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Abstract. The purpose of this paper is to characterize for convex multiobjective
programming, the situations in which the sensitivity with respect to the right side
vector of the constraints can be obtained as a solution of a dual program.
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1 Introduction

It is well known that for convex scalar minimization programs and under very
general conditions, the differential of the optimum value of the objective with
respect to the right side vector of the constraints is a solution of a dual program. The
extensions of this result to the multiobjective programming have been slight in
general, although we can refer for instance to [9] where the problem is studied for
finite dimensional linear programs assuming that the decisor chooses always
optimum solutions which are also basic feasible solutions.

Many papers have stated important contributions to the development of a duality
theory for the multiobjective convex programming (see for instance [10], [13], [15]
and {17]) but a result about sensitivity similar to that of the scalar case has never
been obtained although several sets have been studied which can be determined by
duality properties and which contain the mentioned differential (see for instance
[14]). In [3] it is proved that in general for a multiobjective linear program its
sensitivity depends not only on the dual solution but also on the differential of this
dual solution. It is also proved that this result is a genuine extension of the standard
one in scalar programming, and several examples are presented where the
differential of the dual solution does not vanish. Last results have been extended for
convex programs in [4] and for differential programs in [2], where the sensitivity is
measured with respect to any parameter appearing in the program (and not only
with respect to the right side vector of the constraints).

We use here the dual introduced in [4] since it extends the classm ones of the
linear multiobjective programming and the scalar convex programming. In Section
3 the situations in which the primal sensitivity coincides with the dual solution are
characterized. The main result is Theorem 3.4 which states a condition of
homogeneity which solves completely the problem using the Euler’s Formula
(which characterizes the homogeneous functions). Afterwards it is studied the
particular case of programs defined by homogeneous functions obtaining in this
case that the dual solution measures the sensitivity if and only if the optimum value
of the objective is an homogeneous function of the right side vector of the
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constraints (see Theorem 3.7). An important particular case is the linear
programming which is studied in Section 4 where Theorem 4.2 characterizes the
property when the optimum solution is chosen to be a convex linear combination of
basic feasible -optimum solutions, stating that in this case the primal sensitivity is a
dual solution if and only if the weights applied over every basic feasible solution are
homogeneous functions of degree zero.

2 Preliminaries and notations

Let Q be a convex subset of a Banach space X, Y a Banach space ordered by a
closed convex pointed cone Y, Z a Banach lattice with positive cone Z, and W
an order complete Banach lattice with positive cone W, . Let also consider two
convex functions f:Q — Y and g: Q — Z , and a surjective linear and continuous
mapping. T:Y - W such that T(Y,- {0}) cW.— {0} and KerT has a
topological supplement YT (in Y) (last condition holds in particular, if Y is a
Hilbert space or W is finite dimensional). Let us denote by T" the restriction of T to
YT (it follows from the open mapping theorem that T* ! is continuous), by 7 the
natural projection from Y onto KerT and by L (Z, W) the space of all linear and
continuous functions from Z into W, endowed with the usual norm and order.
Similar notations will be used in other similar cases. Finally let B be an open subset
of Z and consider for every be B the following multiobjective minimization
program:
Min f(x)
xe Q,g(x)<b

For every Le L(Z, W), we write Le I'r if L20 and {Tf(x)+Lg(x) :
xe€ Q1 is an order bounded from below subset of W, and in this case its infimum
will be denote by ¢ (T, L) . Following [4], forevery be B ~and Ge L(Z,Y) such

that TG e I't we consider the dual function w (T, G) = T (p (T, TG) -G (b)
and the dual program

(2,1b)

Max v (T, G)
Ge L(Z,Y), TGe It
We say that x, € Q is a T-optimal solution of (2,1b) if x isa feasible solution of
this program and Tf(x) 2Tf(x,) for every feasible solution xe Q.
Analogously a feasible solution Gy € L(Z,Y) of (2,2b) is said to be a T-optimal
solution of this program if Ty (T, G) <Ty (T, G,) for every feasible solution
Ge L(Z,Y). If x, is a primal T-optimal solution, G, is a dual T-optimal
solution and f(x,) = y(T,Gy) then xy and Gy are said to be associated

solutions. Several conditions for the existence of dual T-optimal solutions
associated with a primal T-optimal solution can be fond in [4].

(2,2b)

3 Homogeneity conditions

Throughout this paper we will suppose that for every be B there exists a
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T-optimal solution x, of (2,1b) and F:B — Y will be the function defined by
F(b) = f(xy) for every b e B. Theorem 12 of [4] states that, " if there exists a
Fréchet differentiable function G:B — L(Z, Y) such that G (b) is a T-optimal
solution of (2,2b) associated to x,, for every be B, then F is also Fréchet
differentiable (on B) and F'(b,z) = -Gy (z) —n(G'(b,2) (b)) for every
be B and ze Z ", where F' (b, z) and G' (b, z) denote the images of z by the
Fréchet differentials at b of F and G, respectively, and G' (b, z) (b) is the image of
bby G' (b, z).Throughout the paper F' (b, -) will denote the Fréchet differential
of Fatbe B.

In this Section we characterize the situations where the differential F' (b, -) is
obtained as a dual T-optimal solution associated to x ,forevery b e B.

Lemma 3.1. Let us assume that F is Fréchet differentiable on B and at least one of
the following conditions holds:
3.1.1.Bisconvexand g () < B. .
3.1.2. There exists a continuous function G:B — L (Z.Y) such that G(b) is a
T-optimal solution of (2,2b) associated to x,, forevery be B.
Then, forevery be B, -F' (b, -) is adual T-optimal solution and
¢ (T, -TF' (b,-)) +TF' (b,b) = TF(b).

Proof. Suppose that 3.1.1 holds and let be B and z € Z, be. Then, there exists
e>0suchthat b+tz e B forevery 0 <t<eg,and since x, is a feasible solution of
(2,1(b+1tz)), we have that TF(b+1tz) <TF(b) and
TF(b+tz) - TF
TE' (b,2) = lim @ ZTF®) 4
t— 0 t

3.1

Let us see now that TF is a convex function. In fact, if b,b' € B, o, ' 20 and
o+ o' = 1,then since gis convex, we have that
gloxy+a'xp) Sog(xy) +o'g(x,) Sab+a'd’
and therefore TF (ab+a'b") <Tf(ax,+a'x,,) <aTF(b) + ' TF (b') .
Consider now x€ Q and h = g(x) —b , then b+h = g(x) € B and for
every 0 <t <1 we have that ,
TFE(b+th) = TE((1-9b+t(h+b)) < (1 -t)TF(b) +tTF(h+b),
from where we obtain that
TF (b+th) —TF (b) — TF' (b, th) <t[TF(b+h) = TF(b) ~TF'(b,h)].
Therefore
TF (b +th) = TF(b) — TF' (b, th)
t
and taking now limits when t — 0, it follows that
TF(g(x)) —=TF (b,g(x)) 2TF(b) —TF' (b, b) .
Now, since x is a feasibie solution of (2,1g(x)), we have that TF (g (x)) < Tf(x)
and therefore
Tf(x) =TF' (b, g(x)) 2TF (b) —TF (b, b) . (3.2)
From (3.1) and (3.2) it is immediately deduced that ~F' (b, -) € I'r and

<TF(b+h) — TF(b) — TF' (b, h)

@ (T,-TF' (b,-)) 2TF(b) — TF' (b, b). (3.3)
To prove the opposite of inequality (3.3) it is enough to see that the inequality of
(3.2) changes its sense if x = x,, and this is a consequence of the inequality
=TF' (b, g(xy,)) <-TF' (b, b), which follows immediately from g (x,,) <b and
-TF' (b,-) 20.

Suppose now that 3.1.2 holds and let b € B be. Then it follows from Theorem 10
of [4] that TG(b) is a Lagrangian T-multiplier of (2,1b) (in the sense of Definition 1
of [4]) and therefore, since x, is a T-optimal solution of (2,1b), we have that

TF(b) = Tf(x,) = Inf {Tf(x); xe Q,g(x) b}
= Inf {Tf(x) +TG(b) (g(x) =b); xe Q}
= Inf {Tf(x) + TG (b) (g(x}); xe Q} —TG(b) (b). (34

Moreover, it follows from Theorem 4 of [4] that TF' (b,-) = -TG (b) , and thus

itis obtained from (3.4) that TF (b) = ¢ (T, -TF'(b,-)) + TF' (b, b).

Definition 3.2. Let U and V be two Banach spaces, p € R and A an open subset of
U. We say that a function h: A — V is homogeneous of degree p if for every

ae A there exists a neighborhood U® < (0, + ) of 1 (in the real line R) such that
tae A and h(ta) = t’h(a) forevery te U

Theorem 3.3. (Euler’s Formula). Let U and V be two Banach spaces, p€ R, A an
open subset of U and h:A—V a Fréchet differentiable function. Then h is
homogeneous of degree pif and only if h' (a,a) = ph(a) foreveryae A .

Theorem 3.4. With the already established notations, let us assume that F is Fréchet
differentiable on B and that at least one of the conditions 3.1.1 and 3.1.2, holds.
Then, —F' (b, -) is a dual T-optimal solution associated to x, for every be B if

and only if ©F is homogeneous of degree 1.

Proof. Suppose that —F' (b, -) is associated to x, for every b € B . Then we have
that F(b) = f(x,) = W(T,=F (b,-)) =T " @(T,=TF (b,-)) +F (b,b)
for every b e B, and since clearly T ! =0, applying 7 to the terms of last
equalities we obtain that mF (b) = nF (b, b) and now, it results immediately
from the Euler’s Formula that ©F is homogeneous of degree 1.

Reciprocally, if TF is supposed to be homogeneous of degree 1 then it follows
from the Euler’s Formula that ©tF (b) = wnF' (b, b) . Moreover, it is deduced from
Lemma 3.1 that —F' (b, -) is a feasible dual solution (and a dual T-optimal solution)
and ¢ (T, -TF' (b,-)) +TF' (b,b) = TF (b).

Therefore, since y = T-IT (y) +n(y) forevery y € Y, itresults that

V(T,-TF (b,-)) = T @(T,~F'(b,-)) +F (b, b)
=T (TF(b) —=TF (b, b)) +F' (b, b)
= F(b) =F' (b,b) —wF (b) +7F (b,b) +F' (b,b) = F(b) = f(xy)
and thus —F' (b, -) is associated to x;.
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Remark. Concrete examples at which —F' (b, -) is not a dual solution associated
to Xy, can be fond in [4]. This fact and Theorem 3.4 point out that the homogeneity

of =F does not hold in general. In the particular case of the scalar programming
clearly ® = 0 and so the homogeneity of nF is obvious and this shows that
Theorem 3.4 is a genuine extension of the classic results known for the scalar
programming.

Definition 3.5. Let be B be and p,ge R. We say that (2,1b) is a
(p,q)-homogeneous program if Q ‘is a convex cone of X and the equalities

f(tx) = Pf(x) and g(tx) = t%g(x) hold for every xe Q and every
0<t( € R) .Ifmoreover p=gqwe merely say that (2,1b) is p-homogeneous.

Proposition 3.6. If the program (2,1b) is (p,q)-homogeneous and q# 0 then the
function TF is homogeneous of degree p/q.

Proof. It follows easily proceeding in standard way.

Theorem 3.7. Suppose that F is Fréchet differentiable on B, pe R~ {0}, the
program (2,1b) is p-homogeneous for every b € B and at least one of the conditions
3.4.1 and 3.4.2 holds. Then -F' (b, -) is a T-optimal solution associated to x, for

_every b € B if and only if F is homogeneous of degree 1.

Proof. It is an immediate consequence of Theorem 3.4 and Proposition 3.6 since
F =T 'TF+nF.

Remark. In [3] it is given an example of a linear program for which -F' (b, -) isnot
a dual associated solution and this proves that in general F is not homogeneous . In
the particular case of the scalar programming, Theorem 3.7 states that if the function
F is Fréchet differentiable then it is necessarily homogeneous of degree 1 (even for
infinite dimensional problems).

4 Linear programs

We will say that (2,1b) is linear if Q is a convex cone of X and the functions fand g
can be extended to all X in such a way that their extensions, which will be also
denoted by fand g, belong to L(X,Y) and L (X, Z), respectively. In particular,
linear programs are 1-homogeneous and as usual we will write x 20 instead of the
constraint x € Q.

Throughout this section (2,1b) will be supposed to be a linear program for every
b € B, and since in linear programing it is more convenient to work with equality
constraints, we will change (2,1b) by the following program:

Min f(x)
g(x)+z=b,xe Q,ze Z+

Clearly there is a natural bijection between the feasible sets of (2,1b) and (4,1b),
preserving the optimums, the T-optimal solutions and the extremal points of both

feasible sets.
Theorem 14 of {4] proves that if the program (2,1b) is linear, then its dual has the

(4,1b)

e

following more simple formulation:
Max -G(b)
Gel(Z,Y), TG=20,TGg =-Tf

Last dual extends the duals given in [1] for scalar linear programs, in [9] for linear
multiobjective programs in finite dimensional spaces and in [3] for linear programs
between spaces of arbitrary dimensions. Moreover (4.2b) is quite similar to the dual
introduced in [8] for goal programming problems and also to the dual stated in {10]
for general linear problems. Throughout this section we will suppose that for every

be B, { X' Yo is a family of basic feasible solutions (in the sense of [1])
bri=1,2,..,k .

(4,2b)

which are T-optimal solutions of (4,1b). Therefore Tf (xib) =Tf (ij) for every
beB and ije {I,..,k}, and every convex linear combination of
{x]b, s xkb} is also a T-optimal solution of (4,2b) forevery b e B.
If zi.b =b-g (xib) forevery 1 <i<kand b e B, we have that

By(x's) = {(x2)eXxZ: (x'p, Z'p) + A (x,2), (X', Z'p) -A(x,2) € QxZ+
for some scalar A >0 } 1is a vector subspace of XxZ such that (%', 2'p) € BO (x'p)
and B, (x'p) NKer g° = {0}, where g“:XxZ—7Z is defined by
g" (x,z) = g(x) +z for every (x,z) € XxZ. We will assume that Bo(x’b) is
contained in a closed subspace Bi which is a topological supplement of Ker g” and

itdoes notdependon b e B.
Clearly, if we assume in this section that g is surjective then the restriction g;* of g*

to Bi is a topological isomorphism such that g; (xib, zib) = b forevery i=1,..k
andbe B.

k
Consider also k functions h;: B — [0,1](i = 1,...k) such that 21 h;(b) =1 for
. 1=
k i
every be B, and let us fix the following notations:Xy = 2 hi (b) X'y,
i=1

k . k .
F(b) = f(x,) andz, = b-glxy) = Y hy(b) (b=g(xe)) = Y b ()b

for every b e B. Finally assume throughout this section that at least one of the
conditions 3.1.1 and 3.1.2, holds.

Proposition 4.1. If F is Fréchet differentiable at B and h; (i = 1,..k) is

homogeneous of degree 0, then -F' (b, -) is a dual T-optimal solution associated to
xy, forevery b € B.

Proof. It follows from Theorem 3.7 that it is enough to prove that the function F is
homogeneous of degree 1, and this can be easily proved in standard way.

Theorem 4.2. Suppose that the functions F and h, (i = 1,..,k) are Fréchet

differentiable on B and {f (xib) ;1= 1,..,k} is a linearly independent system for
every be B.Then-F (b, -) isadual T-optimal solution associated to x, for every
b e B ifand only if h; is homogeneous of degree 0 forevery i=1,...k.
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Proof. Like in the proof of Proposition 4.1, let us denote by f the natural extension of
f to XxZ (such that (x,z) = f(x)). If -F'(b,-) is a dual T-optimal solution
associated to x, for every be B, then it results from Theorem 3.7 that F is

homogeneous of degree 1 and then it follows from the Euler’s Formula that
F(b) = F' (b, b) forevery b € B.Furthermore

k o k .
F(b) = f(x,2,) = f(.Zlhi(b) (x'p, z‘@j = f(zlhi(mg{1 (b)j 4.1)
and

k ? * k *
F' (b, b) = f(_;hi (b,b) g (b) +._Zlhi(b) g (b))

k k
= £ Y h (b b)g; by | f( b (b) g | b) 42
(i;I( Ja () j+f| B hi(b)g;” () 4.2)

for every b € B .Therefore since F(b) = F' (b, b) for every b € B, it resulis from
(4.1) and (4.2) that

b > S L P
0= thi (b,b)f(g " (b)) = 'Z]hi (b, b) f (x'p, Z'p)

forevery be B, from where it is immediately deduced that h; (b, b) = O forevery

be B and i = 1,...k, since the system {f(xib, zib) ;1=1,..k } is linearly
independent. Now it results from the Euler’s Formula that h, is homogeneous of
degree Oforevery i=1,....k. The converse follows trivially from Proposition 4.1.

Remark. The assumption about the linearly independence of the system
{f(x'y,Zp) ;i=1,..k } (be B) cannot be avoid in Theorem 4.2 since it is
known that in the scalar programming (i.e., Y = R) the differential -F' (b, -) is the
dual solution independently of the choice of the primal optimum. Actually what
happens in this case is that F does not depend on the "weights" h; applied to every
basic feasible solution. '

Many papers (like [3], [6] and [9] ) prove that if the decisor chooses an optimum
solution which is a basic feasible solution (or a convex linear combination of basic
feasible solutions whose scalar coefficients are fixed and independent of b € B) then
-F'(b,-) can be fond as a dual associated solution. Theorem 4.2 states that

-F' (b, -) continues being a dual solution associated to x, even though the weights

are not constant and they are homogeneous functions (of b) of degree 0.

5 The basic differential equation

Let us remark that if -F' (b, -) is a T-optimal solution associated to Xy, for every

be B, and we consider the function G:B—L(Z YY) such that
G ﬁb) = —F' (b, -) forevery be B, then it follows from Theorem 12 of [4] that if
G is Fréchet differentiable (or equivalently, if F is twice Fréchet differentiable) then

-

(nG)’ (b,z) (b) =0 5.1
forevery be B and z € Z. Thus in many situations (stated in Sections 3 and 4) the
differential equation (5.1) (jointly with some initial and optimal conditions) let to

obtain F'. In particular, if Y = R™ and Z = R", then nG (b) will be a functional

matrix (g; i (0)) iy m,j=l,.n° and (5.1) leads to the following system of partial
differential equations:
n dg::
P %85 _ 0 i=1...m, k=1..n. (5.2)
= J Bbk

6 Conclusions

If b denotes the right side vector of the constraints of a convex multiobjective
program and F(b) is the optimum value of that program, then the differential of F
with respect to b cannot be obtained in general as a solution of a dual program (see [3]
or [4]) and it appears the natural question of characterizing the situations where this
differential (denoted by F' (b, -) in this paper) solves the dual program. Theorem
3.4 gives an answer to this question by means of a condition of homogeneity, and .
Theorem 3.7 states for a particular type of programs (containing the linear ones) that
a necessary and sufficient condition to be -F' (b, -) an associated dual solution is
that F will be (as a function of b) homogeneous of degree 1. In particular, for the
scalar linear programming it is verified that if F is differentiable then it is necessarily
homogeneous of degree 1, result which is false in general in the muitiobjective case.

In the linear case, when the optimum solution is chosen to be a convex linear
combination of basic feasible solutions (what is the usual situation in programs
described between finite dimensional spaces, and also in many examples of infinite
dimensional programs like the Mass-Transfer type problems) the necessary and
sufficient condition for -F' (b, -) to be an associated dual solution is that the weights
applied on the basic feasible solutions will be homogeneous functions (of b) of
degree O (as Theorem 4.2 states).

Last results can be proved, for programs described between finite dimensional
spaces, solving the Euler’s partial differential equations which characterize the
homogeneous functions. Furthermore, if F is homogeneus of degree 1, then the
system of partial differential equations (5.2) may lead in practical situations to a
general expresion of F. When F is not a homogeneous function (of b) then the
sensitivity of the program can be obtained solving a more general and complex
system of partial differential equations which can be deduced from Theorem 12 of

[4].
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