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vector of the constraints can be obtained as a solution of a dual programo
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1 Introduction

It is well known that for convex scalar minimization programs and under very
general conditions, the differential of the optimum value of the objective with
respect to the right side vector of the constraints is a solution of a dual programo The
extensions of this result to the multiobjective programming have been slight in
general, although we can refer for instance to [9] where the problem is studied for
finite dimensional linear programs assuming that the decisor chooses always
optimum solutions which are also basic feasible solutions.

Many papers have stated important contributions to the development of a duality
theory for the multiobjective convex programming (see for instance [10], [13], [15]
and [17]) but a result about sensitivity similar to that of the sca1ar case has never
been obtained although several sets have been studied which can be determined by
duality properties and which contain the mentioned differential (see for instance
[14]). In [3] it is proved that in general for a multiobjective linear program its
sensitivity depends not only on the dual solution but also on the differential of this
dual solution. It is also proved that this result is a genuine extension of the standard
one in scalar prograrnming, and several examples are presented where the
differential of the dual solution does not vanish. Last results have been extended for
convex programs in [4] and for differential programs in [2], where the sensitivity is
measured with respect to any pararneter appearing in the program (and not only
with respect to the right side vector ofthe constraints).

We use here the dual introduced in [4] since it extends the classic ones of the
linear multiobjective prograrnming and the scalar convex prograrnming. In Section
3 the situations in which the primal sensitivity coincideswith the dual solution are
characterized. The main result is Theorem 3.4 which states a condition of
homogeneity which solves completely the problem using the Euler' s Formula
(which characterizes the homogeneous functions). Afterwards it is studied the
particular case of prograrns defined by homogeneous functions obtaining in this
case that the dual solution measures the sensitivity if and only if the optimum value
of the objective is an homogeneous function of the right side vector of the
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constraints (see Theorem 3.7). An important particular case is the linear
programming which is studied in Section 4 where Theorem 4.2 characterizes the
property when the optimum solution is chosen to be a convex linear combination of
basic feasibleoptimum solutions, stating that in this case the primal sensitivity is a
dual solution if and only ifthe weights applied over every basic feasible solution are
homogeneous functions of degree zero.

2 Preliminaries and notations

Let n be a Convex subset of a Banach space X, Y a Banach space ordered by a
closed convex pointed cone Y+ , Z a Banach lattice with positive cone Z+ and W
an order complete Banach lattice with positive cone W+. Let also consider two
convex functions f: n ~ y and g: n ~ Z , and a surjective linear and continuous
mapping T:Y~W such that T(Y+- {O}) ~W+- {O} and KerT has a
topological supplement YT (in Y) (last condition holds in particular, if Y is a
Hilbert space or W is finite dimensional). Let us denote by T* the restriction ofT to
YT (it follows from the open mapping theorem that T* -1 is continuous), by 1t the

natural projection from Y onto KerT and by L (Z, W) the space of all linear and
continuous functions from Z into W, endowed with the usual norm and order.
Similar notations will be used in other similar cases. Finally let B be an open subset
of Z and consider for every b E B the following multiobjective minimization
program:

Min f(x)

x E n, g (x) ::; b
For every LE L (Z, W), we write LE rT if L ~ O and {Tf(x) +Lg (x)

x En} is an order bounded from below subset of W, and in this case its infimum
will be denote by <p (T, L). Following [4], for every bE Band GEL (Z, Y) such

that TG E rT we consider the dual function 'l' (T, G) = T* -1 <p (T, TG) - G (b)
and the dual program

Max 'l'(T,G)

GEL (Z, Y), TG E rT
We say that xb E n is a T-optimal solution of (2,1b) if xb is a feasible solution of

this program and Tf(x) ~ Tf(xb) for every feasible solution x En.
Analogously a feasible solution Gb E L (Z, Y) of (2,2b) is said to be a T-optimal

solution of this prograrn if T'l' (T, G) ::; T'l' (T, Gb) for every feasible solution
GEL (Z, Y). If xb is a primal T-optimal solution, Gb is a dual T-optimal

solution and f(x b) = 'l'(T, Gb) then xb and Gb are said to be associated
solutions. Several conditions for the existence of dual T-optimal solutions
associated with a primal T-optimal solution can be fond in [4].

3 Homogeneity conditions

Throughout this paper we will suppose that for every b E B there exists a
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T-optimal solution Xb of (2,lb) and F: B ---7 Y wil1 be the function defined by

F (b) = f (xb) for every b E B. Theorem 12 of [4] states that, " if there exists a

Fréchet differentiable function G: B ---7 L (Z, Y) such that G (b) is a T-optimal
solution of (2,2b) associated to xb for every b E B, then F is also Fréchet

differentiable (on B) and F'(b,z) = -Gb(z) -n(G'(b,z) (b)) for every

bE B and z E Z ", where F' (b, z) and G' (b, z) denote the images ofz by the
Fréchet differentials at b of F and G, respectively, and G' (b, z) (b) is the image of
b by G' (b, z) . Throughout the paper F' (b, -) will denote the Fréchet differential
ofFat b E B.

In this Section we characterize the situations where the differential F' (b, -) lS

obtained as a dual T-optimal solution associated to xb,for every b E B.

Lemma 3.1. Let us assume that F is Fréchet differentiable on B and at least one of
the following conditions holds:
3.1.1. B is convex and g (n) ~ B.
3.1.2. There exists a continuous function G:B ---7L(Z. y) such that G(b) lS a
T-optimal solution of (2,2b) associated to xb' for every b E B.

Then, for every b E B, -F' (b, -) is a dual T-optimal solution and
<p(T,-TF' (b,-» +TF'(b,b) = TF(b).

Proof. Suppose that 3.1.1 holds and let b E B and Z E Z+ be. Then, there exists
E > O such that b + tz E B for every O;:; t < E, and since Xb is a feasible solution of

(2,l(b+tz»,wehavethat TF(b+tz) :5:TF(b) and
TF(b+tz) -TF(b)

TF'(b,z) = lim :5:0. (3.1)
t-7 O t

Let us see now that TF is a convex function. In fact, if b, b' E B, a, a' :::: O and
a + a' = 1, then since g is convex, we have that

g(axb+a'xb,) :5:ag(xb) +a'g(xb,) :5:ab+a'b'

andtherefore TF(ab+a'b') :5:Tf(axb+a'xb,) :5: aTF(b) +a'TF(b').

Consider now x E n and h = g (x) - b , then b + h = g (x) E B and for
every O:5: t :5: 1 we have that

TF(b+th) = TF«(l-t)b+t(h+b);:; (l-t)TF(b) +tTF(h+b),
from where we obtain that

TF(b+th) -TF(b) -TF' (b, th) :5:t[TF(b+h) -TF(b) -TF' (b,h)].
Therefore

TF (b + th) - TF (b) - TF' (b th)
---------'-:5:TF(b+h) -TF(b) -TF' (b,h)

t
and taking now limits when t ---7 O, it fol1ows that

TF(g(x) -TF'(b,g(x) ::::TF(b) -TF'(b,b).
Now, since x is afeasible solution of(2,lg(x)), we have that TF (g(x) ;:;Tf(x)

and therefore
Tf(x) -TF' (b, g (x» ::::TF (b) -TF (b, b). (3.2)

From (3.l)and (3.2) itis immediately deducedthat -F'(b,-) E rT and
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c¡> (T, -TF' (b, -» ::::TF (b) -TF' (b, b). (3.3)
To prove the opposite of inequality (3.3) it is enough to see that the inequality of
(3.2) changes its sense if x = xb' and this is a consequence of the inequality

- TF' (b, g (x b) :5: - TF' (b, b) , which fol1ows immediately from g (xb) :5: b and

-TF'(b,-) ::::0.
Suppose now that 3.1.2 holds and let bE B be. Then it follows from Theorem 10

of [4] that TG(b) is a Lagrangian T-multiplier af (2,1 b) (in the sense of Definition 1
of [4]) and therefore, since xb is a T-optimal solution of (2,1 b), we have that

TF(b) = Tf(xb) = Inf{Tf(x); xEn,g(X) :5:b}

= Inf{Tf(x) +TG(b) (g(x) -b); XE n}
= Inf{Tf(x) +TG(b) (g(x»; XE n} -TG(b) (b). (3.4)

Moreover, it follows from Theorem 4 of [4] that TF' (b, -) = - TG (b) , and thus
it is obtained from (3.4) that TF (b) = <p (T, - TF' (b, - )) + TF' (b, b).

Definition 3.2. Let U and V be two Banach spaces, p E R and A an open subset of
U. We say that a function h: A ---7 V is homogeneous af degree p ir for every

a E A there exists a neighborhood Ua e (O, + 00) of 1 (in the realline R) such that

taE A and h(ta) = tPh(a) forevery tE Ua.

Theorem 3.3. (Euler's Formula). Let U and V be two Banach spaces, pE R, A an
open subset of U and h: A ---7 V a Fréchet differentiable function. Then h is
homogeneous ofdegree p if and only if h' (a, a) = ph (a) for every a E A .

Theorem 3.4. With the already established notations, let us assume that F is Fréchet
differentiable on B and that at least one of the conditions 3.1.1 and 3.1.2, holds.
Then, -F' (b, -) is a dual T-optimal solution associated to xb for every bE B if
and only if nF is homogeneous of degree l.

Proof. Suppose that -F' (b, -) is associated to xb for every bE B . Then we have

that F(b) = f(x
b

) = \jf(T,-F'(b,-» = T'-l<p(T,-TF'(b,-» +F'(b,b)

for every bE B, and since clearly n:T' -1 = O, applying n to the terms of last
equalities we obtain that nF (b) = nF' (b, b) and now, it results immediate1y
from the Euler' s Formula that nF is homogeneous of degree 1.

Reciprocally, if nF is supposed to be homogeneous of degree 1 then it follows
from the Euler's Formula that nF (b) = n:F' (b, b) . Moreover, it is deduced from
Lemma 3.1 that -F' (b, -) is a feasible dual solution (and a dual T-optimal solution)
and<p(T,-TF' (b,-» +TF'(b,b) = TF(b).

Therefore, since y = T* -1 T (y) + n (y) for every y E Y, it results that

\jf(T,-TF' (b,-») = T*-I<p(T,-F'(b,-)) +F'(b,b)

= T*-l (TF(b) -TF' (b, b» +F' (b, b)
= F(b) -F' (b, b) -nF(b) +nF' (b, b) +F' (b, b) = F(b) = f(xb)

and thus -F' (b, -) is associated to xb.
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Remark. Concrete exarnples at which -F' (b, -) is not a dual solution associated
to xb' can be fond in [4]. This fact and Theorem 3.4 point out that the homogeneity

of 1tF does not hold in general. In the particular case of the scalar prograrnming
clearly 1t = O and so the homogeneity of 1tF is obvious and this shows that
Theorem 3.4 is a genuine extension of the classic results known for the scalar
prograrnming.

Definition 3.5. Let bE B be and p, q E R. We say that (2,lb) is a
(p,q)-homogeneous prograrn if Q is a convex cone of X and the equalities

f (tx) = tPf(x) and g (tx) = tqg (x) hold for every x E Q and every
0< t ( E R) . Ifmoreover p = q we merely say that (2, 1b) is p-homogeneous.

Proposition 3.6. If the prograrn (2,1 b) is (p,q)-homogeneous and q *" O then the
function TF is homogeneous ofdegree piq.

Proof. It follows easily proceeding in standard way.

Theorem 3.7. Suppose that F is Fréchet differentiable on B, pE R - {O}, the
program (2,1 b) is p-homogeneous for every b E B and at least one of the conditions
3.4.1 and 3.4.2 holds. Then -F' (b, -) is a T-optimal solution associated to xb for

every b E B if and only ifF is homogeneous of degree l.

Proof. It is an immediate consequence of Theorem 3.4 and Proposition 3.6 since

F = T*-lTF+1tF.

Remark. In [3] it is given an exarnple of a linear prograrn for which -F' (b, -) is not
a dual associated solution and this proves that in general F is not homogeneous . In
the particular case ofthe scalar programming, Theorem 3.7 states that ifthe function
F is Fréchet differentiable then it is necessarily homogeneous of degree 1 (even for
infinite dimensional problems).

4 Linear programs

We will say that (2,1 b) is linear if Q is a convex cone of X and the functions f and g
can be extended to all X in such a way that their extensions, which will be also
denoted by f and g , belong to L (X, Y) and L (X, Z) , respectively. In particular,
linear programs are 1-homogeneous and as usual we will write x ~ O instead of the
constraint x E Q.

Throughout this section (2,1 b) will be supposed to be a linear program for every
b E B, and since in linear programing it is more convenient to work with equality
constraints, we wil1 change (2,1 b) by the following program:

Min f(x)

g(x)+z=b, x E Q, z E Z+
Clearly there is a natural bijection between the feasible sets of (2,lb) and (4,lb),

preserving the optimums, the T-optimal solutions and the extremal points of both
feasible sets.

Theorem 14 of [4] proves that if the prograrn (2, lb) is linear, then its dual has the

193

following more simple formulation:
Max -G(b)

GE L(Z, y), TG~O, TGg~-Tf

Last dual extends the duals given in [1] for scalar linear programs, in [9] for linear
multiobjective prograrns in finite dimensional spaces and in [3] for linear programs
between spaces of arbitrary dimensions. Moreover (4.2b) is quite similar to the dual
introduced in [8] for goal prograrnming problems and also to the dual stated in [10]
for general linear problems. Throughout this section we wil1 suppose that for every

b E B, {xib} i = 1,2, ... , k is a fa..'1lily of basic feasible solutions (in the sense of [1])

which are T-optimal solutions of (4,1 b). Therefore Tf (x\) = Tf (x\) for every
b E B and i, j E {1, ... , k}, and every convex linear combination of

{x1b, ... , xkb} is also a T-optimal solution of (4,2b) for every b E B.

If zib = b - g (xi b) for every 1 :,; i :,; k and b E B, we have that

~o (xib) = {(x, z) E XxZ : (X1b' Zlb) + A(x, z), (X1b' Zlb) - A(x, z) E QxZ+

for sorne scalar A> O} is a vector subspace ofXxZ such that (xib, zib) E ~o (xib)

and ~o(xlb)Í\Kerg*={O}, where g*:XxZ-7Z is defined by

g* (x, z) = g(x) +z for every (x, z) E XxZ. We willassume that ~O(Xlb) is

contained in a closed subspace ~i which is a topological supplement of Ker g* and
it does not depend on b E B.

Clearly, ifwe assume in this section that g is surjective then the restriction g¡* of g*

to ~¡ is a topological isomorphism such that g; (xib' z\) = b for every i = l,...,k

and b E B.
k

Consider also k functions hi: B -7 [0,1J (i = 1,... ,k) such that i¡ hi (b) = 1 for

k .

every bE B, and let us fix the following notations: xb = ¡¡h¡ (b) x\,

k . k .
F(b) = f(xb) andzb = b-g(xb) = i¡hi(b) (b-g(X1b» = ¡¡hi (b)Zlb

for every b E B. Finally assume throughout this section that at least one of the
conditions 3.1.1 and 3.1.2, holds.

Proposition 4.1. If F is Fréchet differentiable at B and hi (i = l, ... ,k) is

homogeneous of degree 0, then -F' (b, -) is a dual T-optimal solution associated to
xb for every b E B.

Proof. It follows from Theorem 3.7 that it is enough to prove that the function F is
homogeneous of degree 1, and this can be easily proved in standard way.

Theorem 4.2. Suppose that the functions F and h¡ (i = l, ... ,k) are Fréchet

differentiable on B and {f (x\) ; i = 1,... ,k} is a linearly independent system for
every bE B. Then -F' (b, -) is a dual T-optimal solution associated to xb for every
bE B ifand only if h¡ is homogeneous of degree Oforevery i = l, ...,k.
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and (5.2)o i=l, ...,m, k=l, ...,n.

6 Conclusions

(nG)' (b,z) (b) = O (5.1)
for every bE B and z E Z. Thus in many situations (stated in Sections 3 and 4) the
ditferential equation (5.1) (jointly with sorne initial and optimal conditions) let to
obtain F' . In particular, if Y = Rill and Z = Rn, then nG (b) will be a functional
matrix (gij (h» i=I, ...,m,j=l,...,n' and (5.1) leads to the following system of partial

differential equations:

If b denotes the right side vector of the constraints of a convex multiobjective
program and F(b) is the optimum value of that program, then the differentia1 of F
with respect to b cannot be obtained in general as a solution of a dual prograrn (see [3]
or [4]) and it appears the natural question of characterizing the situations where this
differential (denoted by F' (b, -) in this paper) solves the dual programo Theorem
3.4 gives an answer to this question by means of a condition of homogeneity, and
Theorem 3.7 states for a particular type of programs (containing the linear ones) that
a necessary and sufficient condition to be -F' (b, -) an associated dual solution is
that F will be (as a function of b) homogeneous of degree 1. In particular, for the
scalar linear prograrnming it is verified that if F is differentiable then it is necessarily
homogeneous ofdegree 1, result which is false in general in the multiobjective case.

In the linear case, when the optimum solution is chosen to be a convex linear
combination of basic feasible solutions (what is the usual situation in programs
described between finite dimensional spaces, and also in many examples of infinite
dimensional programs like the Mass-Transfer type problems) the necessary and
sufficient condition for -F' (b, -) to be an associated dual solution is that the weights
applied on the basic feasible solutions will be homogeneous functions (of b)of
degree O(as Theorem 4.2 states).

Last results can be proved, for prograrns described between finite dimensional
spaces, solving the Euler's partial differential equations which characterize the
homogeneous functions. Furthermore, if F is homogeneus of degree 1, then the
system of partial differential equations (5.2) may lead in practicar situations to a
general expresion of F. When F is not a homogeneous function (of b) then the
sensitivity of the program can be obtained solving a more general and complex
system of partial differential equations which can be deduced from Theorem 12 of
[4].

for every b E B .Therefore since F (b) = F' (b, b) for every b E B, it results from
(4.1) and (4.2) that

k, * I
O = i~ hi (b, b) f (g¡ - (b»

k. ..
= L hi (b, b)f(X1b' z\)

i= 1

for every b E B, from where it is immediately deduced that h; (b, b) = O for every

bE B and i = 1,...,k, since the system {f(xib, zib) ; i = 1,... ,k} is linearly
independent. Now it results from the Euler's Formula that hi is homogeneous of
degree Ofor every i = 1,... ,k. The converse follows trivially from Proposition 4.1.

Proof. Like in the proof of Proposition 4.1, 1et us denote by f the natural extension of
f to XxZ (such that (x, z) ~ f (x». If -F' (b, -) is a dual T-optima1 solution
associated to xb for every b E B, then it results from Theorem 3.7 that F is
homogeneous of degree 1 and then it follows from the Eu1er's Formula that
F (b) = F' (b, b) for every b E B. Furthermore

F(b) f(xb,zb) = {tlhi(b) (Xib'Zib») = {thi(b)g;-I (b») (4.1)

F' (b, b) = f(itI h; (b, b) g;-l (b) + itI hi (b) g;-l (b) )

= {t h; (b, b) g;-l (b) ) +{t hi (b) g;-I (b) ) (4.2)

Remark. The assumption about the linearly independence of the system

{f(xib,Z\); i = 1,... ,k} (bE B) cannot be avoid in Theorem 4.2 since it is
known that in the scalar prograrnming (i.e., Y = R) the differential -F' (b, -) is the
dual solution independent1y of the choice of the primal optimum. Actually what
happens in tbis case is that F does not depend on the "weights" h· applied to every
basic feasible solution. - 1

Many papers (Iike [3], [6] and [9] ) prove that if the decisor chooses an optimum
solution which is a basic fe asible solution (or a convex linear combination of basic
feasible solutions whose scalar coefficients are fixed and independent of b E B) then
-F' (b, -) can be fond as a dual associated solution. Theorem 4.2 states that

_-F' (b, -) continues being a dual solution associated to xb even though the weights
are not constant and they are homogeneous functions (of b) of degree O.
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G is Fréchet differentiable (or equivalently, if F is twice Fréchet differentiable) then

[lJ Anderson, E.J. and P. Nash: Linear programming in infinite dimensional spaces.
John Wiley & Sons, New York, 1987.
[2] Balbás, A., F. Fernández, and P. Jiménez Guerra: On the envolvent theorem in
multiobjective programming. Indian Journal of Pure and Applied Mathematics, 26
(1995),1035-1047.
[3]Balbás, A. and A. Beras,: Duality theory for infinite dimensional multiobjective
programming. European Journal of Operational Research, 68 (1993), 379-388.



196

[4] Baibás, A. and P. Jiménez Guerra: Sensitivity analysis for convex multiobjective
programming in abstract spaces. Journal of Mathematical Analysis and
Applications, 202 (1996), 645-658.
[5] Balbás, A., P. Jiménez Guerra and C. Núñez: Strongly proper optimums and
maximal optirnization in multiobjective programrning. Revista Real Academia de
Ciencias de Madrid, 86 (1992), 289-295.
[6] Henggeler, C. and J. Cimaco: Sensitivity analysis in MCDM using the weight
space. Operations Research Letters, 12 (1992),187-196.
[7] Ignizio, J.P.: Introduction to linear goal programming. Sage University Papers,
London, 1976.
[8] Ignizio, lP. : An algorithm for solving the linear goal programming problem by
solving its dual. Journal ofthe Operations Research Society, 36 (1985), 507-515.
[9] Isermann, H.: On sorne relations between a dual pair of multiobjective linear
programs. Zeitschrift für Operations Research, 22 (1978), 33-41.
[10] Jahn, J.: Mathematical vector optimization in partially ordered linear spaces.
Verlag Peter Lang, Frankfurt, 1986.
[11] Jiménez Guerra, P. and B. Rodríguez-Salinas: A general solutioIÍ of the
Monge-Kantorovich Mass-Transfer problem. Journal ofMathematical Analysis and
Applications, 202 (1996), 402-510.
[12] Khanh, P.O.: Sufficient optimality conditions and duality in vector optirnization
with invex-convexlike functions. Journal of Optimization. Theory and Applications,
87 (1995), 359-368.
[13] Khanh, P.O.: Proper solutions of vector optimization problems. Journal of
Optimization.Theory and Applications, 74 (1993), 105-130.
[14] Klose, J.: Sensitivity analysis using the tangent derivative. Numerical
Functional Analysis and Optimization, 13 (1992),143-153.
[15] Luc, D.T.: About duality and alternative in multiobjective optimization. Journal
of Otimization. Theory and Applications, 53 (1987),303-307.
[16] Schaefer, H.H.: Banach lattices and positive operators. Springer-Vedag, Berlin,
1974.
[17] Tanino, J., Y. Sawaragy and Y. Nakayama: Theory of multiobjective
optimization. Academic Press, 1985.
[18] Zeleny, Y.: Multiobjective linear programming. Springer-Verlag, Berlin, 1974.
[19] Zowe, S.: A duality theorem for a convex programming problem in order
complete vector lattices. :rournal of Mathematical Analysis and Applications, 50
(1975),273-287.

On Pseudo-Boolean Multicriteria Optimization Problems
with Incomplete Information

Vladirnir Donskoy and Anna Perekhod

Department of Mathematics, Simferopol State University
4, Yaltinskaya Street, Simferopol 333036 Crimea, lJkraine

Abstract

This paper presents a new approach for Intelligent Deeision Support Systerns
(IDSS) developrnent based on the pseudo-Boolean rnultieriteria optirnization
with ineornplete information for deeision rnaking in the eomplieated, weakly
formalized sphere. This approach uses an interactive proeedure to form the

leaming set W = {Wo UW;}, where Wo contains onIy Pareto, and W;
contains onIy non-Pareto points. This set W is used for induetive leaming to
approximate the Pareto seL

Keywords. Multiple criteria optimization, pseudo-Boolean functions, rnachine
learning, Pareto set approximation, decision support systerns.

1 Introduction

We consider decision rnaking as a choice of sorne element x=(x 1 , •• " X n )

from the adrnissible solutions set Q. We also suppose Xi E {D,l},i = l,n ,
and consider the pseudo-Boolean rnodels, but the problems of the variable
binarization are excluded from eonsideration in this paper. In other words,

we consider given or ehosen feature predicates set {Xi: Y ~ {O,l}} ,where Y

is the set of states diseribing the problem region.

Let us denote Bn = {D,lf. We suppose that decision making is realized on

the basis of criteria

{.0:Bn ~R,j=l,r}.

These eriteria are pseudo-Boolean functions aeeording to the model:

{
extr J;(x), ... ,extr l/x); (1)

x EncBn


