
Negotiation of network security policy by means
of agents

Pablo Martin and Agustin Orfila and Javier Carbo

Abstract Nowadays many intranets are deployed without enforcing any network se-
curity policy and just relying on security technologies such as firewalls or antivirus.
In addition, the number and type of network entities are no longer fixed. Typically,
laptops, PDAs or mobile phones need to have access to network resources occa-
sionally. Therefore, it is important to design flexible systems that allow an easy
administration of connectivity without compromising security. This article shows
how software agents may provide secure configurations to a computer network in
a distributed, autonomous and dynamic manner. Thus, here we describe the system
architecture of a prototype, the negotiation protocol it uses and how it works in a
sample scenario.

1 Introduction

In the last decade the number of local networks, particularly small ones, has grown
considerably motivated by wireless technology. Many of these networks are usually
deployed in environments where users lack sufficient technical knowledge and, as a
consequence, they are not being properly protected. Thus, security policies are often
not defined and network firewalls and antivirus are the unique defensive measures.
This situation motivates the creation of systems that assist in security administra-
tion. In this paper we propose an agent system that dynamically and autonomously
agrees if network services are allowed, depending on the security requirements of
the entities involved, the threat model for each scenario and the vulnerability level
of the network elements. Thus, each agent imposes the security constraints for the
entity it represents. Then, agents negotiate in order to fulfill their interconnection

Pablo Martin · Agustin Orfila · Javier Carbo
Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Spain e-mail:
100029778@alumnos.uc3m.es,adiaz@inf.uc3m.es,jcarbo@inf.uc3m.es

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/30042984?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Pablo Martin and Agustin Orfila and Javier Carbo

goals. Different global configurations can be agreed and a network administrator is
able to know the network policy negotiated at any moment.

The idea of using software agents for this purpose is relatively new. Traditionally,
a network security policy determines what is allowed and what is not in a network
[3]. It is centrally defined and centrally or distributely enforced [5]. Although this
approach is more straightforward and rigorous, it demands a management and tech-
nical effort to define it and enforce it. This effort is not usually done in many medium
and small networks what leaves them unprotected. In addition, current networks
have become highly dynamic and heterogeneous due to mobile devices, what makes
a centralized configuration harder to manage. These facts promote the exploration
of the agent paradigm to provide a flexible, intelligent, dynamic and autonomous
solution that improves the security administration of these networks. Related work
include higher-level approaches like the one on policy-based governance by multi-
agent systems by Udupi and Singh [7, 8]. The multiagent architecture they propose
is proactive (supporting policy monitoring, governance and enactment) and focused
on virtual organizations (VO) while ours is reactive and focused on local area net-
works. In addition, Krügel and Toth [6] developed Sparta a system that allows to
detect security policy violations and network intrusions in a heterogeneous, network
environment. In order to fulfill this goal they use mobile agents for the task of cor-
relating events in a fully decentralized manner. Sparta focuses in the detection of
security policy violations but not in the policy definition itself.

Next section describes our proposed agent system architecture. This is followed
by the exposition of the negotiation protocol between agents. Then, a sample sce-
nario is explained in order to illustrate system functionality. Finally, the article ends
up with the main conclusions.

2 System Architecture

In our proposal, each computer within the network has its own agent acting on
behalf of it. In addition, there is an agent for each user of the network. When a user
launches the execution of an agent, he determines the desired level of security by
choosing a predefined security profile. Then the user informs his own agent about
the operation he wants to perform and the agent carries out this task starting the
negotiation with the other agents involved in the required task. Depending on the
success of the negotiation, the operation will be permitted or blocked1. A schema of
the agent system design developed is showed in Figure 1.

Roughly, the functionality of the system can be summarized as follows. The
client agent negotiates to provide to the client the permission to perform the re-
quested operation. Simultaneously, the rest of the agents involved in the operation
impose restrictions due to their own security profile in order to ensure the security of
the operation. This results in a complex communication scheme in which the agents

1 Security parameters may change during the negotiation process



Negotiation of network security policy by means of agents 3

Fig. 1 Agent system architectural design. Every entity has an agent that negotiates on behalf of it

are able to change their configurations to achieve their requested operations. In or-
der to provide such functionality, our system comprises of several roles of agents
according to the services that they provide in the network. Table 1 shows these roles
and their corresponding services in our prototype.

Table 1 Agents’ roles and services

Agent Role Service

Web server Configures web server’s security
Negotiates security

Mail server Configures mail server’s security
Negotiates security

Client Configures client’s security
Negotiates security

Monitoring system Communicates the alert level of the network
Firewall Configures firewall’s security

Negotiates security
Vulnerability scanner Provides vulnerability level reports from the re-

quested agents
Logger Monitors messages exchanged between agents



4 Pablo Martin and Agustin Orfila and Javier Carbo

There are configuration variables that may change during the negotiation pro-
cess. Some of these are: the allowed number of incoming/outgoing connections,
trusted certificate ownership, open ports, maximum simultaneous connections from
an authorized IP, remote administration allowed, automatic updates, etc. A set of
pre-configured profiles or security levels for agents can be defined according to
these configuration variables. These profiles allow non-expert users to configure
agent’s security according to their needs just choosing one of these three levels:
low, medium and high.

• Low level corresponds to an agent that does not impose any constraints. It does
not enforce the principle of least privilege2. The principle establishing that users,
servers and applications may have only the necessary privileges required to per-
form their tasks. A network with all agents configured with this security profile
is equivalent to a network without the agents.

• Medium level does not enforce the principle of least privilege but it restricts some
services to improve security.

• High level offers every security mechanism available. The agents play exclu-
sively their assigned role. It enforces the principle of least privilege.

These three levels must be present in every agent and determine the security con-
figuration notwithstanding the fact that variables can also be changed individually
for advanced users.

As shown in Table 1, our design corresponds to a purely communicative agent in
accordance with the fact that agents have a perception of the environment that only
comes from messages from other agents. The knowledge included in these mes-
sages is represented by an ontology which let agents understand their communica-
tive intentions properly and act in consequence. The predicates/actions, concepts
(elements), and relationships that form our ontology are shown in Figure 2.

3 Negotiation Protocol

Agents must negotiate their security configurations to provide the services requested
by the user. This negotiation will be based on a message exchange with different
contents expressed with terms, predicates and actions of the ontology. Since nego-
tiation could terminate in decontrolled situations due to agents are not aware of the
global state of the network, it is necessary to define a protocol that contains a set
of authorized states in the network. Each service will have a set of valid configu-
rations depending on the level of security assigned to the computer providing this
service. A network is considered in a valid state if and only if all the services pro-
vided are performed with valid security configurations. During negotiation agents
internally perform as a rule-based system. They check each rule and ask the rest
of agents for the information they need. These rules allow changes in configuration

2 The principle establishing that users, servers and applications may have only the necessary priv-
ileges required to perform their tasks [3]



Negotiation of network security policy by means of agents 5

Service

Concepts

Certificate Software Virus report Vulnerability Report

Predicates

Has Asks Offers Denies ProvidesRequests

Actions

Suggests Proposes

Fig. 2 Schema of the ontology used

and, therefore, agents will use them to change their settings in order to reach their
goals. Messages fulfill FIPA standard [4]. The different phases of negotiation are
described as follows:

1. The beginning of negotiation. An agent representing a client requests any service
or tries to perform an action.

2. Feasible conditions checking. At this stage, messages about agent configurations
are exchanged. Server may change its configuration temporarily (just while an
operation is performed) and can suggest changes in the client’s configuration.

3. Acceptance/denial of the operation. If phase 2 reaches a stage on the network
that becomes the operation feasible, the server communicates it to the client.
Otherwise, the server denies the connection and gives the client some information
about the causes and possible alternatives.

4. Proposals. If the operation was denied, the client proposes some changes in his
configuration or asks the server to look for alternatives. If the server accepts the
changes proposed in the first case, then we go back to step 2. Otherwise, the
server informs the client of another reason, if any, for the denial of the opera-
tion so that the client can generate new proposals. If no proposal is possible the
request is denied.



6 Pablo Martin and Agustin Orfila and Javier Carbo

Currently, our prototype implements the negotiation protocol for four scenarios.
It has been developed in JAVA and the agents use JADE platform [2] to work.

4 A sample scenario

In order to illustrate the operation of the system, this section exposes one of the sce-
narios developed by the prototype. First, an analysis of the threats for the scenario
at issue and an examination of the measures that can mitigate these threats are pro-
vided. Second, the different combinations that make a specific operation possible is
shown. Finally, a diagram showing how messages are exchanged between the agents
in the negotiation process is depicted.

4.1 Browsing from an internal client

This scenario illustrates the situation where a typical windows client in the intranet
wants to connect to a web server that is not in the intranet. For this scenario, only
three of the agent roles described in Table1 need to be considered: client, firewall
and vulnerablility scanner. A simplified threat model for this operation is summa-
rized in Table 2. As it is shown, the main threats are three. First, the client can
download malware, such as virus, trojans or spyware, that infects the intranet. The
main security mechanism to avoid this threat is to force the client to have an updated
antivirus. Of couse it would be better not to allow the client to download software
but this situation is too restrictive. Second, the client browser can have vulnerabil-
ities that cause an infection just visiting certain web pages. In order to avoid this
threat, the browser should be updated with the corresponding security pathches. A
vulnerability scanner (like nessus [1]) can scan the client in order to know if the
browser is vulnerable or not. Third, technologies like ActiveX may execute dan-
gerous programs. Restricting this kind of controls is a good preventive measure in
certain cases.

Table 2 Simplified threat model for the browsing scenario

Threat Security mechanism

Download and execute malware Update antivirus
Automatic exploitation of browser vulnerabilities Update browser
Execution of dangerous programs through browser Disallow ActiveX controls

Having in mind the preceeding analysis, we can elaborate a table with the secu-
rity configuration combinations that make this operation possible depending on the
desired level of security. This level is established by the administrator on the firewall



Negotiation of network security policy by means of agents 7

through its corresponding agent. As can be seen in Table 3, an antivirus installed in
the client is necessary for every possible combination. Depending on the level of
security, the firewall agent would demand to have it updated more or less recently.
In addition, browsing will be possible depending on the vulnerability level of the
client browser and on the possiblity of restricting ActiveX execution.

Table 3 Allowed configurations for the browsing scenario. Dash represents any value.

Combination Firewall Client Vulnerability
Scanner

Security level Antivirus update ActiveX allowed Vulnerability
level

1 Low Last 24h - -
2 Medium or Low Last 12h - Low or medium
3 Medium or Low Last 12h No -
4 - Last 8h - Low
5 - Last 8h No Medium

Figure 3 shows a possible sequence of negociation steps for the case the level
of security is set to high. First the client agent (CA) tries to connect to an external
web page. The firewall agent (FA) does not have any rule for this operation so it
begins checking the fourth configuration of Table 2 (because is the less restrictive
regarding the security level). Thus, FA asks the CA if it has an updated antivirus.
CA sends back the antivirus report that states it has not been updated in two days.
As a consequence, FA blocks the connection and informs the client about the cause:
having the antivirus out of date. Then, the CA proposes the FA to update it and
the FA accepts it. The client downloads and install the update and the CA sends a
hash of the update signed by the antivirus provider. At this moment, the FA proceed
to verify the autenticity and integrity of the update. Once verified the FA asks the
client to scan itself with the recently updated antivirus and ask him for a report. The
client is not infected and the CA sends the report to FA. Accordingly, FA goes to
the next step of the protocol and communicate to the CA the need of scanning the
client for vulnerabilities. CA accepts and, as a consequence, the FA asks the vulner-
ability scanner agent (VSA) to scan the client. The result is a medium vulnerability
level and it is reported to FA. As a consequence, the FA blocks the connection (se-
curity configuration number 4 is not fulfilled) and informs the CA about the cause.
Then, the CA proposes to desactivate ActiveX execution and the FA accepts. The
CA proceeds and communicates it to the FA. Finally, security configuration number
5 fulfills and, consequently, the FA accepts the connection and notifies it to the CA.
At this moment the FA aggregate a rule in the firewall to allow this connection. Nev-
ertheless, it is not a permanent rule because the conditions can change (for instance,
the antivirus can become out of date)



8 Pablo Martin and Agustin Orfila and Javier Carbo

Fig. 3 Negotiation diagram for the browsing scenario when the security level is set to high



Negotiation of network security policy by means of agents 9

5 Conclusion

In this paper we have introduced the idea of negotiating the network security policy
by means of software agents. This makes sense in those networks where no security
policy has been defined in advance. Unfortunately this is a typical situation because
administrators of small networks do not usually have the knowledge or the time to
define and enforce one. Futhermore, the every day most deployed ad-hoc networks
demand a flexible, distributed and autonomous admnistration. Our work focuses on
developing an agent system that makes the process of security administration easier
and dynamic. Thus, agents represent entities in the network and their goals are to
protect the network while keeping an acceptable level of connectivity. The main
problem faced was to offer a deterministic level of security that limits the intrinsic
uncertainty of negotiation. However, the design of negotiation protocols for different
scenarios according to the corresponding threat models has lead to deterministic
solutions. The prototype we have implemented shows that a distributed conception
of security based on agent paradigm is promising. Future work will involve the study
of how agents can enforce what has been negotiated, the analysis of a threat model
against the own agent system and a higher-level formalized architecture. In addition,
more complex scenarios will be studied in detail.

References

1. Beale, J., Deraison, R., Meer, H., Temmingh, R., Walt, C.V.D.: Nessus Network Auditing. Syn-
gress Publishing (2004)

2. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: Jade: A software framework for developing
multi-agent applications. lessons learned. Information and Software Technology 50(1-2), 10–
21 (2008)

3. Bishop, M.A.: The Art and Science of Computer Security. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA (2002)

4. FIPA: FIPA ACL Message Structure Specification. FIPA (2001). URL http://www.fipa.
org/specs/fipa00061/

5. Ioannidis, S., Keromytis, A.D., Bellovin, S.M., Smith, J.M.: Implementing a distributed fire-
wall. In: CCS ’00: Proceedings of the 7th ACM conference on Computer and communications
security, pp. 190–199. ACM, New York, NY, USA (2000)

6. Krügel, C., Toth, T., Kirda, E.: Sparta, a mobile agent based instrusion detection system. In:
Proceedings of the IFIP TC11 WG11.4 First Annual Working Conference on Network Security,
pp. 187–200. Kluwer, B.V., Deventer, The Netherlands, The Netherlands (2001)

7. Udupi, Y.B., Singh, M.P.: Multiagent policy architecture for virtual business organizations. In:
Proceedings of the IEEE International Conference on Services Computing, SCC ’06, pp. 44–51.
IEEE Computer Society, Washington, DC, USA (2006)

8. Udupi, Y.B., Singh, M.P.: Governance of cross-organizational service agreements: A policy-
based approach. In: Proceedings of the 2007 IEEE International Conference on Services Com-
puting, SCC 2007, pp. 36–43. IEEE Computer Society, Salt Lake City, Utah, USA (2007)


