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Abstract—One of the central areas in network intrusion
detection is how to build effective systems that are able to
distinguish normal from intrusive traffic. In this paper we
explore the use of Genetic Programming (GP) for such a
purpose. Although GP has already been studied for this task,
the inner features of network intrusion detection have been
systematically ignored. To avoid the blind use of GP shown in
previous research, we guide the search by means of a fitness
function based on recent advances on IDS evaluation. For the
experimental work we use a well-known dataset (i.e. KDD-
99) that has become a standard to compare research although
its drawbacks. Results clearly show that an intelligent use of
GP achieves systems that are comparable (and even better in
realistic conditions) to top state-of-the-art proposals in terms
of effectiveness, improving them in efficiency and simplicity.

Keywords-intrusion detection; genetic programming; effi-
ciency; effectiveness;

I. INTRODUCTION

Intrusion Detection is the process of monitoring and

analyzing the activity of a network or a computer system in

order to detect possible intrusion attacks [1]. The design of a

network intrusion detection system (NIDS) is determined by

a set of decisions about raw data obtaining, event detection,

analysis rules, data storage and response procedures. Focus-

ing on the analysis techniques, artificial intelligence has been

widely explored, including approaches based on machine

learning, neural networks, evolutionary computation, etc.

In this paper we focus on the improvement of automatic

generation of analysis rules using Genetic Programming

(GP). Our research tries to improve the results on effective-

ness found in the literature while enhancing the efficiency

and semantics of the solutions. Thus, in terms of effective-

ness, the way we approach to GP provides IDS analysis

rules that at least achieve the same level of state-of-the-

art proposals. In addition, our system clearly outperforms

classical machine learning algorithms when the dataset is

adapted to have a more realistic prevalence of attacks. For

a NIDS is not only important the effectiveness but also

the efficiency. In intensive network usage environments IDS

must analyze huge amounts of data. If the NIDS is not

fast enough it will begin to drop the analysis of packets. In

this regard, the solutions provided by algorithms like C4.5

[2] generate wide and deep trees which may produce an

overhead on the analysis process. On the contrary, GP trees

can be quite simple being able to process more information

in less time. Furthermore, the use of an appropriate function

set for GP individuals results in analysis rules that provide

better knowledge about the nature of the attacks. Other

paradigms involve specialized structures which are nothing

like computer programs (e.g. weight vectors for neural

networks) what constrains the semantics of the generated

rules.

In addition to the use of traditional metrics to evaluate our

IDS, we have also used a recently presented metric (i.e. Cid)

[3] proposed specifically for the intrusion detection domain.

Our recent research [4] has proved that domain-aware GP

is able to produce efficient and easy to understand rules for

IDS, specifically to detect probe attacks. In our efforts to

provide an exhaustive comparison of the efficiency of our

approach it was necessary to use a dataset which covered

a wide range of different attacks types. To evaluate our

approach we have used the well known KDD-99 dataset.

Although this dataset has been criticized in some studies

[5], [6] due to questions such as its unrealistic prevalence of

attacks or its uncertain relation with reality, it is still used

in recent publications [7] and is considered as a standard

benchmark that most research uses to measure effectiveness.

The remainder of this paper is structured as follows.

Section II briefly reviews the basics of genetic programming.

Section III reviews related work done in the area. Section

IV describes the design of the proposed system. Section

V describes de KDD-99 Dataset. Then, Section VI shows

the experimental setup, results and discussion. Finally, last

section summarizes the main conclusions and future work.

II. GENETIC PROGRAMMING BASICS

Genetic Programming is a supervised search technique

devised by John R. Koza in 1992 [8]. GP is somehow similar

to Genetic Algorithms (GA), but instead of using chromo-

somes to encode the solution, it uses computer programs

represented as trees. IDS are itself computer programs and

its size and structure is not known in advance. Consequently,

the use of GP is more appropriate than GA for the problem
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at hand. The design of a GP algorithm requires the definition

of these elements:

• A population of individuals. The initial population

often consists of randomly generated individuals. Each

individual codifies a computer program or mathematical

function. It is usually represented by a tree composed

of functions and terminal. The function set specifies

which kind of functions can be part of the individuals.

The terminal set comprises all possible parameters for

the functions. Ephemeral Random Constants (ERCs)

are a highly used kind of terminals. An ERC is a

terminal node of the tree which is initialized randomly

and returns always the same value.

• A fitness function. For each generation, every individual

of the population must pass through the process of

natural selection. The fitness function evaluates the

quality of each individual.

• A set of genetic operators. For each generation of a

GP algorithm, some operations are performed on the

population. These operations are reproduction, muta-

tion and crossover. Reproduction does not change the

individual but generates an offspring from a given

population. Mutation randomly changes a function, a

terminal or a complete subtree of an individual. Finally,

crossover performs exchanges on two subtrees from

two individuals, thereby combining characteristics from

both of them into the new offspring.

A basic GP algorithm consists of a number of cycles. At

each cycle the fitness function is evaluated over the popu-

lation and the genetic operators are subsequently applied,

thus producing consecutive generations of populations of

computer programs, until an ending condition is reached.A

typical GP implementation has various parameters to be

adjusted, such as the population size and the maximum

number of generations.

III. RELATED WORK

The use of GP to generate IDS analysis rules was first

proposed in [9]. Standard GP as described by Koza has

not been often used in the IDS domain. Instead, use of

different variants of standard GP has been proposed, namely

Linear Genetic Programming (LGP), Multi Expression Pro-

gramming (MEP) and Gene Expression Programming (GEP)

[10]. LGP evolves individuals described in an imperative

programming language like C [11]. In LGP, the minimum

unit of evolution is a native machine code instruction. Song

et al. [12] applied LGP to the IDS domain obtaining similar,

but worse results than KDD-99 winner [13]. They also

claimed that solutions provided by their GP algorithm could

be used to extract knowledge. Nevertheless, their knowledge

extraction is focused on the results over the test dataset

and not on the inner characteristics of the GP individual.

In MEP each individual encodes several expressions. The

best expression of the individual is chosen as representative

for the individual. In GEP, individuals are encoded as linear

chromosomes which are expressed as expression trees. The

genotype is defined by the linear chromosomes and the

phenotype is defined by expression trees.
Abraham et al. [14], [15] reviewed and compared these

three derivates of standard GP and applied them to IDS

analysis rules generation. Results, which look good, were

obtained using training and testing sets which were a small

subset of the KDD-99 dataset. Therefore, results obtained

were not computed from the complete original dataset but

from an ad-hoc subset (not publicly available). This situation

makes a comparison with state-of-the-art unfeasible. As a

consequence, our experimental work focuses on the original

KDD-99 dataset in order to achieve a fair comparison with

top state-of-the-art. Faraoun [16] also proposed the use

of GP to evolve a multi-category classifier IDS. Results

obtained on the KDD-99 dataset were good, but the chosen

function set was composed by non-linear functions. Besides

the lack of justification for this function selection, these

functions do not allow the understanding of the generated

individuals, losing one of the potentials of the GP approach.
Many other approaches have been used to find good

analysis rules for IDS. Unsupervised techniques such as

cluster-based classification, K-means and SVM were pro-

posed on [17]. On section VI these works are compared

to our proposal in terms of effectiveness, efficiency and

semantics.

IV. DESIGN

The aim of this work is to show how domain-aware GP

can help in the production of effective, efficient and easy

to understand analysis rules to differentiate normal network

traffic from intrusive one. The design of the GP algorithm

requires the definition of the elements described in section

II such as the population of individuals, the function set, the

terminal set and the fitness function.

A. Population of individuals
Each individual of the population represents a potential

analysis rule for an IDS. An analysis rule decides (depending

on its input) whether there is an intrusion attempt or not. The

inputs of our analysis rules are a set of features describing a

connection and the network state (in our evaluation a KDD-

99 dataset entry).

B. Function Set Selection
One of the goals of using GP in the intrusion detection

field is to produce analysis rules which can be used to extract

domain knowledge. Functions have been selected having this

idea in mind. As the algorithm is designed to distinguish

between two categories (i.e. normal and intrusive), our

functions produce only two possible values as output. Thus,

our functions are modified versions of the typical logic

operators and, or, not, greater, least, equal and different
that produce only two logical values (i.e. 0 or 1).
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C. Terminal Set Selection

First group of terminals consists of each feature of KDD-

99 records (a total of 41). Second is composed of two

Ephemeral Random Constants (ERC). The first ERC takes

real values between -1.0 and 1.0. The second takes integer

values and is constrained between 0 and 100. This will allow

the GP algorithm to generate rules such as ”porti == 80”

which will allow easy extraction of knowledge.

D. Fitness Function

Usually the prevalence of attacks is very low in a real

network. As a consequence, accuracy (i.e. percentage of hits)

is not appropriate to measure the effectiveness of an IDS. In

this regard, it is important to note that a naive IDS that states

that every event is intrusive would achieve good accuracy

being a bad detector. Nevertheless, we have observed that

most GP approaches to intrusion detection rules have used

a fitness function based on accuracy [16], [15]. To avoid

this kind of situations, classical IDS effectiveness evaluation

provides the trade-off between the hit rate (H) and the false

alarm rate (F ) (defined in the next subsection). Recently

a new one-dimensional metric, namely Cid [3], has been

proposed. It is based on information theory and takes into

account the hit rate, the false alarm rate and the prevalence

of attacks. Consequently, we have used two different fitness

functions. The former is a basic metric on the IDS domain

which measures the difference between the hit and the false

alarm rate. The latter is the Intrusion Detection Capability

(Cid). In the following we describe both.

1) Hit Rate Minus False Alarm Rate: We define the hit

rate (H) and the false alarm rate (F ) as follows:

H =
Attacks classified as Attacks

Attacks
(1)

F =
Non − attacks classified as Attacks

Non − attacks
(2)

H and F provide a two-dimensional measure of the

quality of individuals. Our first fitness function transforms

this two-dimensional space in a one dimensional measure

which aims to maximize H while minimizing F:

Fit1 = H − F (3)

Therefore, an individual is better as it has higher H and

lower F . The main drawback of this function is that two very

different individuals can have the same fitness. For instance,

let us suppose two individuals with Fitness1 = 0.8. One

can have H = 0.8 and F = 0 and the other H = 1
and F = 0.2. Although this drawback, we have used this

fitness function to provide an exhaustive comparison against

other proposals. The second fitness tries to overcome the

aforementioned drawback.

2) Intrusion Detection Capability: Our second fitness

function is derived from recent research on IDS evaluation.

Recent studies have proposed a new metric for IDS effective-

ness evaluation called Intrusion Detection Capability (Cid)

which is based on information theory [3]. Cid measures the

amount of uncertainty of the input resolved once the IDS

output is obtained, producing one single value for measuring

IDS effectiveness. Unlike other IDS metrics, like our first

fitness function, Cid takes into account the prevalence of

attacks in the dataset (B) besides the hit rate (H) and the

false positive rate (F ):

Fit2 = Cid = − BHlog
BH

BH + HF

− B(1 − H)log
B(1 − H)

B(1 − H) + (1 − B)(1 − F )

− (1 − B)(1 − F )log
(1 − B)(1 − F )

(1 − B)(1 − F ) + B(1 − H)

− (1 − B)Flog
(1 − B)F

(1 − B)F + BH

(4)

Cid is more sensitive than traditional metrics in realistic

situations. Authors proved that in real scenarios, in which

the percentage of intrusions in the whole traffic data is low,

small changes on F have a high impact on Cid. More details

on this metric can be found on [3], [18].

V. THE KDD-99 DATASET

As stated before, we have used the KDD-99 dataset

[19] that derives from raw traffic captured during MIT/LL

1998 evaluation [20]. This dataset was first employed for

a machine learning competition over the intrusion detec-

tion domain. Training and testing datasets were created at

Columbia University after a data mining process on the raw

MIT/LL data. Raw data was divided in connection records

that covered about 100 bytes of a connection between two

parties in a limited time. Each connection record is described

by 41 attributes and also contains the corresponding class in-

dicating if it presents normal or hostile activity. A complete

description of the each attribute can be found in [21]. The

dataset is available at California University website1.

Table I shows the distribution of attacks and normal traffic

instances on KDD-99. Unfortunately, the KDD dataset does

not represent at all a realistic prevalence of attacks. This

has been one of the main critics to this dataset [5], [6]. To

avoid this drawback, some researchers have proposed the

modification of the prevalence of attacks in the dataset. We

have tested our approach against both scenarios in order to

achieve, first, a quantitative and fair comparison with state-

of-the-art and, second, a measure of effectiveness under a

realistic framework. For the first set of experiments we have

used the original dataset. For the second, each normal traffic

record has been replicated 4.000 times, as in [18], providing

a more realistic prevalence of attacks (i. e. 0.001).

1http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Table I
CLASS DISTRIBUTION OF THE KDD-99 DATASET

Train Test
Normal 97278(19.69%) 60593(19.48%)

Intrusions 396743(80.31%) 250428(80.52%)

Total 494021(100%) 311021(100%)

VI. EVALUATION AND RESULTS

We have evaluated our approach through an execution of

several experiments considering the fitness functions defined

in Section IV-D. To perform our experiments we have used

ECJ2, which is an evolutionary computation framework

developed in Java.

A. Experimental Setup

An experiment consists on evolving individuals on the

training data and then testing the best individuals over the

testing dataset. Experiments have been carried out using both

fitness functions. Our set of experiments has been divided

in two groups. First uses the original KDD-99 to perform

training and testing. Second uses the modified version of the

dataset in order to test a more realistic scenario. In this case,

experiments have been carried out only with the Cid fitness

function, as the modifications on the KDD-99 do not affect

H nor F . Each experiment has been repeated 30 times with

different randomly generated seeds. Overall, three different

trainings have been performed (Table II).

Table II
DESCRIPTION OF EXPERIMENTS PERFORMED

Fitness Function Dataset Runs
Experiment 1 H − F Original KDD-99 30

Experiment 2 Cid Original KDD-99 30

Experiment 3 Cid Modified KDD-99 30

Every experiment has been performed using the same

parameters (Table III). For each experiment, maximum depth

of generated trees has been restricted in order to obtain

more efficient and simpler individuals which allow an easy

interpretation from generated rules.

B. Results

The evolution of the best individual through generations

over the training dataset is depicted in Figure 1. Although

experiments correspond to different fitness functions they

have been all represented in a single plot for comparison

purposes. The improvement that the evolutive process pro-

duces is greater for the second fitness.

As depicted on Figure 2, increasing the number of gener-

ations in any experiment would not produce any significant

improvement on the GP individuals.

2http://cs.gmu.edu/ eclab/projects/ecj/

Table III
LIST OF PARAMETERS USED IN EXPERIMENTS DESCRIBED IN TABLE II

Parameter Value
Generations 52

Individuals 1024

Maximum depth 6 and 4

Initialization Ramped Half and Half

Mutation Probability 0.1

Crossover Probability 0.9

Elitisim Yes

Selection Mechanism Tournament

Tournament Size 7

Figure 1. Fitness evolution for the best individual in each experiment

Figure 2. Average fitness evolution in each experiment during the training
process.

Table IV compares the best and average results obtained

in experiments 1 and 2 with top state-of-the-art proposals

that refer results to the original test dataset. There are other

results in the literature that even overcome the KDD-99

Winner, but they have been obtained using filtered versions

(which are no publicly available) of the KDD-99 dataset.

In order to have a fair comparison we have not included

them. The best individual obtained in experiment 1 achieves

similar results to the leading system [13]. In addition, the
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Table IV
COMPARISON OF BEST INDIVIDUALS AGAINST STATE-OF-THE-ART

RESULTS USING THE ORIGINAL DATASET

H F Cid

KDD Winner [13] 0.9181 0.0055 0.6774
Best Linear GP [12] 0.8941 0.0068 0.6226

Faraoun GP [16] 0.925 0.0135 0.6630

Support Vector Machines [17] 0.98 0.10 0.5534

Self Organizing Maps [22] 0.89 0.046 0.4894

C 4.5 Tree 0.9099 0.0056 0.6590

Best Experiment 1 0.9131 0.0133 0.6565

Best Experiment 2 0.9180 0.0143 0.6652

Average Experiment 1 0.8024 0.0621 0.3988

Average Experiment 2 0.7915 0.0579 0.5006

best individual obtained in experiment 2 offers a better Cid

than the one from experiment 1 and is very close to the KDD

winner, beating all other approaches. These results show the

suitability of the GP design proposed, particularly the use

of Cid as fitness function.

Results achieved by the best individual of experiment 3

demonstrate the high sensitivity of Cid metric for a realistic

prevalence of attacks. Thus, as summarized in Table V, it

clearly outperforms classical machine learning algorithms in

terms of Cid being a 15% more effective than SVM. The best

individual achieves an extremely low ratio of false positives

while keeping a hit rate close to the best.

Table V
COMPARISON OF BEST INDIVIDUALS AGAINST STATE-OF-THE-ART

RESULTS USING THE MODIFIED DATASET

H F Cid

Naive Bayes [18] 0.9002 0.0257 0.4258

C4.5 Tree [18] 0.9103 0.0176 0.4258

Support Vector Machines [18] 0.8761 0.0036 0.5642

Best Experiment 3 0.8938 8.747E-4 0.7105
Average Experiment 3 0.7626 0.0069 0.4994

Table VI3 shows the best individuals obtained represented

as C function calls. Shorter individuals are easier to interpret.

We have obtained one extremely short (best experiment 1)

with high effectiveness (in terms of H , F and Cid).

As an example, Figure 3 represents best individual ob-

tained in experiment 14.This analysis rule states (besides

more implications) that if there are more than one connection

to the same host (attr32) and at least one of them is from

the same service (attr35), but in the current record there

is no data transmitted (attr6) because there was an error

(attr4), then there is an intrusion going on.

Programs generated by means of GP can be composed

of a relatively small set of function calls (simple operators

3attri refers to feature number i of the KDD-99 dataset
4note that or(attr4, attr4) cannot be replaced by attr4, if attr4 = 3

then or(attr4, attr4) = 1.

Table VI
BEST GP INDIVIDUALS OBTAINED EXPRESSED IN C PSEUDOCODE

Type Individual

Best Experiment 1 eq(or(attr4,attr4),neq(attr6,and(attr32,attr35)))

Best Experiment 2 neq(neq(attr4, neq(neq(attr4, attr10),
attr10)), neq(attr6, least(and(attr2,
and(attr15, not(attr23))), attr35)))

Best Experiment 3 and(grater(neq(or(grater(attr35,neq(grater
(or(attr23, attr25), attr36), attr29)),
neq(attr14, attr5)),least(attr7, attr35)),
eq(attr24, neq(attr14, attr5))),
grater(grater(neq(or(attr6, attr37),
neq(grater(or(attr23, attr25), attr36),
attr29)), least(not(attr12), neq(attr14,
attr5))), or(least(grater(attr26, attr13),
attr6), attr31)))

Figure 3. Tree representation of best individual obtained in experiment 1

like and, equal, etc.). We have not compared execution time

of different techniques, as it depends on the implementation

and computer where the tests are performed. Instead, we

have compared the number of nodes of best GP individuals

against state-of-the-art proposals and a C4.5 tree generated

by us. Table VII shows that GP generated programs have

the fewest number of nodes and function calls.

Table VII
EFFICIENCY COMPARISON BETWEEN STATE-OF-THE-ART PROPOSALS

AND BEST GP INDIVIDUALS. GP REDUCES THE SIZE OF THE SOLUTIONS

Functions Leaves Total Nodes

C4.5 Tree 62 332 394

KDD-99 Winner [16] – – 500

Faraoun GP [16] 86 – 86

Best Experiment 1 4 5 9

Best Experiment 2 9 9 18

Best Experiment 3 25 25 50

VII. CONCLUSIONS

In this paper we have presented a domain-aware GP

approach to the generation of network traffic analysis rules.
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We have carefully thought the fitness function and function

set in order to produce effective, efficient and easy to

understand rules. Thus, two fitness functions, that take into

account the IDS evaluation field, have been tested. The well-

known KDD-99 dataset has been used as input data for

training and testing in such a way that a comparison with

state-of-the-art research was possible. Results point out that

our approach competes in effectiveness with top proposals

and even improve them in realistic scenarios. In addition,

generated rules are much shorter. As a consequence, our

system is more efficient increasing the throughput while

reducing the time to process each incoming event. Finally,

these automatically generated individuals can help us to

understand why an event is considered intrusive due to their

simple structure.
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