz web que permite
anadir, eliminar y consultar tareas almacenadas en una
base de datos CouchDB. Si la aplicaciéon web es cargada
desde el iPhone, se muestra una version adaptada al dis-
positivo movil, que hace més facil la gestion de las tareas.

Plugin para Evolution

Para poder sincronizar las tareas entre Evolution y CouchDB
serd necesario el desarrollo de un nuevo plugin. Este plugin
se basara en dos librerias ya existentes:



« Couchdb-glib: una libreria basada en GLib que per-
mite el acceso a bases de datos CouchDB.

« Evolution-couchdb: Evolution backend para el acceso
a bases de datos CouchDB.

Sera necesario programar el backend para calendario y, en
particular, para las tareas, ya que la tnica parte imple-
mentada que existe es la de contactos.

Para anadir una nueva funcionalidad a Evolution primero
hay que utilizar EPlugin. El objetivo es mostrar una
nueva ventana de configuracion cuando una lista de tareas
sea creada, ofreciendo al usuario la posibilidad de utilizar
CouchDB como sistema de almacenamiento. Este pro-
ceso se realiza en un documento XML y es detallado en el
proyecto en la seccion 5.2.2.2.

A continuacion, hay que desarrollar el backend para cal-
endarios. Para ello es necesario presentar primero EDS
(Evolution Data Server). EDS gestiona el acceso a con-
tactos, calendarios y tareas. Es un elemento CORBA que
permite el acceso concurrente de varios clientes a la misma
informacion con notificaciones de cambios. Puede ser ex-
tendido a través de la creacion de plugins para diferentes
tipos de fuentes de contactos/calendarios/tareas (en este
caso en particular, CouchDB) mediante la programacion

de una librerfa compartida que sera cargada al inicio de
EDS.

Para la creacion de esta libreria para tareas almacenadas
en CouchDB necesitamos desarrollar el backend para cal-
endarios. Este backend se encarga de la comunicacion en-
tre EDS y la fuente de calendarios/tareas en particular.



10

En este caso tendra que traducir las operaciones realizadas
en Evolution (crear una nueva lista de tareas, anadir una
nueva tarea, ... ) a las operaciones necesarias en la base
de datos y viceversa.

Replicaciéon y gestion de conflictos

De esta forma podremos crear nuevas listas de tareas al-
macenadas en CouchDB. El tltimo paso consiste en sin-
cronizar la base de datos local del ordenador personal
que ejecuta Evolution con la base de datos en el servidor.
CouchDB ofrece la operacion de replicacion. Este proceso
puedo ser automatizado y programado, en este proyecto

se describe como realizarlo desde la interfaz web ofrecida
por CouchDB.

Para finalizar, la aplicacion tiene que implementar la politica
adecuada para la gestion de conflictos. CouchDB elige una
version como ganadora, dejando la version perdedora al-
macenada hasta que se realice un proceso de compactado.
Por lo tanto, la aplicacion es la responsable de recuperar
estos datos si la opcion de fusion de los datos es posible,
como se mencion6 anteriormente.

Este proyecto fin de carrera desarrolla la parte de tareas,
permitiendo la sincronizacion entre iPhone y Evolution de
este tipo de informacién mediante el uso de CouchDB. Se
propone como posible linea de trabajo a seguir el trasladar
este sistema al resto de datos que componen la informacion
personal (contactos, calendarios, notas, mails), de manera
que todo trabaje en un sistema totalmente implementado
en codigo abierto y con la posibilidad de gestionar nue-
stro propio servidor, sin depender de servidores comer-



11

ciales donde la privacidad y la gestion de nuestros datos
no es la 6ptima.



List of Figures

1.1

1.2

2.1
2.2

3.1

3.2

4.1

5.1

5.2

5.3
5.4

Personal Information Management
Synchronization . . . . . . ... ... 17

Replication as key of a synchroniza-

tion system . .. ... ........ 18
Typical sync required scenario . .. 21
SyncML Synchronization Process . 26

Solutions parts: mobile phone, desk-
top application and the sync system. 29

iPhone Settings for Contacs, Mail,
Calendars, ... . ... ... ... ... 31

Conflict resolution time line . . . . . 40

Synchronization system based on our
OWIlL SEITVETr . . . . « v v v v v v v o o 45

Solution based on commercial servers 49
Solution based on CouchDB for tasks 50

Solution architecture . . . . . . . .. 51

12



LIST OF FIGURES

9.9
5.6
5.7
5.8

5.9

5.10
5.11
5.12

6.1

Web Application . ... ... ....
Web page version for iPhone . . . .
Task plugin for Evolution-CouchDB

Configuration window for a new task
list ... ... ... ... ..

New task and task list windows
CouchDB view for the task list . . .
Replication scenario . ... .. ...

Replication configuration . . . . ..

Proposed Solution based on CouchDB
completely . . . ... ... ......



Contents

Introduction

1.1 Thesis Motivations . . . . . . . .. .. ... ..o
1.2 Thesis Objectives . . . . . . . . . oo oo
1.3 Thesis Outline . . .. .. ... .. e

Literature Review

2.1 User requirements . . . . . .. .. .. ... e
2.2 The PIM synchronization challenge . . . . . . .. ... ... ...
23 Standards . . . . ... Lo
2.3.1 The SyncML Protocol . . . . .. ... ... .. ......
232 WebDAV . . ...
233 CalDAV . . . ..
234 iCalendar . . ... ... ... ...

Solution Parts

3.1 Mobile Phones Sync Capabilities . . . . ... ... ... ... ..
3.1.1 iPhone. . . .. .. ... .. ...
3.1.2 Android . . . ... ...

3.2 Desktop Applications Sync Capabilities . . . ... ... ... ..

3.3 Synchronization Servers . . . . .. .. ... oL oL
3.3.1 Basedonownservers . ... ................
3.3.2 Commercial servers. . . . . . . . ... ... ...

3.4 Storage Systems . . . . . .. ...

14

16
16
17
18

20
20
21
23
24
26
27
28



CONTENTS 15

4 Solution: Approach 39
4.1 Conflict Resolution . . . . . . . ... .. ... oL oL 39
4.1.1 Merging . . . . . ..o 40
4.1.2 Newer wins . . . . . . . . . . oo e e 40
4.2 Limitations . . . . . . . .. Lo 41
4.2.1 Limitations due to the clients . . . . . . ... ... .. .. 41
4.21.1 iPhone . ... ... . ... ... ... .. 0. .. 41
4212 Evolution . . . . ... ... ... 41
4.2.2 Limitations due to the servers . . . . . . . . .. ... ... 42
5 Solution: Implementation 44
5.1 Synchronization Systems . . . . .. .. ... ..o, 44
5.1.1 Our own server: SyncML and CalDAV . . . .. ... ... 44
5.1.1.1 Server: eGroupware or Funambol4+DAViCal . . 45
5.1.1.2 iPhone: Funambol SyncML client and native

CalDAV . . . . . 46
5.1.1.3 Evolution: GroupDAV and SyncEvolution . . . 47
5.1.2 Commercial servers: Google and Toodledo . . . . . . . .. 48
5.1.2.1 iPhone . ... ... ... ... .. 48
5.1.2.2 Evolution . . . ... ... .. ... ... ... .. 49
5.2 The missing link: a task application based on CouchDB . . . . . 50
5.2.1 Task Manager Web Application . . . .. ... ... ... 51
52.1.1 CouchApp . ... ... . ... ... .. ... 51
5.2.1.2 The task manager web application . .. .. .. 52
5.2.2 CouchDB in Evolution Tasks . . . .. ... .. ... ... 55
5.2.2.1 Installation . . . . .. .. ... ... ... 55
5.2.2.2 Development of a task plug-in for Evolution . . 56

5.2.2.3 Evolution configuration to manage CouchDB task
lists . . . . . . . 61
5.2.3 Replication . . . ... ... ... L. 63

6 Conclusions 65



Chapter 1

Introduction

In this chapter it is going to be described the motivations, objectives and the
outline of the thesis.

In the motivation part, the problem of synchronization is presented. The in-
crease of personal devices and the fact that connections are not always available
make necessary the design of a synchronization system. Data must be consistent
in every device.

In the objectives part, the aim of the thesis is presented. A synchronization
solution between the iPhone and Evolution (a personal information manager
for Linux) is looked for, trying to achieve it through open source protocols and
with our own server. In the way to this solution, a missing link will be found,
so a tasks lists application based on CouchDB is developed.

In the outline part the structure of the thesis is presented. Each chapter is
briefly described and the outline is argued.

1.1 Thesis Motivations

Every user manages a series of information in his daily life. That is contacts,
calendars, mails, tasks and notes. The problems arise when you have several
devices, for example a mobile phone (iPhone) and a laptop, and each one of
these devices manages these data with its own applications (Evolution on the
laptop). It is evident that the user will like to have the PIM (Personal Infor-
mation Management) data up-to-date in every device, that means to have them
synchronized (see figure 1.1).

Synchronization is a fundamental component in every wireless network; data
must be accordant when accessed by multiple users who are not always con-
nected. Every data changed in one device should be reflected in all others as

16



CHAPTER 1. INTRODUCTION 17

Figure 1.1: Personal Information Management Synchronization

soon as they are online. For example, when a phone number is added in some-
one’s device, it should be reflected in the other devices contacts list.

Synchronization process is crucial nowadays because wireless devices are not
always connected. Coverage is not universal, connections often get dropped and
data contracts in mobile phones are still too expensive. These devices have to be
able to work offline and synchronize with the world when they are back online.

There are several commercial solutions for the most common mobile phones, but
they are sometimes quite expensive and they only work under certain conditions.
I fix in this thesis the missing parts in the existing solutions for synchronization
between iPhone and Evolution. The biggest challenges come from the iPhone
with its closed operation system, making synchronization difficult based on open
source software.

1.2 Thesis Objectives

The aim of this thesis is to design a system able to synchronize the PIM data
between the iPhone and one of the most common desktop application in Linux,
Evolution in GNOME. The intention is to use open source alternatives wherever
it is possible.

To achieve this goal, the parts involved in the solution are studied. Those are
the iPhone, Evolution and the tested servers. Then, an approach to the solution
is made, describing which will be the ideal behaviour for a PIM synchronization
system. Taking into account the limitations of the involved parts, a implemen-
tation of the solution is made, finding a missing link in this system. To fix that,
a task lists application is built using CouchDB as storage system due to its good
replication features.

The clients need to store the data locally in order to work offline. When they
come back online, a replication process is needed between the local database in



CHAPTER 1. INTRODUCTION 18

Conflicts

Figure 1.2: Replication as key of a synchronization system

the client and the database in the server. In this way it is achieved a consistent
state in the data, sending each other the changes made meanwhile the connection
was not possible. In this replication process, conflicts can occur. The same item
has been changed in both instances of the database and a decission has to be
taken in order to leave data in a consistent way (see figure 1.2). The optimal
solutions in order to resolve these conflicts will be presented.

1.3 Thesis Outline

This section describes briefly the contents of each chapter:
Chapter 1: Introduction

The introduction chapter is divided into three parts. A general introduction is
made and the motivations, goals and structure of the thesis are discussed.

Chapter 2: Literature Review

This chapter is composed by three parts: The “User requirements” part explains
where the problem of synchronization comes from. The “PIM synchronization
challenge” describes the typical problems found in the synchronization of con-
tacts and other personal information. Finally, in “Standards” are presented the
protocols involved in the implemented solutions.

Chapter 3: Solution Parts

This chapter is divided into four parts: “Mobile Phones Sync Capabilities”
describes the synchronization protocols available for the iPhone and Android,
“Desktop Applications Sync Capabilities” makes the same with Evolution, “Syn-
chronization servers” presents the synchronization protocols supported by the
tested servers and, finally, “Storage systems” introduces CouchDB comparing it
with other kind of databases and arguing why it has been chosen for the tasks
application to develop.



CHAPTER 1. INTRODUCTION 19

Chapter 4: Solution: Approach

The main challenge in a synchronization system is the conflict resolution. This
chapter describes in its first part how this conflict resolution is optimal for a
PIM synchronization system. The second part presents the limitations found in
the involved parts in order to achieve this ideal system.

Chapter 5: Solution: Implementation

This chapter is divided into two main parts. The first one implements the syn-
chronization systems with existing solutions, differentiating between commercial
servers and our own server. In this implementation, a missing link is found re-
garding the task lists synchronization. In order to fix that, the second part
explains the development of a task application based on CouchDB. This appli-
cation is composed of a web user interface, accessing the database through a
JavaScript, and a plugin for Evolution, accessing CouchDB with a task backend
built for this purpose.

Chapter 6: Conclusions

The conclusions achieved in the development of this thesis.



Chapter 2

Literature Review

This chapter describes where the problem of contact synchronization comes
from, what is already known about this problem and what other methods have
been tried to solve it. Taking into account the user requirements and the syn-
chronization challenges, the existing standards for synchronization will be pre-
sented focusing in the open source alternatives.

2.1 User requirements

The proliferation of mobile computing devices makes necessary the access to
the data wherever the users are: in powerful and internet-connected machines
usually in house or the office and where these powerful connections are not
available, most frequently with a mobile phone or laptop outside, often only
weakly or intermittently connected to a network.

Connecting to a network is not always possible. Very frequently, you can lose a
call when entering inside a building or when you are driving by a highway. Data
coverage is even worse. Moreover, mobile operators usually charge per byte or
minute, so users will naturally prefer downloading once and syncing over paying
per each access.

In this context appears the inherent problem of data synchronization. It is
necessary to keep all the devices up-to-date and operational even when not
online. Changes made when the device is offline should be reflected in the
other devices as soon as the connectivity is available. You can observe a typical
synchronization scenario in the figure 2.1. This sync session can occur in the
background without the attention of the user.

To achieve this synchronization, a data synchronization protocol is needed. It
must identify the changes quickly, resolve possible conflicts and propagate up-
dates to various synchronizing devices. The information to synchronize include

20



CHAPTER 2. LITERATURE REVIEW 21

Remote Synchronization

Company
DBand intranet

Internet

El
=
-

Laptop g.li

Camera

User

e
— Y

Phone

Printer

Local Synchronization

Figure 2.1: Typical sync required scenario

every kind of file available in these devices, as music, pictures or documents,
but the most common requirement for users is to synchronize the personal in-
formation: that is contacts, calendars, todo/tasks, mails and notes. This kind
of information presents several particularities that will be studied in the section
2.2.

2.2 The PIM synchronization challenge

To understand the challenge presented in PIM synchronization, a practical ex-
ample is going to be studied: a list of contacts, one small piece of many appli-
cations and one of the main piece of our solution.

The first point to consider is how the data are stored: as a plain text file, a XML
file, a database or in an object store. Being a list compound of several contacts,
we are going to store it in separate records. Each record will be built with
descriptive information about a contact: name, address, phone number, and so
on. Here, the first problem comes up. There could be two contacts with the
same name or with the same address. To differentiate them, a unique identifier
is needed. So we aggregate a new field to each record with this identification.
The information to store would be something similar to the table 2.1.

Database replication is a well understood problem, but PIM data is special
in many ways. The challenge involves keeping the list of contacts correct as
changes are made. Some changes are made on the server (if it exists) and some
changes are made on a mobile device. Next, through some simple scenarios, it



CHAPTER 2. LITERATURE REVIEW 22

| Contact ID | Name | Address | Phone Number |
102 Stefan Miiller Neuforgasse,13 0043611545454
215 Jane Smiths | Wiahringer Strasse,55 | 0043665464687

Table 2.1: Example of typical contact records

is going to be presented the most common problems in PIM synchronization.

ADDING A CONTACT

To achieve efficient data synchronization, only changes to the data must be sent
- we want to send only the new records. For that, you need to pick out the new
contacts from all the others. A possible solution would be to add a timestamp
to the table and track the last time you synchronized.

In other way, the new record needs a Global Unique ID (GUID), and yet the
mobile device does not have access to records being added by others users on
other devices. To guarantee the uniqueness of the key value some solutions are
possible. One mechanism is to use Universal Unique Identifiers (UUIDs) — long
strings of alphanumeric values constructed from device-specific and time-specific
data in such a way as to be guaranteed unique. Another way is to partition the
set of possible keys across the mobile devices.

DELETING A CONTACT

This scenario presents even more difficulties than the last one. The mobile user
deletes the record from the list of contact on her mobile device. That delete
operation needs to be sent up to the other devices as soon as possible, but the
record is no longer present to be sent.

To make delete action synchronization possible, you would need to hold a track-
ing table that keeps deleted rows around until the delete operation has been
sent to the other devices. After a confirmation from these devices, the tracking
table has to be cleared out in order to not send it again.

UPDATING A CONTACT

An update operation about the same contact has been made in two synchroniz-
ing devices, but the first one to update their local data is unable to synchronize
his device until the next day, while the second one synchronizes immediately.
When the first device synchronizes the next day, a conflict occurs. The correct
behaviour would be not replacing the newer data (sent by the second one before)
if we are talking about different devices of the same user. In other situation, a
different rule could be applied.

The synchronization system needs to identify the fact that a conflict has oc-
curred: the same record has been changed in two different mobile devices, and



CHAPTER 2. LITERATURE REVIEW 23

just applying the changes in the order they are synchronized does not always
do the right thing. It should take the right action to resolve the conflict: in this
case, keep the later of the two times.

OTHER TASKS TO TAKE INTO ACCOUNT

This is a substantial list of tasks for a synchronization system to implement,
but there are more. These scenarios were well-defined and with a set of rules.
The devices share the same data format and all the conditions were ideal. In
the real world, things change:

e Not always is possible a GUID. Many of the most common exchange for-
mats for PIM data (as vCard 2.1/3.0 or vCalendar) don’t include a manda-
tory UID property.

e Without a GUID, it is necessary to compare the content of items to identify
matches. The problem arises when many different representations of the
same information are allowed. Moreover, some devices are more limited
than other ones. For example, a desktop software can support photo and
several email addresses while a mobile is not able to support that.

e Previously to the synchronization, it is not possible to know which fea-
tures are supported by the other peer, so any assumptions can be made.
The solution must be interoperable with existing devices. The part more
problematic could be when receiving an item back from an unknown peer.
If a property is missing, has it been removed by the user or has the peer
been unable to store it?

Moreover, in a real environment we will find many users, intermittent wireless
networks, no access to the devices and so on, in comparison with a test scenario.
Performance must be considered as well. The system must be optimized to scale
up to many users synchronizing simultaneously, providing separate thread pools
to manage database connections; configurable timeouts to ensure that resources
are used properly and a long etcetera.

Finally, other features can be necessary too. Perhaps some changes are more
urgent than others, and need to be synchronized with higher priority than the
remainder; maybe secure authentication at each point in the chain is mandatory
or data need to be encrypted.

2.3 Standards

This chapter presents the most important standards for data synchronization.
These standards will constitute the basis for the solutions presented in the thesis.
First, SyncML is introduced, being a common data synchronization protocol.



CHAPTER 2. LITERATURE REVIEW 24

Then, WebDAV is described, an HTTP extension for editing and managing files
collaboratively on remote web servers. For calendar, a special extension exists,
CalDAV. It allows us to access scheduling information on a remote server. For
storing this information, a special format is used, iCalendar, a standard to
represent events, meeting requests and so on.

Data synchronization is defined as “the process of establishing consistency among
data from a source to a target data storage and vice versa and the continuous
harmonization of the data over time”. To be successful in this process, the
two sets of data need to be modified properly and a conflict resolution policy
must be followed. A conflict occurs when the same data element is modified in
both sets in an inconsistent way, being these conflicts the main challenge in the
synchronization process.

For this communication process it is necessary a synchronization protocol. The
main characteristics of this protocol have to be the following ones:

e Identify a particular database or a single record in a data base with the
addressing of the data sets.

e Communicate modifications with standard commands defined for this goal.

e Required features, transport protocol and so on for exchanging these mod-
ifications.

In general, each company has used its own data synchronization protocols un-
til now. These proprietary solutions only work in a subset of devices, being
able to access only to a small set of networked data. The absence of a single
synchronization standard poses many problems for end users, device manufac-
turers, application developers and service providers. With this purpose - the
development and promotion of a single, common data synchronization protocol
used industry-wide — SyncML was born.

2.3.1 The SyncML Protocol

SyncML is a specification for a common data synchronization framework based
on the exchange of XML-based messages between networked devices. SyncML is
sponsored by companies like Motorola, Nokia, Ericsson, IBM and many others.

The SyncML specifications include:

e A representation protocol, which defines the XML messages format.

e A synchronization protocol which defines how SyncML messages shall be
combined together in order to accomplish a synchronization session.

e The binding for different transport protocols (HTTP, OBEX).



CHAPTER 2. LITERATURE REVIEW 25

e A protocol for device management

The typical scenario is a client-server architecture, where the client contains a
sync agent and usually sends its modifications first. The server implements both
the server-side synchronization agent and the synchronization logic including
procedures to interpret the modifications, to discover and manage conflicts and
to generate return messages.

SyncML defines seven synchronization modes:

e Two-way sync: the most common mode whereby client and server ex-
change modifications on their data.

o Slow sync: mode used for recovering from an inconsistent state. All the
client database records are compared, field by field, with the ones on the
server.

e One-way sync from the client only, from the server only.

e Refresh sync from the client only, from the server only: in these modes the
client or the server sends its entire database which replaces its database
in the other.

e Server alerted sync: the server sends an alert to the client notifying it of
the mode to be used.

Other basic concepts about SyncML are the following ones:

Synchronization anchors: used to know which was the last synchronization
successfully completed. Two anchors are needed: the last anchor repre-
senting the last sync performed and the next anchor representing the cur-
rent sync. These anchors are exchanged at the beginning of the session.
The server can detect if the last synchronization encountered problems
comparing the given Last with the stored anchor. If they do not match,
client and server are out of sync.

ID Mapping: server and client usually use a different ID for the same item, so
the server needs to keep a mapping table between the client Local Unique
IDs (LUID) and the server Global Unique IDs (GUID).

Conflicts: the same item has been modified on both server and client. The
client is notified of the error condition by means of a status code.

Security: SyncML allows two authentication methods: basic and MD5.

Addressing: entities involved in synchronization (databases, items, etc) can be
addressed through a named convention based on URIs (Uniform resource
Identification)



CHAPTER 2. LITERATURE REVIEW 26

Server

§ Phg #0: Server initiates Sync ! ]

optianal

Asks foe syne

Ji Phg #1:Client initalization package to server

| checks sate
Pig &2 Server Initialization to client l :r,:,:;,,w
mmmm I Pkg #3: Sync package from client to server
T 7 Appties
| changes and
Pkg #4: Status and Sync package ‘ | mergesdan
Updates its : i f :
T amate || kg #5:Data Update Status package to server_ |
- ] Undates
Pkg #6:Map Acknowledgement to client ‘ ::T""

Figure 2.2: SyncML Synchronization Process

Device capabilities: the server can apply proper optimizations according to
the remote device resources and features (e.g. database types, available
memory, and transmission speed). They should be sent only if requested.

The complete SyncML synchronization process requires three steps (see figure
2.21):

e The initialization where device characteristics and synchronization re-
quirements (as type of sync, protocol features supported, which database
needs to be synced) are sent. Packages from #0 to #2 in the figure.

e The modifications sent as a well formed XML document, with a header
(including the routing info, database addressing and protocol versioning)
and a body (with one or more sync commands). Packages from #3 to #4.

e The client mapping step, composed of the packages #5 and #6, updates
the mapping table in the server.

2.3.2 WebDAV

WebDAV means Web-based Distributed Authoring and Versioning. It is a set
of extensions to HTTP (Hypertext Transfer Protocol) to allow users to edit and
manage files collaboratively on remote web servers. It is a standard defined in
RFC 4918 with an incremental update defined in RFC 2518.

Its main features are:

ISource: http://max.berger.name/research/syncml/syncmlTimeline.png



CHAPTER 2. LITERATURE REVIEW 27

Locking: for overwrite prevention.

Properties: information about the author, modified date, etcetera.

Name space management.

Collections: creation, removal and listing of resources.

The protocol defines new methods and headers for HTTP. For example, COPY
for copying one resource from one URI to another or LOCK to put a lock on the
resource. You can find all the added methods and headers and its function in
the RFC mentioned above.

This standard has many implementations in Linux. For example, KDE has
native WebDAV support. This means that Konqueror or any other KDE appli-
cation can access to a WebDAV server without external components.

Among the different existing extensions, the most useful ones for this thesis are:

o For calendaring, CalDAV: A protocol allowing calendar access via Web-
DAV. CalDAV models calendar events as HTTP resources in iCalendar
format, and it models calendar containing events as WebDAYV collections.

e For groupware, GroupDAV. It allows client/server groupware systems to
store and fetch objects (calendar entries, contacts ...) instead of web

pages.

Next, CalDAV and the iCalendar format will be studied in more detail because
they are main pieces in the solutions shown in this thesis.

2.3.3 CalDAV

As T mentioned above, CalDAV is a calendaring extension to WebDAV. It is an
Internet standard, defined in RFC 4791, allowing a client to access scheduling
information on a remote server. Multiple clients can access to the same informa-
tion, so cooperative planning and information sharing is possible through this
standard.

The format used for storing the data is iCalendar. You can find more detailed
information about this format in the section 2.3.4.

The architecture followed by CalDAV consist on data (events, tasks, free-busy,
info and notes) stored in directories (collections) where multiple items (re-
sources) reside.

Among the existing implementations, we can find it working on the iPhone
(firmware 3.0 and forward versions) and Evolution.



CHAPTER 2. LITERATURE REVIEW 28

2.3.4 iCalendar

iCalendar is a standard, defined in RFC 5545, for representing meeting requests,
tasks or any other kind of scheduling information. Its main purpose is the shar-
ing of calendars, being independent of the transport protocol (email, WebDAV,
SyncML).The extension used for this file format is .ics.

The first line of an iCalendar object must be BEGIN:VCALENDAR, and the last
line END:VCALENDAR. The body is made up of a list of calendar properties and
one or more calendar components. An example for a task could be:

BEGIN:VCALENDAR

VERSION:2.0

PRODID:-//ABC Corporation//NONSGML My Product//EN
BEGIN:VTODO

DTSTAMP:20100130T134500Z

SEQUENCE: 2

UID:uid4@hostl.com
ORGANIZER:MAILTO:unclesam@us.gov

ATTENDEE ; PARTSTAT=ACCEPTED:MAILTO: jgpublic@example.com
DUE:20100415T235959

STATUS : NEEDS-ACTION

SUMMARY :Submit Income Taxes

END:VTODO

END:VCALENDAR

It is a task due on April 15, 2010 with summary Submit Income Tazes, and
jgpublic@ezample. com as attendee. The field SEQUENCE : 2 means the element
has been modified twice since it was created.



Chapter 3

Solution Parts

The development of a solution for this thesis involves three main elements.
In this chapter, they will be presented and studied, detailing their principal
features.

First, we have a mobile phone. The solutions will be focused on iPhone but
Android will be considered as well. Second, we have a desktop application
to manage our personal information. Here, Evolution will be the chosen one.
To achieve the PIM synchronization between these two elements, the mobile
phone and the desktop application, a third system is required. I will focus on a
solution based on our own server, without depending of third-party companies,
but commercial solutions will be presented as an alternative of them when they
do not complete all our requirements.

For this synchronization system based on our own server, three alternatives ex-
ist in order to store the information. There will be compared the relational
databases, the object-oriented databases and the version management systems.
CouchDB, a object-oriented database, will be the chosen one for the task appli-
cation because of its good replication features.

Figure 3.1: Solutions parts: mobile phone, desktop application and the sync
system.

29



CHAPTER 3. SOLUTION PARTS 30

For the communication between devices, the standard protocols presented in
the literature review, SyncML and CalDAV, will be used.

So let’s start with the synchronization capabilities of our two main elements,
the mobile phone and the desktop application.

3.1 Mobile Phones Sync Capabilities

The iPhone does not have a full and intuitive solution for PIM synchronization.
The different personal information (contacts, calendars, tasks ...) have to be
synchronized by means of different methods. This section presents the capa-
bilities this phone offers us, completing it with the possibilities for Android,
where the openness in the operating system results in an easier synchronization
process.

3.1.1 iPhone

The possibilities to synchronize contacts and calendars in this device are very
limited, even more if the intention is to make it using open source solutions.
To describe the capabilities for synchronization in iPhone, I am going to dis-
tinguish between native capabilities and capabilities achieved by third-party
applications. Take into account that some of these features are only available
for iPhone OS 3.0 and forward versions.

NATIVE SOLUTIONS

If you go to Settings-Mail, contacts, calendar -Add account in your iPhone,
you will find the following options related with synchronization (see figure 3.2):

e For contacts and calendars:

— Microsoft Exchange: It uses the Exchange ActiveSync protocol
which provides push synchronization of contacts, calendars and emails
between ActiveSync-enabled devices. It is a proprietary protocol, but
licensed to some mobiles companies as Apple for iPhone or Google
for Android. This feature can be used to synchronize the iPhone with
any Microsoft Exchange server or with your Google account. There
is an open source alternative, OpenXchange, but the plugin needed
in the server for making it work with the iPhone is not available for
the community version, the paid version is required.

— Mobileme: a paid subscription-based collection of online services
and software offered by Apple. It includes storage, address book,
calendar, gallery, web site hosting and some other services.



CHAPTER 3. SOLUTION PARTS 31

Microqalt Mail
Exchange
Add HMail Account »
mobileme s
. Add LDAP Account >
Gmuil
Calendars
YAaHOO! MAIL Add CalDAV Aeeount »
- Add Subscribed Calendar ]
AOL &>

Other

Figure 3.2: iPhone Settings for Contacs, Mail, Calendars, ...

e For contacts in Other:

— LDAP (Lightweight Directory Access Protocol): an application pro-
tocol for querying and modifying data using directory services run-
ning over TCP/IP. It is a service very used in companies to have
access to the enterprise address book, but it is not suitable for syn-
chronization because it is not able to work offline.

e For calendars in Other:

— CalDAYV: this standard protocol has been presented already in the
section 2.3.3 on page 27. It allows users to synchronize their iPhone
calendars with a CalDAV server.

— Subscribed calendar: it adds events from a public calendar. Only
one-way synchronization, not valid for a full synchronization solution.

e For mails: there are several options. You can configure accounts for Gmail,
Yahoo mail, AOL and many others.

e For notes: the native application is very simple. It does not allow any
kind of synchronization natively. Through iTunes it is possible to sync
them with MAC OS X Mail or Microsoft Outlook.

To sum up, the native capabilities are much reduced. The only possibility
related with open source appears in calendars, with the use of the standard pro-
tocol CalDAV. If we relax this condition, the open source alternative, the free
option could be the use of Google to synchronize contacts and calendar through
Microsoft Exchange. If you need other alternatives, you can use OpenXchange
together with its plugin for iPhone or Mobileme from Apple, paying the required



CHAPTER 3. SOLUTION PARTS 32

amount. For mails the solution is almost complete. However, there are not na-
tive support for todo lists on this phone.

THIRD-PARTY APPLICATIONS

To complete the iPhone synchronization capabilities, some applications have
been built. However, due to Apple’s restrictions policy, these applications are
very limited.

e For contacts:

— SyncML: this standard protocol for synchronization has already
been described in the subchapter 2.3.1 on page 24 of this thesis.
There are several applications that let you to synchronize your con-
tacts in the iPhone with a SyncML server. For example, Funambol
or Synthesis.

e For calendars:

— SyncML: until the iPhone SDK 4, no calendar API was available.
At the moment of writing this thesis, the iPhone OS 4 is still not in
the market, so the existing applications are not able to synchronize
with calendar in iPhone.

e For tasks/todo:

— There are dozens of todo applications available for iPhone. Some of
them, as Toodledo, let you to synchronize tasks with Microsoft Out-
look, Apple’s iCal and other online todo lists. However, for Evolution
the synchronization can be made only in one way, from the cloud to
Evolution. This missing link will be fixed with the creation of a task
application able to synchronize with Evolution in the two ways. For
more details, go to the section 5.2 on page 50.

To conclude, at the moment only contacts can be synchronized with third-party
applications in the two ways. With the task application developed in this thesis
and the openness of the calendar API (on the iPhone OS 4), the possibilities
for a complete synchronization in the iPhone are going to be increased.

As it has been detailed, there is not a simple way to synchronize your personal
information in iPhone. The only open source alternative appears with the use
of a SyncML client for contacts and the configuration of CalDAV for calendars.
Let’s compare it with other of the most famous operating systems for mobile
phones at the moment, Android from Google.



CHAPTER 3. SOLUTION PARTS 33

| | WebDAV | LDAP | CalDAV | Google | Others
Mail p'e IMAP, POP, Exchange, ...
Contacts X be X
Calendar X X X
Tasks be X
Memos X X

Table 3.1: Synchronization capabilities for the different resources in Evolution.

3.1.2 Android

Android is an open source operating system and software stack for mobile de-
vices, being the project led by Google. The fact to be an open source solution
involves not to find so many restrictions as in the iPhone OS, although the
system is quite oriented to use Google services.

Contacts, calendars and mails are synchronized automatically with your Google
account. This synchronization with Google services can be completed with an
application for the synchronization of tasks (e.g. gTask).

If you prefer to store your data in an own server instead of Google servers, the
use of a SyncML client is an option. For example, Funambol is an open source
and quite complete server. It lets you to synchronize contacts, calendars, tasks
and notes with any SyncML server.

To finallize with the most common standard protocols for PIM synchronization,
the support for CalDAV at the present is not so good in Android. There is an
application, Calendar (CalDAV) Sync for Android by Hypermatix, with some
problems at the present!.

3.2 Desktop Applications Sync Capabilities

The synchronization capabilities of two of the most famous operating systems for
mobile phones at the present, iPhone OS and Android OS, have been presented
in the section 3.1 . Now, I am going to present the synchronization solutions
that desktop applications in Linux offer us to find common points between them.

Let’s start with the official personal information manager and workgroup in-
formation management tool for GNOME, Evolution. It is composed for mail,
calendars, contacts, tasks and memos. The table 3.1 collects the synchronization
capabilities for each one of these resources.

Those are the possibilities to synchronize Evolution with other devices in the
version 2.28.3 of the application. The synchronization with Exchange servers

I More details in http://wiki.davical.org/w/CalDAV_Clients/Calendar_Sync_for_Android



CHAPTER 3. SOLUTION PARTS 34

can be made with the use of WebDAV as well. Moreover, with the installa-
tion of specific plugins other alternatives can be used. The plugin system for
Evolution will be discussed in detail in the section 5.2.2.2 on page 56, where
an extension for this application will be built to allow synchronization with the
task application to be created in this thesis.

There are also external tools, like SyncEvolution, to synchronize data with Evo-
lution. It is able to synchronize contacts, appointments, tasks and memos with
a SyncML server using this standard.

3.3 Synchronization Servers

Now that we know the synchronization capabilities of iPhone and Android in the
mobile phone side, and Evolution in the desktop application side, we have to find
the common protocols that let us to achieve the synchronization between these
devices. We differentiate here between solutions based on our own server where
the information resides on it and commercial solutions where our information is
in an external server, no administrated for us.

Finally, with the available alternatives we will be able to propose a solution and
test in different scenarios in the following chapters.

3.3.1 Based on own servers

Due to the limited options presented by the iPhone, the only chance to synchro-
nize contacts with Evolution using our own server is through a SyncML server.
There are several open source servers supporting SyncML at present. In this

thesis eGroupware is going to be tested , a groupware server with support for
SyncML and CalDAV.

For calendars, the only chance to access iPhone appointments is through the
CalDAYV protocol, so we need a server with CalDAV support. There are specific
servers, like DAViCal, or other kind of servers which are able to work with this
standard, like eGroupware mentioned above.

Once the address book and the calendar information is in the server, the syn-
chronization options with Evolution are:

e GroupDAYV: it uses WebDAV to access to the contacts and calendars in
the server. It is not useful because it only works when a connection is
available, not offline.

e SyncEvolution: an external tool to synchronize PIM via the SyncML
protocol.



CHAPTER 3. SOLUTION PARTS 35

Relaxing the open source requirement, an OpenXchange server could be a good
option. You need to acquire the paid version and install the extension called
“OXtender for Business and Mobility”. The synchronization will be made
through the ActiveSync protocol, a no open source synchronization protocol,
as it was mentioned in the iPhone capabilities chapter. However, this solution
let you have your own server and synchronize contacts and calendar in an easy
way. You can find more information and prices on the next link:

http://www.open-xchange.com /en/mobility-solutions-en

3.3.2 Commercial servers

There are many options to store your PIM data in commercial servers, most of
them are not free. For the scenario required, with the iPhone and Evolution as
devices to synchronize, a good option is Google services.

Contacts, calendars and mails in your iPhone can be synchronized with your
Google account using the ActiveSync protocol, without requiring a third-party
application running in your device. The configuration process is described in
the section 5.1.2.1 on page 48.

Google also offers a task service integrated with its calendar. There is a cus-
tomized web page when access the service with the iPhone. However, if you
want to work offline and synchronize when the connection is available, you need
an external application (e.g. GeeTasks).

The problem with this solution is the synchronization between Google servers
and Evolution. This is based on a plugin for Evolution that only works online,
not being possible to manage your calendars and contacts when no connection
is available.

3.4 Storage Systems

Up to this point of the thesis, only protocols for the communication of the
changes between devices have been presented. Other important point to take
into account is the storage system used in each one of these devices. In this
section, CouchDB, the object-oriented storage system chosen for the task appli-
cation to be built, will be described comparing it with relational databases and
version management systems.

This comparation is focused on the synchronization features these systems presents.
CouchDB has been chosen because of its good replication process. For the goal
of this thesis, the synchronization of PIM, replication is more important than
data structure. So CouchDB will be detailed arguing its advantages in compar-
ison with other systems.



CHAPTER 3. SOLUTION PARTS 36

CouchDB has been designed to build modern software applications that tend to
be web-based, document-oriented and distributed in nature.

During the last decades, relational database management systems have been
used to build almost every application. There are lightweight, inexpensive and
well-document solutions with this model - like the open source MySQL - used in
millions of web sites. Its main characteristic is a strict schema-based structure.
This is ideal for some scenarios — like transaction systems — but it is not optimal
for new projects like blogs, wikis or forums which fit better with a document-
oriented database.

The main features of CouchDB are:
e Document-oriented database management system.
o Javascript-based view model for aggregating and reporting on data.

e Incremental replication with bi-directional conflict detection and resolu-
tion.

o Developed in Erlang OTP, a programming language with excellent con-
currency features.

These features are going to be described in more detail as follows:

DOCUMENT-ORIENTED DATABASE

The database is composed of documents. Each document is made up of fields
and values. These values can be strings, numbers, dates, boolean or even lists
of objects. Attachments can be included as well. For example, a document
representing a task could be similar to this one:

“Summary”: “Buy milk”
“Due date”: “1.June”
“Description”: “Go to the supermarket and buy 2 litres of milk”

There is not a strict schema, each document can be different. The relational
model is based on a set of tables, each of them with a predefined schema. In
CouchDB that does not exist. If another task does not have “Due date” this
field can be omitted and a “NULL” value is avoided. In addition, if any change
is necessary in the structure of a relational database, a lot of difficulties appear
due to dependencies and integrity issues. All of this is not a problem in a
document-oriented database.

Needless to say, this model presents some disadvantages too, like the lack of a de-
fined structure and unnecessary replication of data across documents. However,
the performance of relational databases can be almost modeled with CouchDB.
For example, entity relationships?.

2Visit this link for more detail:
http://wiki.apache.org/couchdb/EntityRelationship



CHAPTER 3. SOLUTION PARTS 37

Each document has a unique ID and metadata maintained by the database sys-
tem, like the revision number. The documents are stored in the database on a
flat address space.

JAVASCRIPT VIEW ENGINE

To recover unstructured data and show them in a useful and interesting way,
views were designed. Views are the method of aggregating and reporting on
documents in a database. They are defined inside a design document and are
replicated too. For an optimal performance, requested views are up-to-date in-
crementally.

REPLICATION AND CONFLICT DETECTION AND RESOLU-
TION

CouchDB is a peer-based distributed database system. Documents and designs
can be replicated, so full database applications can be distributed and main-
tained up-to-date when connectivity is possible.

CouchDB peers do not have to be configured or tracked. No record is kept of
which peer any particular document or revision come from. That is an important
difference with version management systems, like git, where each peer has to be
explicity tracked.

This replication is incremental again to improve the performance of the system.
The process only examines documents updated since last replication. For each
document updated, only changed fields are sent across the network. Partial
replicas are possible too, filtering with a JavaScript function.

In case of conflict in the replication process, each database instance determinis-
tically decides which document is the winner. Only this document can be shown
in views, while losing conflicts remain in the database until a deleted or purged
operation during the compaction.

To resolve the conflicts several options are possible: manually, depending on the
nature of the data and the conflict or by automated agents. If resolved conflicts
result in more conflicts, the system accommodates them in the same manner,
determining the same winner and maintaining document semantics.

OTHER INTERESTING FEATURES

CouchDB has not locking mechanism. The first to commit succeed. The next
ones get a conflict error, the latest revision is shown and they have the possibility
to make the changes again.

The documents are not overwritten. There are a main revision and the others
are stored for archival purposes. That is similar to a revision control system.
However, the programmers cannot assume the existence of this history because
the compact option used to recover some wasted space deletes them.



CHAPTER 3. SOLUTION PARTS 38

As it could be expected, CouchDB implements the ACID (Atomicity, Consis-
tency, Isolation and Durability) properties.

To complete all this features, a RESTful HTTP API is available. It lets any
platform that supports HTTP requests to interact with CouchDB without any
client library to be installed.

To make the administration easier, a web-based administration tool is available,
Futon. From there it is possible to create, modify or delete databases and
documents. Compaction, replication and test are possible using an easy web
user interface. You can access it in your local installation with the next URL:
http://127.0.0.1:5984/_utils/.



Chapter 4

Solution: Approach

This chapter describes an approach to the ideal solution for the required sce-
nario. This ideal solution presents the following main features:

e Synchronization of every PIM data: mails, contacts, calendars, tasks,
memos.

Based on open source software.

The information resides in an own server.

e Automatically synchronization of the data when coming back online.

Simple configuration process.

These are desired features for the system to implement. Together with these,
there are other many features like security, fail tolerance, scalability and a long
etcetera. But the main challenge in the synchronization process and the basis
of a synchronization system is the conflict detection and resolution. When a
conflict is detected, several options are possible. This chapter compares these
posibilities depending on the context. To conclude, the known limitations of
the involved parts are described in order to implement a real solution.

4.1 Conflict Resolution

This challenge of conflict resolution in a synchronization process is going to be
described in this section with a simple example. The most suitable solutions
when a conflict is detected in PIM synchronization are mainly two: merging
and the “newer wins”. Find more details below.

39



CHAPTER 4. SOLUTION: APPROACH 40

NO

CONFLICTS
MERGING NEWER WINS

== B

X

< N

(1) ) 3) (4) (5) (6) ) TIME

Figure 4.1: Conflict resolution time line

The scenario is composed of two devices: A and B which want to have their
PIM data synchronized. The device A creates a new contact (V1) with the fields
Name: John and Number:555 in the time slot (1). When it comes back online,
it synchronizes with the device B, so now both devices have the new contact in
time slot (2).

4.1.1 Merging

During the time slot (3), the device A updates the contact adding a new mail
field (V2a). The device B updates it too with a new address field (V2b). When
they are able to synchronize again, a conflict has to be detected. The same
element has been changed in two different devices. For this particular situation
the best solution is to merge the elements, because the changes made are not
incompatible, as it is shown in the time slot (4). If we had chosen only one of
the modified versions as winner, we would have lost information added by the
user. That had not been the optimal solution.

4.1.2 Newer wins

In the case above the changes were compatible, but what happen if the changes
cannot be merged? For example, the device A changes its number to 347 in the
time slot (5), while the device B changes its number to 999 in the time slot
(6). When they sinchronize again, a conflict occurs. But this time merging
is not possible because the field changed is the same in both devices. For the
resolution of this conflict, we need a time stamp in order to know which one was
the last in applying the changes. The solution that fits best would be to resolve
the conflict with the newer as winner. The last change made by the user in its
devices would be the desired to remain after the synchronization.



CHAPTER 4. SOLUTION: APPROACH 41

To sum up, the conflict resolution for PIM data will consist on merging if it is
possible or the “newer wins” policy if merging is not possible.

4.2 Limitations

It has been described above the desired behaviour for a synchronization system,
but the implementations already available present several differences with regard
to this ideal situation. The main limitations in the clients and the servers studied
in this thesis are detailed next.

4.2.1 Limitations due to the clients
4.2.1.1 iPhone

This mobile phone does not offer native applications for all the PIM required
for a user. There are mails, contacts, calendars and memos applications, but
there is not a task list application, so a third-party one is needed.

Regarding the native synchronization capabilities, there are no possibilities for
tasks and memos. Moreover, if you want to use SyncML as synchronization stan-
dard, you have to run a third-party application, so the process is not automatic
and it has to be started by the user. Other limitation regarding SyncML comes
from Apple’s policy avoiding third-party applications to access to the calendar
(until the iPhone OS 4). This restriction only leaves CalDAV as possibility with
open source alternatives.

To finish, the iPhone does not add a UID and Time Stamp fields to the contacts
created. The UID is needed for the identification of a particular item and the
time stamp for the conflict resolution, to know which one was the newer change.
Observing the logs generated by the SyncML clients in the iPhone, you can check
that any of these fields are presents. The vCard file generated by the application
only contents the most common fields for this kind of PIM, but any information
for a good conflict resolution. This limitation makes the conflict resolution in
the server in an optimal way almost impossible.

4.2.1.2 Evolution

When using eGroupware as server, a option to load the PIM data into Evolution
is with the GroupDAV connector. However, this option only works when a
connection is available, showing an error if an update is made offline. Therefore
this alternative has to be rejected, because it does not suit with synchronization
requirements.

The only option to synchronize with open source software is SyncEvolution.
This application works pretty well with SyncML, but it is not integrated in



CHAPTER 4. SOLUTION: APPROACH 42

Evolution and the user has to run it every time he wants to synchronize his
data.

If you choose Google services, the plugin available for Evolution only works
online, being not possible to manage your calendars and contacts when being
offline.

4.2.2 Limitations due to the servers

The tested servers don’t follow the rule mentioned above for the conflict resolu-
tion, where the best option is merging when it is possible and the “newer wins”
policy when merging is not an option.

The eGroupware server can be configured to manage the conflict with SyncML
between the following alternatives:

e The client wins conflicts and overwrites the server data.

e The server wins conflicts and overwrites the client data (by default).

e Merge data

— the client can only add new information to Contacts

— the client can only change attendee’s state or append new information
to Events

— deleted entries will be added by the server again

Duplicate entries of conflicting entries are created from both versions.

The client can never change server data but have its own version.

The sever reverts all changes the clients report.

As you can observe, the merging option is very limited. For example, if you
delete a contact from the iPhone and synchronizes it, the contact appears again
in your phone, because deleted entries are added again by the server for the
merging conflict resolution option. Moreover, no “newer wins” policy exists, so
even in the case clients add a time stamp, not conflict resolution in this way is
possible.

Other of the tested servers, the SyncML Funambol server, doesn’t support this
policy as well. The only options for conflicts resolution are where the clien-
t/server wins and the merging policy.

The best alternative regarding the conflict resolution seems to be Google. Merg-
ing is well supported and where merging is not an option, Google duplicates the
conflicting field keeping both values. Evolution is able to show a field with
several values, but the iPhone only shows one of the values of each field.



CHAPTER 4. SOLUTION: APPROACH 43

To sum up, the existing options don’t manage the conflict resolution in an opti-
mal way for PIM data. On the one hand, the clients don’t add the required fields
(time stamp and UID) to the created items. On the other hand, tested servers
don’t support the “newer wins” policy and merging presents several problems
with unnecessary replication and loss of data as result.



Chapter 5

Solution: Implementation

The solution proposed in this thesis is based on the union of different existing
solutions. The goal is to achieve a synchronization system able to synchronize
the PIM data between the iPhone and Evolution. Two possibilities are taken
into account: one based on our own server and other one where the information
resides in an external server.

A missing link is found in this system. There are not available solutions for
a two-way synchronization of tasks between iPhone and Evolution. A task
application is built to fix this missing link. It is based on CouchDB, with a web
application accesing to the database via JavaScript and a plugin for Evolution.
The plugin adds to this application the capacity to store task lists on a CouchDB
database.

5.1 Synchronization Systems

This section describes the implementation of the synchronization systems work-
ing with Evolution and the iPhone. As I mentioned above, two alternatives
are considered. If you need to keep your data out of external servers and you
want to have the possibility to manage your PIM data when you are offline,
the section 5.1.1 describes how to implement it. However, if that is not a big
problem, the section 5.1.2 describes a more simple system to implement based
on Google services.

5.1.1 Our own server: SyncML and CalDAV

Several combinations of the available tools work together for achieving a basic
synchronization between the devices, although all of them are based on the
same standards: SyncML for contacts and CalDAV for calendars (tasks and

44



CHAPTER 5. SOLUTION: IMPLEMENTATION 45

EVOLUTION

&
THE CLOUD | owe

'9 CALENDARS
r s

EGROUPWARE
CONTACTS

EGROUPWARE "'§"‘ 2

CALENDARS iPHONE

% L FUNAMBOL

SYNCML CLIENT FOR b
CONTACTS

[ricsdos
E 9 CALENDARS

Figure 5.1: Synchronization system based on our own server

memos are not supported natively for iPhone). Next it will be described the
process to configure the three elements of the system: the server, the iPhone
and Evolution.

5.1.1.1 Server: eGroupware or Funambol+DAViCal

The easiest option is to use a Groupware server. This kind of servers usually
support SyncML and CalDAV, with a complete web user interface for the man-
agement of PIM. In this thesis I will use eGroupware because it is very easy to
install and use.

Other alternative is to use a SyncML server (e.g. Funambol) and a CalDAV
server (e.g. DAViCal) connected between them (e.g. CalDAV connector for
Funambol). However, this option requires more configuration and it is more
complex that the option above.

The eGroupware version used in this thesis is 1.6.003. To install the package for a
Ubuntu/Debian distribution, add the following content to your /etc/apt/sources.list:

deb http://download.opensuse.org/repositories/server:/eGroupWare/[Distributionl/ ./

Replace [Distribution] with Debian 5.0, xUbuntu_8.04, xUbuntu_9.04 or
xUbuntu_9.10. Update the repositories and install it:

$ sudo apt-get update
$ sudo apt-get install egroupware



CHAPTER 5. SOLUTION: IMPLEMENTATION 46

For other distributions there are packages as well. The installation process is de-
scribed in the next link: http://www.egroupware.org/wiki?wikipage=ManualSetup . Basically
you should go to the URL: nttp://1ocalhost/egroupware and follow the instructions
on the web.

eGroupware installs Postgres as default database. However, other relational
databases can be used as well. I will use MySQL because it has an easier
configuration process. You may install the necessary packages with:

$ sudo apt-get install mysql-server mysql-client php5-mysql

Restart apache2 to load the new extension for PHP and you will be now able
to choose MySQL as database in your eGroupware installation.

If everything has gone alright, you can login in the web user interface and
manage your contacts, calendars, mails, etc. The user should have the “syncml”
and “groupdav” options activated by the administrator in order to synchronize
the PIM.

In the next section, the iPhone will be configured to synchronize contacts and
calendars with this server.

5.1.1.2 iPhone: Funambol SyncML client and native CalDAV

As it was mentioned in the section 3.1.1 on page 30, the only possibility to
synchronize contacts with a open source alternative in the iPhone is the use
of a SyncML client. There are several free alternatives in the App Store as
Funambol or Synthesis SyncML. I will use Funambol because of its facility to
be configured.

For calendars, the CalDAV native support will be used to synchronize with our
eGroupware server.

CONTACTS

Open the Funambol application and go to Settings. In Account you can find
the following fields:

e Server: http://[your IP or domain name]|/egroupware/rpc.php
e Username: the name of the user you want to synchronize its PIM.

e Password: the password for the user typed above.

Coming back to Settings, you find Contacts. Enter and configure the following
fields:



CHAPTER 5. SOLUTION: IMPLEMENTATION 47

e Sync Direction: you can choose between “Two-Way”, “Server to phone”
and “Phone to server”.

¢ Remote Name: ./contacts

Everything is ready now for the first synchronization. Go to the first screen
and push “Sync Contacts”. A “Synchronization successful” message appears is
all has gone alright. If there are some errors, you can find more information in
Settings-Log.

CALENDAR

As it was shown in the figure 3.2 on page 31, the iPhone has native support for a
CalDAV server. Go to Settings-+Mail,Contacts,Calendar+Add Account... and choose
Other-+Add CalDAV Account. A configuration window appears with the following
fields:

Server: the IP or domain name of the eGroupware server.

e User Name: the name of the user you want to synchronize its PIM.

Password: the password for the user typed above.

Description: a optional description of the server.

Push Next and the iPhone will try to verify the CalDAV account information.
If a message appears asking if you want to try setting up the account without
SSL, push Continue. The verification fails because “Advanced Settings”’ are
required. Enter there and type the next configuration parameters:

e Use SSL: OFF !
e Port: 80

e Account URL: http://[server IP]/egroupware/groupdav.php/[user namel/calendar

There is an application for the iPhone (not free, not open source) to manage
the information stored in a eGroupware server. Its name is iGroupMind. An
extension in the server is required in order to make it work.

5.1.1.3 Evolution: GroupDAYV and SyncEvolution

This section explains the necessary steps to synchronize your eGroupware server
with Evolution. As it was mentioned in the Evolution Sync Capabilities section,
we will use SyncEvolution.

1You can configure the server to use SSL if it is required.



CHAPTER 5. SOLUTION: IMPLEMENTATION 48

SyncEvolution is a command-line application that works with SyncML as pro-
tocol to achieve the synchronization between the eGroupware server and Evolu-
tion. It is able to synchronize contacts, calendar, tasks and memos. A graphical
user interface called “Sync” is available. Install this application with the follow-
ing command:

$ sudo apt-get install syncevolution sync-ui

The easiest way to configure it is with the graphical user interface. Open the
application and go to the section Change or edit sync service. There add
a new service with the following options:

e Name: eGroupware

e User Name: the name of the user you want to synchronize its PIM.

Password: the password for the user typed above.

Server address: http://[server IP]/egroupware/rpc.php

Contacts URI: ./contacts

Appointments URI: ./calendars

Once eGroupware has been configured, you can push the Sync now button and
the synchronization will take place.

5.1.2 Commercial servers: Google and Toodledo

If the option to store your PIM in an external server is not a big problem
and when you use Evolution you have a connection available, there is another
alternative for the synchronization of the iPhone and Evolution. It is based on
Google for contacts and calendars, and Toodledo for tasks (see figure 5.2).

You need an account in Google and Toodledo for this process. The configuration
in the iPhone and Evolution is described in the next sections.

5.1.2.1 iPhone

For contacts and calendars synchronized with Google, go again to Settings-Mail,
Contacts,Calendar-Add Account..., but this time choose Microsoft Exchange as
type of new account. This will use the ActiveSync protocol for the synchroniza-
tion. Enter the following parameters:

e Email: your full google email account address.



CHAPTER 5. SOLUTION: IMPLEMENTATION 49

EVOLUTION

CONTACTS @

THECLOUD _# ¥ L

CALENDARS

TODO

iPHONE

CONTACTS

CALENDARS

TOODLE
TODO APP

Figure 5.2: Solution based on commercial servers

e Username: your full google email account address.

e Password: your google account password.

Tap Next. Ifa‘“Unable to Verify Certificate” message appears, choose Accept.
When a new Server field appear,enter m.google.com and tap Next again. You
will be asked about which Google services you want to synchronize with your
phone (Mail, contacts and Calendars).

For tasks synchronization with Toodledo, an application (not free) with this
name exits for this phone in the App Store. Remember that the iPhone does
not support tasks lists natively, so an external application is needed.

5.1.2.2 Evolution

This PIM desktop application supports Google services thanks to a plugin al-
ready included in the version used in this thesis. Just add a new address book
and calendar with your google account user name and password in Evolution,
but take into account that you can only manage your personal information when
being online.

For synchronizing Toodledo and Evolution, first you have to enable the live
iCal link in Tools&Services—iCal at the web page. They give you a URL you
should enter in a new WebDAV tasks list.

If you have a look again to the figure 5.2, you can observe the synchronization
between the Toodledo server and Evolution is only one-way, from the server to
Evolution.



CHAPTER 5. SOLUTION: IMPLEMENTATION 50

EVOLUTION

‘CONTACTS @
o\l

THECLOUD

CALENDARS

TODO

iPHONE

CONTACTS

CALENDARS

ToDO
WEBAPP
(SAFARI)

Figure 5.3: Solution based on CouchDB for tasks

To fix this missing link, a new task manager is going to be created based on
CouchDB as storage system (see figure 5.3). This program will be the basis
for a future improvement in the graphic above, making contacts and calendars
work like the task manager to implement. To see how this application has been
built, go to the section 5.2.

5.2 The missing link: a task application based on
CouchDB

The task manager is going to be based on a web user interface, where tasks
can be added and removed, and a plugin for Evolution making the management
of tasks possible from this program. For the storage, CouchDB is going to be
used. This database offers several advantages for the replication process, as
it was mentioned on the section 3.4 on page 35. At the moment of writing
this thesis CouchDB is not implemented on the iPhone, so the access to the
application has to be made through the Safari browser available in the phone.
A future improvement could be the development of an iPhone application able
to store the data locally. Like this, it would work offline and the synchronization
could take place when it comes back online.

In this chapter, the development of the web page is explained, accessing CouchDB
through JavaScript. Then, the plugin for Evolution is developed using the
couchdb-glib and evolution-couchdb libraries available to interact with this
database. Finally, the replication process is detailed to synchronize both devices
(see figure 5.4).



CHAPTER 5. SOLUTION: IMPLEMENTATION 51

------- e B i ®
& 1 =
|PHQN : WERTI g EVOLUTIONTASKS
@\ o T |
&) emm) ° ! !
o \ : | 1
i 1 - B | R 1
Safari 1 I 1 1
Browser 1 : I 1
L s s s i 1 | JavaScript I : couchdb-glib |
1
' : :
: | ! | |
: I] i REPLICATION || ﬂ :
1 i ! :
1 1

COUCHDB i | COUCHDB
L

____________________________

Figure 5.4: Solution architecture

5.2.1 Task Manager Web Application

In this subchapter I will explain how the task manager web application has been
built. First, CouchApp is presented — a set of scripts designed to bring clarity
and order to the freedom of CouchDB’s document-based approach. This tool
has been used to create the web application. Second, the main files that compose
this application will be analyzed and the functionality of the application will be
shown.

5.2.1.1 CouchApp

As T said above, CouchApp is a set of scripts that allow complete, stand-alone
CouchDB applications to be built using just HTML and JavaScript.

CouchApp is a Python module and requires Python to be installed in your
system. In Linux and Mac OS X Python is usually preinstalled. To check it,
you have to introduce the next command in the terminal. If you get an error,
Python needs to be installed.

$ python -V

Next, python-setuptools is needed to install CouchApp. Introduce the next
command in Ubuntu. If you use another distribution or you don’t have a package
manager, you will need to build it from the source.

$ sudo apt-get install python-setuptools

Now, we can use easy-install to install CouchDB, SimpleJSON and CouchApp
Python modules:



CHAPTER 5. SOLUTION: IMPLEMENTATION 52

Figure 5.5: Web Application

$ sudo easy_install couchdb
$ sudo easy_install simplejson
$ sudo easy_install couchapp

CouchApp is installed and you can build CouchDB application in a simple way
using only HTML and JavaScript.

5.2.1.2 The task manager web application

The main part of the code shown here is an example of the book “Beginning
CouchDB” by Joe Lennon (Chapter 10: Developing CouchDB applications with
CouchApp). The code has been modified to make it compatible with Evolution
and to adapt it to the iPhone.

This web application allows you to create and delete tasks, displaying any ex-
isting tasks when it loads. It has been built using HTML and CSS for the
presentation part and JavaScript for the functionality part. The application
uses the jQuery JavaScript library as well as some extensions to this library to
make the Ajax requests to the CouchDB. The final result is shown in the figure
5.5.

You can find the source code in my repository. To clone it to your local machine,
type?:

$ git clone git://gitorious.org/tasks-evolution-couchdb/couchdb-task-web.git

To make this code work, first you have to generate a CouchApp application with
the next command:

21f you do not have git, install it with

$ sudo apt-get install git-core



CHAPTER 5. SOLUTION: IMPLEMENTATION 53

il T-Mobile = 17:17 7% =t
CouchTasks

Summary:

S——
(_Create )

You have 3 Taskis)

Buy milk
Study
Call to sebastian

Figure 5.6: Web page version for iPhone

$ couchapp generate tasks

It creates a new tasks database and the default files for the aplication in a
new directory called tasks. Overwrite the existing files in this directory with
the cloned files and be sure to remove the file called language in the tasks
directory. This file causes a fail in the view of the application.

The next command pushs all these documents to the web server offered by
CouchApp to make them accessible via a web browser.

$ couchapp push . http://127.0.0.1:5984/tasks

If you go to this URL, http://127.0.0.1:5984/tasks/_design/tasks/index.html,
you can access to the web user interface. If this web page is accessed on the
iPhone, an adapted version appears, in order to make its usage easier (see fig-

ure 5.6). Next, I will explain how this application was developed. Go to the
section 5.2.2 on page 55 if you want to skip this part and configure Evolution
directly.

To add and delete tasks in CouchDB, a JavaScript file is needed in order to
implement the access to the database. This file is placed on the tasks direc-
tory generated, under the _attachments/script subdirectory wit the name
main. js:



CHAPTER 5. SOLUTION: IMPLEMENTATION 54

$.CouchApp (function (app) {
$ (’form#add_task ') .submit(function(e) {
e.preventDefault () ;

var newTask = {
summary: $(’#summary’) .val(),
record type: "http://www.freedesktop.org/wiki/Specifications/desktopcouch/
task"

if (newTask.summary.length > 0) {
app.db.saveDoc (newTask, { success: function (resp)

)

} else

{
$(’ul#my_tasks’) .append (’<1li id=""+newTask._id+’">"
+’<div class="summary">"+newTask.summary +’</div>"
+’<div class="link">"
+’<a href="#" onclick="return false;"’
+’ id="’4newTask. rev+4’'">Delete</a>"’
+r</div>
+'<div class="clear"></clear>"’
o</ i)
$(’#'+newTask. _rev).click (function ()
if (confirm (TAre you sure you want to delete this task?")) {
var delTask = {
_id: newTask._id,
“rev: newTask. _rev
H
app.db.removeDoc (delTask, {});
$(°# +newTask. id).show () .fadeOut(2000) ;
var del count = parselnt ($3(’#task count span’).html(), 10);
del count——; -
$('#task_count span’).html(del_count);
return false;

}

ul#my_tasks li:last ’).hide().fadeln (1500) ;
$(#summary’) .val () ;

var task count = parselnt ($(’#task count span’).html(), 10);
task count4+; -

$('#task count span’).html(task count);

1)
5(°

alert (’You must enter a description to create a new task!’);

1)

app . view (

"get tasks", { success: function (json) {

json .rows.map(function (row)

$(°

{
ul#my tasks’) .append(’'<li id=""+4row.value. id4'">"
+’<div class="summary">'+row.key+4'</div>"
+'<div class="link">"’
+'<a href="#" onclick="return false;"’
47 id=""4row.value . rev4’'">Delete</a>"’
+</div> -
+'<div class="clear"></clear>"’
+r</1i> ),

$('# +row.value._rev).click (function () {

if (confirm ("ATe you sure you want to delete this task?")) {

var delTask = {
_id: row.value._id,
“rev: row.value. _rev
}

app.db.removeDoc (delTask , {});
$(°# +row.value. id).show().fadeOut(2000) ;

var del_count = parselnt($('#task_count span’).html(), 10);
del _count——;

$(’#task_count span’).html(del_count);

return false;

}
1)

}

3
s
1)

)
("#task count span’).html(json.rows.length);

With $.CouchApp (function(app)) {}); [ am opening an instance of CouchApp.
This code set up the database and design document variables. Within this func-
tion, the submit event is captured, avoiding the default option and substituting
it for the creation of a new document, where a field summary is set from the
value entered for the user in the text area available on the web.

If the user has not entered anything in the text area, an error message is shown.
It there are not any errors, the document is saved to the database. If CouchDB
reports succeed in this operation, the new task is added on the list showed in



CHAPTER 5. SOLUTION: IMPLEMENTATION 55

the web page, the text area is cleared and the counter is incremented.

We need a view to be able to retrieve the tasks from the database. If this view
does not exist, the application does not maintain the state between sessions.
The views are contained under the directory with this name. In this case, the
name of the view is get_tasks, so a subdirectory with this name is necessary.
Within this directory there is a file called map. js. It just recovers the summary
field of the tasks stored in the database.

Coming back to the main. js file within the _attachments/script subdirectory,
the code part starting with app.view("get_tasks", {}) loads existing data
from CouchDB into the web page using the view described above. To finish, a
“Delete” button is added. It lets you delete any task from the database.

This JavaScript file is included in the HTML document (index.html) together
with the libraries needed for the access to CouchDB.

5.2.2 CouchDB in Evolution Tasks

To add the possibility to store tasks lists in Evolution using CouchDB as database,
a plugin needs to be developed. This plug-in will be based on two packages al-
ready available for Evolution:

e Couchdb-glib: a GLib-based library to allow access to CouchDB databases.

e Evolution-couchdb: Evolution backend to access CouchDB databases,
used for UbuntuOne integration.

At the moment of writing this thesis the official packages only support contacts.
With the next steps, I added the calendar backend and the required methods
to make them work with tasks.

First, the installation of these packages, modified to support tasks, is detailed.
Then, the changes made are explained and, finally, its functionality is shown.
Let’s start with the installation.

5.2.2.1 Installation

If you want to check the official GNOME source code (without tasks supporting
at the moment of writing this thesis), you can find it in:

$ git clone git://git.gnome.org/couchdb-glib
$ git clone git://git.gnome.org/evolution-couchdb

Like on the web page, the code used in this chapter can be downloaded from
my repository. It is the code of the official packages modified to implement the
calendar backend for tasks support. Clone it in your local machine with the
next commands:



CHAPTER 5. SOLUTION: IMPLEMENTATION 56

$ git clone git://gitorious.org/tasks-evolution-couchdb/couchdb-glib.git
$ git clone git://gitorious.org/tasks-evolution-couchdb/evolution-couchdb.git

Now you should have two directories called evolution-couchdband couchdb-glib.
To build from the source you need to install some dependencies. For couchdb-
glib,

$ sudo apt-get install gnome-common gtk-doc-tools libjson-glib-dev

libsoup2.4-dev libsoup-gnome2.4-dev uuid-dev libgnome-keyring-dev
libdbus-glib-1-dev libcurl4-openssl-dev

For evolution-couchdb,

$ sudo apt-get install libebookl.2-dev libecall.2-dev libedata-bookl.2-dev
libedata-call.2-dev evolution-data-server-dev evolution-dev

After installing the required dependencies, enter in each directory and build the
source with the next commands?:

$ ./autogen.sh
$ make
$ sudo make install

If the installation has been successful, Evolution supports now tasks stored in
a CouchDB database. Let’s explain how it was made.

5.2.2.2 Development of a task plug-in for Evolution

To add some new functionality to Evolution, EPlugin* has to be used, a small
and simple system for extending this program. The objective is to show a new
configuration window when a tasks list is created in Evolution with the option
to use CouchDB as storage database. In this window the needed information
for the interaction with the database will be entered and Evolution will be
configured to save and recover tasks from CouchDB. The final result is shown
in the figure 5.7.

The definition of a plugin for Evolution is made in a XML file. You can find it
in the evolution-couchdb directory, under the plugin subdirectory with the
name org-gnome-evolution-couchdb.eplug.xml.in.

3First, couchdb-glib and, second, evolution-couchdb, because this one requires couchdb-glib
to be built.
4http://www.go-evolution.org/EPlugin



CHAPTER 5. SOLUTION: IMPLEMENTATION 57

43 Applications Places System ‘d@ 4 B :EBpfy SunMay 8, 12:57PM @ miguel ()
o' Tasks - Evolution
File Edit View Actions Search Help

- 5 ) New Task List
[=| New v Ly Send/Receive

Task List

[ Tasks Otasks Show: | Anf search: | Q Summary Contains |
=T=1e ype: |CouchDB v =
- onThis C Li@s l ‘ |
T 2 [Clicktoat  Name: | |
Color:
"] Copy task list contents locally for offline operation
[ Mark as default task list
Server
@ Desktop CouchDB
System-wide CouchDB
Remote CouchDB server
|i=iMmail Cancel
|[E Contacts | ) Calendars
| ZyTasks [#Memos
5=
- o Iligins e 0. orggrome-evol.. @ | sk - vt | S T =

Figure 5.7: Task plugin for Evolution-CouchDB

<?xml version="1.0"7>
<e—plugin—list>
<e—plugin id="org.gnome.evolution.couchdb" type="shlib" _name="CouchDB sources"
location="@EVOLUTION_PLUGINS_DIR@/liborg —gnome—evolution —couchdb .so" load—on—
startup="false" localedir = "@QLOCALEDIR@" system _plugin="true">
<author name="Rodrigo Moya" email="rodrigo.moya@canonical.com" />
<author name="Miguel Rodelas" email="miguel.rodelas@gmail .com"/>
< description>A plugin to setup CouchDB Contacts and Tasks.</ description>
<hook class="org.gnome.evolution.addressbook.config:1.0"> -
<group target="source" id="com.novell.evolution.addressbook.config.

accountEditor " >
<item type="item" path="00.general/10.display /00.couchdb" factory
plugin_couchdb_contacts " />

</group>
</hook>
<hook class="org.gnome.evolution.calendar.config:1.0">
<group target—="source" id="org.gnome.evolution .calendar.calendarProperties" >

<item type="item table" path="00.general /00.source/99.couchdb" factory="
plugin_ couchdb tasks"/>
</group>
</hook>
</e—plugin>
</e—plugin—1list>
The <e-plugin> element defines an EPlugin. Observe that several of these tags
can be packaged in the same XML file under the <e-plugin-list> element. The

properties of this plugin are the following ones:

e id: A unique string identifying this plugin.

e type: The type name of the plugin loader. In this case, “shlib” meaning
Shared Library Loader. It requires one extra parameter, location.

e location: it contains the full path-name of a shared object to load. liborg-
gnome-evolution-couchdb.so in this case.

e name: A short name for the plugin.

We can find the following elements inside this tag:



CHAPTER 5. SOLUTION: IMPLEMENTATION 58

e author: The authors’ name and mail.
e description: A longer description of the plugin’s purpose.

e hook: A list of all the hooks this plugin wishes to hook into.

For this CouchDB plugin we have two hooks, one for contacts (developed by
Rodrigo Moya) and another one for tasks (developed by me). Let’s study the
tasks one, the added for the purpose of this thesis. It is a configuration page hook
which allows us to enter the required configuration information in Evolution for
the interaction with the CouchDB database.

The <group> element represents a group of configuration items and it is com-
posed of two elements:

e id: The name of the configuration window to which this hook applies.

e target: The type of target this configuration window applies to. This will
normally be tied directly to the specific configuration window itself.

The properties for the <item> element are as followed:

e type: The menu item type.

e path: The path to the configuration item in question. It will place the
item in the right order.

e factory: the factory method used to create the GtkWidget elements for
this configuration item. In our case, plugin_couchdb _tasks. This method
will create the configuration windows as we want to build it. You can find
the implementation of this method in the same plugin subdirectory under
the file named couchdb-tasks-source.c together with other required
methods for the plugin.

Now that the plugin has been built and the configuration window is shown when
CouchDB is chosen like new tasks list type, let’s implement the calendar back-
end. For that, first Evolution Data Server needs to be briefly presented.

EVOLUTION DATA SERVER

Evolution Data Server (EDS) manages the access to the address book, calendar
and tasks information available for Evolution and other applications. It is a
CORBA element which allows concurrent access by several client applications to
the same data together with notifications of changes. It can be extended with the
addition of plugins to manage different kinds of address books/calendars/tasks
sources by writing a shared library, which will be loaded by EDS on startup.

Calendar and tasks share the two libraries needed by the client to access the
data:



CHAPTER 5. SOLUTION: IMPLEMENTATION 59

e libecal: It is the main client library for calendar and tasks, implementing
all the necessary to open and manage this kind of sources.

o libical: It parses iCalendar text and offers a set of tools for dealing with
iCalendar.

Our purpose is to add a new kind of source for tasks, CouchDB. So we have to
write a shared library and load it when EDS starts. To do this, a new calendar
backend need to be written.

The calendar backend deals with the communication between EDS and the

specific calendar servers/types. There are backends for Groupwise, Exchange,

Webcal, ... The CouchDB backend has to traduce basically the operations

make in Evolution (create a new tasks list, new task, delete task, ...) to the

operations needed in the CouchDB database (create a new database, create a

new document, delete a document, fill in a document with the data required,
..) and vice versa.

To load a new backend in EDS, the shared library has to be installed in a known
place®. When EDS loads the library, it looks for some named symbols:

¢ eds _module initialize: register all ECalBackendFactory-derived classes.
These factories are responsible for creating backends of a given kind (events,
tasks and journal), so a factory class for each kind must be registered. For
each ECalBackendFactory-derived classes, three methods need to be im-
plemented:

— get_kind: returns the kind of the backends created by the factory.
— get_protocol: returns the protocol used by the backends.

— new__backend: creates a new backend for the given kind.

¢ eds module shutdown: It cleans up all the memory used by the ex-
tension.

e eds module list types: A list of the factory types implemented by
the extension.

Extensions need to implement these methods for being loaded when EDS starts.
You can find the implementation of these methods for the CouchDB backend in
the evolution-couchdb directory, under the calendar subdirectory with the
name e-cal-backend-couchdb-factory. [ch].

To complete the backend, the methods required to translate the API used by
EDS calendar clients into CouchDB operations need to be implemented. This
is made by writing a subclass of ECalBackend (for asynchronous mode). If syn-
chronous mode would be required, the class to implement would be ECalBackendSync.

5$evolution_prefix/lib/evolution-data-server-$VERSION/extensions



CHAPTER 5. SOLUTION: IMPLEMENTATION 60

ECalBackend contains the following virtual methods, which need to be imple-
mented by the CouchDB backend. You can find again the implementation for
this thesis under evolution-couchdb/calendar with the name e-cal-backend-couchdb.c.

e is read only: returns whether the calendar is read only or not.

e get cal address: returns the email address of the owner of the calen-
dar.

e get alarm_ email address: returns the email address to be used for
alarms.

e get ldap attribute: returns specific LDAP attributes.

e get static_capabilities: returns the capabilities provided by the back-
end, like whether it supports recurrences or not, for instance.

e open: opens the calendar/tasks list.

e remove: removes the calendar/tasks list.

e create object: creates a new event/task in the calendar/task list.
e modify object: modifies an existing event/task.

e remove object: removes an object from the calendar/task list.

e discard alarm: discards an alarm (removes it or marks it as already
displayed to the user).

e receive objects: import a set of events/tasks in one go.

e send objects: send a set of meetings in one go, which means, for back-
ends that do support it, sending information about the meeting to all
attendees.

e get default object: returns an empty object with the default values
used for the backend.

e get object: returns an event/task, given its UID.

e get object list: returns a list of events/tasks given a set of conditions.
e get timezone: returns time zone objects for a given TZID.

e add timezone: adds a time zone to the backend.

e set default timezone: sets the time zone to be used as the default.
e start query: starts a live query on the backend.

e get mode: returns the current online/offline mode for the backend.



CHAPTER 5. SOLUTION: IMPLEMENTATION 61

& New Task List
Task List

[ Type: |CouchDB

{ Name: [MyCouchDg|
Color:

Copy task list contents locally for offline operation

Mark as default task list

server
Desktop CouchDB
System-wide CouchDB

® Remote CouchDB server |127.0.0.1:5884

Cancel OK

Figure 5.8: Configuration window for a new task list

e set mode: sets the current online/offline mode.
e get free busy: returns Free/Busy information for a list of users.

e get changes: returns a list of changes made since last check.

There are also a couple of internal methods, not used by clients, but by the
ECalBackend class itself, which are:

e internal get default timezone: returns the default time zone.

e internal get timezone: returns a given time zone.

Not every one of these methods should be implemented. The basic funcionality is
achieved with open, remove, create_object,remove_object and start_query.
See the file mentioned above for more details.

5.2.2.3 Evolution configuration to manage CouchDB task lists

First, open Evolution and go to the Task section. Click on New-New Task List.
The window in the figure 5.8 appears. The configuration fields are:

e Type: “CouchDB”
e Name: The name of your task list

e Server: The kind of server to be used

— Desktop CouchDB: this option is for a future integration with
UbuntuOne, a storage application and service to enable users to
store and sync files and personal information between computers.
At present it is working with contacts, notes and files already. Tasks
will be added when the integration with Evolution is completed.



CHAPTER 5. SOLUTION: IMPLEMENTATION 62

43 Applications Places System @@ Bp % @ B@ MonMay10, 417PM @ miguel () 3 Applications Places System @@ £ % 4 @ MonMay10, 420PM @ miguel ()
Tasks - Evolution @ - o Tasks - Evolution
Flle Edit View Actions Search b © - Flle Edit View Actions Search Help
@7 Task - Buy milk
| New v Flle Edit View Insert Options. Help (5] New v e &
Eimaks oms sho Bl & X B @O search: [Q summ | & Tasks Stsks Show: | Any Category, Search: (@
-~ On This Computer s ~ On This Computer D/ @) summary. |
e I cow Mycoucton ™} —— Pea) (=G
~ Couchos summary:  [Buy mil] i Couch0B 1[0 [uymitk
% MyCouchDB « MyCouchDB =
Start date: [None > 10 [study
— 1|0 [swimming
Duedate:  [None e 1|0 [meetjonn
Description: [l |0 call to Sebastian
imail L-imail
i Contacts | [Ficalendars| |+ Show Attachment Bar Add Attachment... i Contacts (5 Calendars
Cimsks | [#Memos Cilsks | |#Memos
I eo
[ [miguel@ubuntu: fuse.. | (5 Tasks - Evolution @ [Apache CouchDB - Fut... By TN © e (miguel@ubunty: pusrii.. [ RS REVOIGONMM @ (Apache CouchDB - Fut... [E .

Figure 5.9: New task and task list windows

43 Applications Places System @@ gy ™ ot s enes
@ - o Apache CouchDB - Futon: Browse Database - Mozilla Firefox
File Edit View History Bookmarks Tools Help

@ v @ &Y [sa]htp:127.00.1:5984 [_designfasks/_view/get_tasks _ v| (v ]

[Erepository sacouchdd saTasks

4 Apache CouchD - Futon: Brow.

ooty by
Done
B | imiguel@ubuntus pusti. |5 Tasks - Evolution

Figure 5.10: CouchDB view for the task list

— System-wide CouchDB

— Remote CouchDB server: Introduce the IP address and the port
of your CouchDB database installation. If this is in your local ma-
chine, type here 127.0.0.1:5984, being 5984 the port by default.

A new task list appears on the left. If you add a new task through the New=Task
option, the window 5.9 is shown, where you can enter the details for this taskS.
In the same figure you can appreciate the look of a list with several tasks.

If we look at CouchDB using the same view created for the web page, the result
is shown in the figure 5.10.

So now it is possible to manage your task list from any place with a browser
available (personal computers, mobile phones, laptops, ...) and you can have
it synced with Evolution.

6 At the moment of writing this thesis, only the summary field is implemented. Tasks can
be added, removed and queried. The rest of fields and more funcionalities will be added in
following versions.



CHAPTER 5. SOLUTION: IMPLEMENTATION 63
S e A0\
PC WITH WEBAPP 3 : PCWITH EVOLUTION

N—-1

1
COUCHDB 1 : COUCHDB
1

Figure 5.11: Replication scenario

Replicate changes from: w:

® Local database:  tasks ¥ ) Local database: =l

2
Remote database: || @ Remote database: |http:/192.166.213.130/asks]
Replicate

Figure 5.12: Replication configuration

5.2.3 Replication

The task manager application has been developed. It is composed of a web user
interface and a plug-in for Evolution. The question now is how to synchronize
tasks in the scenario required, where Evolution is on a computer and the web
application is installed in other device”, each one with its own database and
without a permanent connection between them (see figure 5.11). When they
come back online, they should make a replication.

The replication process can be automated in the code if it is desired. This chap-
ter explains how to replicate using Futon, the web user interface of CouchDB.

You can access Futon in http://127.0.0.1:5984/ _utils. Check in the Configuration
section, under the httpd options if bind_addressis set to 0.0.0.0. By default
the CouchDB installation only accepts petitions in local. With this value of the
parameter, any other machine can access to the CouchDB database, necessary
for the replication process. These parameters are loaded from the file local.ini
(in /usr/etc/couchdb in a Ubuntu installation by default) but the easiest way
is to change it with Futon.

Go to the Replicator section. You will find the configuration fields shown in
the figure 5.12. As you can observe, the replication is only one-way. The two-
way replication can be easily achieve making the process in both directions.
Just choose tasks as local database and enter http://[IP device]/tasks as
remote database and make the replication in both ways. Tasks existing in each
one of the local databases have to be now in both CouchDB instances.

The task application is in a start state at the moment, so conflicts are not
possible in the way explained in this thesis because these items are composed
only of one field, summary. However, when the development is complete, there

"Remember that the iPhone cannot access directly to a CouchDB database. It uses the
web application, residing in a server, to manage the tasks.



CHAPTER 5. SOLUTION: IMPLEMENTATION 64

could be conflicts updating elements with several fields. In this situation, the
application needs to manage these conflicts in order to implement the “merging”
and “newer wins” policies. CouchDB only chooses one of the versions as winner
with a deterministic algorithm in every instance of the database, remaining the
loser versions on it until a compaction operation. The user will lose data in a
scenario with merging as possibility if nothing is done, the PIM application is
the responsible to merge the elements when possible or apply the “newer wins”
policy in other case.



Chapter 6

Conclusions

This thesis has put in evidence several failures in the existing synchronization
systems between the iPhone and Evolution. Most of these problems come from
the use of a closed operating mobile system, the iPhone OS, with no many
chances to open source solutions. Moreover, the desktop application to syn-
chronize belongs to the Linux system, while almost every commercial solution
has been thought to work on Windows. So the synchronization of PIM data
between these devices has meant a big challenge.

First, any device includes an UID and time stamp fields. That makes almost
impossible a synchronization system without unnecessary replications and lose
of data. Together with this, any of the tested servers are able to manage a
“newer wins” policy and merging is not well implemented in the majority of
them.

Several of the involved protocols only work when a connection is available, as
GroupDAV, LDAP, WebDAV with Toodledo or the Evolution plugin for Google.
That does not fulfill the basis requirements of a synchronization system, which
essence is to let users work offline making the data consistent when coming back
online.

In order to fix all these lacks, a new synchronization system based on CouchDB
is proposed. Taking the task application developed in this thesis as a basis, the
same could be made with contacts, calendars and memos (see figure 6.1). In this
moment, the UbuntuOne project is oriented in this way. It supports contacts
already and tasks will be added as soon as the implementation is completed.
Moreover, our own server can be used with this project, not being necessary to
store our data in Ubuntu servers.

Another improvement for this system would be the development of an iPhone
application able to store data locally in order to let us work when a connection
is not available. The synchronization with the CouchDB would be made when
coming back online, achieving a complete synchronization system.

65



CHAPTER 6. CONCLUSIONS 66

EVOLUTION 4
CONTACTS @

9 CALENDARS

COUCHDB
CONTACTS

/~ _J) MEMOS

COUCHDB

CALENDARS iPHONE

\ \ € CONTACTS
v " [ tuesday Y
”'/a:c,,-p > % 9 CALENDARS

~K]

\'\ ey
_J) MEMOS

COUCHDB
TODO

COUCHDB
MEMOS

THE CLOUD

Figure 6.1: Proposed Solution based on CouchDB completely

That is the basis of a new PIM synchronization system with the conflict detec-
tion and resolution in an optimal way as main challenge to achieve. If you are

interested, you can follow the new updates for the application in the repositories
mentioned in the thesis.



Bibliography

[1] On the Scalability of Data Synchronization Protocols for PDAs and Mobile
Devices. (S.Agarwal D. Starobinski A. Trachtenberg).
(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.5572&rep=rep1&type=pdf)

[2] Developing and Managing Mobile Applications with SyncML and Funam-
bol.
(http://www.funambol.com/documents/Funambol _SyncML_ Book.pdf)

[3] Designing Mobile Applications: Why Sync Is Central.
(http://www.sybase.com/files/White Papers/ias_ wp_why_sync_is_ central.pdf)

[4] Why sync is so difficult? By Jean-Gabriel Morard.
(http://gigaom.com/2009/05/10/why-sync-is-so-difficult /)

[5] PIM Data Synchronization: Why is it so hard? Contributed by Patrick
Ohly.
(http://lwn.net/Articles/333441/)

[6] SyncML, Wikipedia
(http://en.wikipedia.org/wiki/SyncML)

[7] Developing and Managing Mobile Applications with SyncML and Funam-

bol
(http://www.funambol.com /documents/Funambol _SyncML_ Book.pdf)

[8] SyncML — "Building an Industry-Wide Mobile Data Synchronization Pro-
tocol", White Paper, 2000
(http://xml.coverpages.org/SyncML-WhitePaper.pdf)

[9] SyncML — “SyncML Sync Protocol, version 1.1”7, 2002
(http://www.openmobilealliance.org/tech/affiliates /syncml/syncml _sync _protocol v11 20020215.pdf)

[10] SyncML —“SyncML Representation Protocol, version 1.1”7, 2002
(http://www.openmobilealliance.org/tech /affiliates /syncml/syncml represent v11l 20020215.pdf)

[11] Wikipedia. WebDAV
(http://en.wikipedia.org/wiki/Webdav)

67



BIBLIOGRAPHY 68

[12] Beginning CouchDB, by Joe Lennon

[13] CouchDB Official Website
(http://couchdb.apache.org/)

14| EPlugin
[14] g
(http://www.go-evolution.org/EPlugin)

[15] Evolution Data Server Architecture
(http://www.go-evolution.org/EDS_ Architecture)

[16] Evolution. Developers information.
(http://projects.gnome.org/evolution/developer.shtml)



