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Abstract— Nowadays, Network Intrusion Detection Systems
are quickly updated in order to prevent systems against new
attacks. This situation has provoked that attackers focus their
efforts on new sophisticated evasive techniques when trying
to attack a system. Unfortunately, most of these techniques
are based on network protocols ambiguities [1], so NIDS
designers must take them into account when updating their
tools. In this paper, we present a new approach to improve
the task of looking for new evasive techniques. The core of
our work is to model existing NIDS using the Genetic Pro-
gramming paradigm. Thus, we obtain models that simulate
the behavior of NIDS with great precision, but with a much
simpler semantics than the one of the NIDS. Looking for this
easier semantics allows us to easily construct evasions on
the model, and therefore on the NIDS, as their behavior is
quite similar. Our results show how precisely GP can model
a NIDS behavior.
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1. Introduction
Information Technologies have become a critical compo-

nent of global economy in the last few years. Their protec-
tion against hostile actions determine how fast information
society and communications will evolve. Security measures
are normally classified as: preventive, detective , corrective
and recovery. The most convenient are the first, but their
cost is the highest and they do not assure to disable totally
the risk, so it is preferable to distribute resources over all
the techniques. Thus, a called Perimeter Defense should be
performed, in which different protection barriers (preventive,
detective, corrective and recovery) must be placed into the
IT systems.

Intrusion Detection Systems (IDS) are software or hard-
ware tools that automatically scan and monitor events that
take place in a computer or network, looking for intrusive
evidences [2]. An intrusion is any attempt to compromise
the confidentiality, integrity or availability of information,
endangering the security of a computer or network. Network
Intrusion Detection Systems (NIDS) take as input network
traffic and look for intrusion evidences on complete network
segments. In this scenario, an evasion can be defined as any
technique that modifies a detectable attack into any other
form in order to avoid being detected. The overall idea is
to perform some changes to cause that the NIDS does not
process the entire attack packet, remaining so undetected.

NIDS normally are, in conjunction with firewalls, one of
the first objective to deal with when someone is trying to
attack a system. That implies that attackers try to develop
sophisticated techniques to avoid being detected. In general,
NIDS do not give real time information about what is
happening, but they log alerts. Human security auditors are
then who have to analyze those alerts searching for hostile
activity. If the NIDS gives erroneous information, auditor can
be distracted and would not be able to focus their efforts in
the real attack.

Currently, proposed evasive techniques are based in am-
biguities present in transport and network layer protocols
(mainly TCP and IP) [1]. Those ambiguities provoke that
different systems interpret the protocols in a different way.
An attacker attempting to evade NIDS detection can modify
the transmitted packets in such a way that lead into a
situation where a system has different information than
another one. When using NIDS, an evasion can appear if
the NIDS and the monitored endpoint interpret protocols in
a different way, so the information processed is different in
both systems.

Researching in evasive techniques is, along with the
discovery and detection of new kind of attacks, the principal
tool to improve the effectiveness of the NIDS. Currently, the
fast adaptation of the NIDS against new attacks provokes that
attackers try to perform evasive techniques (more stealthy
and hard to detect) instead of directly exploiting those
new attacks. Thus, a security administrator is not aware
to have been evaded until posterior forensic analysis of
the compromised system, when probably the damage has
been done. That is the main motivation of our work, whose
primordial objective is to discover new forms of NIDS
evasive techniques and, in consequence,improve the NIDS
preventive mechanisms against them.

Our idea is to construct models, using Genetic Pro-
gramming [3], that simulates, as faithful as possible, the
NIDS behavior. This model allows us to understand in
an easy way how the NIDS works. Furthermore, if NIDS
are proprietary, we could have an approximation about its
internal functionality. The obtained model is supposed to
have an easy semantics, so it would be easier to develop
evasive techniques over it than directly trying over the NIDS.
Due to the model is assumed to work nearly equal than the
NIDS under study, those evasive techniques should work in
both the model and the NIDS. In this paper we present an
overview of the methodology to be implemented. Also a
proof of concept is given, where we have modeled, using
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Genetic Programming techniques , a C45 [4] based NIDS
(which works well under a port scan scenario).

The remainder of this paper is structured as follows.
Section 2 presents the state of the art. Section 3 shows the
design details of our work. Next, in section 4 we explain
the experimental setup performed, and the results are given
in section 5. Finally, the conclusions and future work are
discussed in section 6.

2. Related Work
NIDS evasive techniques were first proposed by Ptacek an

Newsham in 1998 [1]. In their seminal paper, the authors
stressed two main problems in some network protocols when
using NIDS. The first is the existence of some ambiguities in
the TCP and IP protocols. Those ambiguities allow systems
to interpret on their own way how to implement some
characteristics of those protocol. For instance, they do not
determine what should be done when a packet encapsulates
an erroneous checksum field in its TCP header. An evasion
succeeds when NIDS ignore packets which are going to be
processed on the endpoint systems or vice versa. The second
problem presented by Ptacek and Newsham is that some
NIDS are vulnerable to Denial of Service (DoS) attacks.
An attacker sends several fake hostile packets to the NIDS
provoking it to log all the alerts, in such a way that becomes
overloaded. In this scenario, the NIDS may not process
all the incoming packets, an the attacker could exploit that
situation to perform a real attack over the endpoint. Several
tools has been implemented with the aim of generate evasive
traffic, thus exploiting the properties exposed above. For
example, fragroute [5] intercepts network traffic and modi-
fies the packets before forwarding them to their destination,
or idsprobe [6], which generates traffic data from original
traces.

Current research in techniques designed to prevent eva-
sions are based mainly on network traffic modification, in
order to remove the ambiguities of protocols. Thus, a com-
mon interpretation of them is established between the NIDS
and the endpoint. Watson et. al [7] have proposed a system
called Protocol Scrubbing that generates well formed TCP
data from traffic. With that, there is only one way to process
the information. Handley et al. [8] introduced the concept
of traffic normalizers, which are intermediate elements that
are located in networks to remove possible ambiguities
before being exposed to the NIDS. Because some of the
evasive techniques are based on packet fragmentation and
reassembly, the state of each connection and the previous
packets must be stored and processed, in order to analyze the
consistency of connections. That consumes a large quantity
of resources, leading into a bottleneck when working with
high speed networks [9] .

Other solutions which does not require traffic modification
have been proposed. Varguese et al. [10] present an idea
based on dividing the entire signature of the NIDS into

single smaller strings and use a fast path to find matches
with them. If a match is found, then packets are given to
a slower, more effective path to inspects the packet in a
deeper way. Shankar and Paxon [11] proposed a system
that informs the NIDS about the network topology and the
interpretation policy of the endpoint being monitored. Thus,
the NIDS can adapt its configuration taking into account
that information. Snort [12] has adopted this technique in
the IP processor (frag3) of its last release. Finally, Antichi
et al. [13] propose the use of Bloom Filters to look for
signature matching over single received packets without the
need of reassembly. These systems improve the efficiency of
the NIDS and never gives false negatives (they detect all),
but increments largely the number of false positives.

Genetic Programming [3] has been proved to be a good
paradigm in the scenario of the NIDS development ( [14],
[15], [16], [17], [18], [19]). The reason why is because this
scenario is continually changing, and new rules or patches
are needed. GP can help into the searching process of new
solutions in conjunction with the human analysis.

3. Design
In this section we present an overall description of the pro-

posed activity. The main objective is to design and discover
new evasive techniques over a NIDS. For that purpose, we
use Genetic Programming to model NIDS behavior. Because
the model has a simpler semantic than the NIDS, we will try
to search evasive techniques over it. We suppose that, if the
evasions succeed in the model, it will also do in the NIDS.

Primary, we will generate our own NIDS. Several open
source NIDS are available to be used here, but the focus of
our work is not to generate a detection engine that works
properly under certain conditions, but to generate a model
as similar as possible with the NIDS under study. For that
purpose, we use a simple, easy to generate, C45 [4] based
model. C45 is a classification algorithm that generates a
classifier in form of a tree. Once the NIDS is created, we
generate the dataset to be used in the modeling (i.e., training
and testing) phase.

In order to generate the new model, we need some
network traffic dataset. One possibility is to generate our own
dataset, in a controlled environment. However, this work is
out of the scope of this paper. In section 4 we discuss which
dataset we have finally used.

Afterwards, the NIDS is fed with the dataset. The output
given is registered and analyzed. Normally most attack traffic
will be detected and maybe normal traffic will generate some
false alarm. The NIDS will give us one output for each
packet, i.e., normal or attack. This output is then appended at
the end of the corresponding trace in the dataset, generating
traces with the following form:

F1, F2, F3, ..., FN , L, O



where each Fi is a field of the packet or connection (for
example, the source port, the flag bits, the ip source, etc.)
, L is the label which indicates the kind of data (normal,
attack or evasive) and O is the output given by the NIDS
(normal or intrusion).

We have thus obtained a complete dataset containing
several packet traces (both malicious and normal) with their
corresponding output given by the NIDS. We use it to model
the NIDS with GP. A GP model (individual) consists of
a tree where intermediate nodes (which are not leafs) are
operators and the end nodes (leafs of the tree) are fields (like
the source port, the connection timeout, etc). The output that
the model gives should be binary, that is, labeling the data as
intrusion (1) or normal (0). We must set the values of each
GP parameter, and then run the algorithm (both training and
testing phase), obtaining the final model.

A manual optimization of the model is then performed,
because many times tree models given by GP are not easy
to interpret, and some variable names are not always linked
with the field names of the traces (packets). The tree obtained
has normally redundant branches or nodes, so performing
a pruning phase could be also interesting to improve the
efficacy of the model. Although the improvement of the
efficacy is not a direct objective to be satisfied, the prune of
the tree could largely simplify the model semantics, which is
in fact the core of this methodology. The output of this phase
must be a model easy to understand and interpret, whose
behavior must be as similar as possible with the one of the
NIDS. Once the model has been generated and optimized,
we can prove some new evasive techniques, on the basis
of the model semantics, less complex than the one of the
original NIDS. We suppose that, if evasions succeed in the
model, they will also do in the NIDS.

4. Experimental setup
We have performed our experiments using internal enter-

prise traffic from the Lawrence Berkeley National Labora-
tory (LBNL) Dataset [20]. The dataset was systematically
anonymised and only the resulting packet header traces
(presented in tcpdump/pcap format) are publicly available.
Two kinds of files for the traces are provided, anonymised
separately. One corresponds to the non-scanning traffic and
the other to the scanning traffic. Because we need several
datasets (for both training and testing the model), we have
used five intervals of the entire dataset, corresponding to
hours between 13:00 and 15:00 hours of the five available
days1. We have preprocessed the datasets remove both
source and destination ip addresses, filtering the dataset
in order to obtain only the TCP packets (thus, discarding
the UDP data) and merging the non-scanning and scanning
traces from the same period into a single text file (thus,

12004/10/04, at 13:23 hours 2004/12/15 at 12:42 hours, 2004/12/16 at
13:17 hours, 2005/01/06 at 13:25 hours and 2005/01/07 at 13:25 hours

Fig. 1: C45 classification error over the 5 datasets

obtaining 5 datasets). We have also labeled the traces,
appending a character to indicate if each trace corresponds
to a normal or scanning packet.

Due to the fact that we have 5 different dataset (corre-
sponding to the 5 available days), we use each of those
dataset once as the training dataset, being the remainder
the testing dataset. Thus, we obtain five different models,
corresponding to the five different datasets.

The NIDS we want to model is a C45 based NIDS.
To build it, we have used the weka tool [21]. We have
developed 5 NIDS, one for each training set. That is, we
have trained with one of the previously obtained sets, and
tested with the remainder, thus five times, obtaining five
models with their corresponding test results. Figure 1 shows
the degree of accuracy achieved for each training dataset.

The medium test classification error is 7 %, which is not
a great result, but as we have told we are not interested in
the intrusion detection accuracy, but in the accuracy when
modeling an existent NIDS.

Before running the GP algorithm, the value of some
parameters must be established. For such a purpose, a cross
validation technique is used [22]. This technique can be
summarized as follows:

1) Divide the entire training set into k smaller sets (called
folds).

2) Establish a random value for each parameter that is
going to be set. It is recommended to delimit the
valid values to avoid incoherences (for example, an
incoherent value could be a number of generations
lower than ten).

3) With these parameter values, and for each fold k:
a) Merge all the folds but k into a set.
b) Train the model using as training set the previous

one.
c) Test the generated model using the fold k (whose

traces does not belong to the training set).
d) Store the results to be processed later.

4) Return to step 2 and repeat the process as often as
desired. To assure enough variability in the values, we
recommend to repeat the process at least 4 x n times,



where n is the number of parameters that are being
tuning

Once the process is finished, we need to analyze the results
to obtain the combination of parameters that gives the best
results. The parameters that we wanted to set using this
algorithm along with the interval accepted values are:

• Crossover rate. Establish the percentage of individuals
on the population which will be selected to be crossed.
We have let any value between 0 and 100.

• Mutation rate. Establish the percentage of individuals
on the population which will be selected to be mutated.
We have delimited to take random values between 0 and
50.

• Size of the population. Number of individuals in each
population of the algorithm. Values are restricted to be
between 500 and 1300

• Number of generations. The number of generations that
the population will ”live”. Normally, as larger as better,
but if the evolution remains stagnant it can be inefficient
to use big values. The range of possible values given
is from 60 to 200

• Tournament size. Is the number of individuals to be
selected to perform the tournament selection (see [3]
for more information). Values can oscillate between 3
and 8

We have thrown 25 experiments, so we have tried with 25
different configurations. The best results are presented in
Table 1, so it will the one that we have posteriorly used in
the real modeling.

Table 1: Values obtained using the cross-validation technique
for each parameter

Name Value
Number of generations 132
Size of population 670
Size of tournament 6
Crossover rate 82%
Mutation rate 29%

The fitness function determines which Individual is better
when comparing two or more of them. It is employed in
the tournament selection phase when determining the sorted
classification of the selected individuals in the competition.
The main objective is to obtain a model that classifies the
traces as similar as possible as the C45 based NIDS, so,
when comparing individuals, we have established as fitness
function the classification error, defined as

fitness1 =
#incorrectly_classified_instances

#instances

In order to obtain easy-to-understand models, we have
established a maximum tree depth of 5, so the resultant
individuals will have a small size.

Fig. 2: Classification error when classifying a C45 based
NIDS with GP. Best results for each dataset.

Fig. 3: Classification error when classifying a C45 based
NIDS with GP. Average results for each dataset

5. Results
Figures 2 and 3 show the classification error for both the

best individual and the average of the 15 individuals obtained
respectively. In each figure we can see the test results for
each model (each train represents one model, 5 in total). The
average test results indicates a classification error equal of
5% for the first and 10 % for second. In both figures we can
advise that the dataset of the December 15th, 2004 is quite
singular. That is because it’s the smaller one, and it has only
7 attack traces and 33580 in total, so its prevalence is much
lower than the rest.

We have obtained 5 different models, one for each training
set. For instance, we show in the figure 4 the best model
found when training with the 20041004_1323 dataset. Note
that it has only 14 nodes, in front of the 21 nodes given by
the C45, so we have reduced the complexity of the model in
a 33 % with an accuracy of 95 %. With that, we are able to
design evasive techniques in a easier way than looking for
the more complex C45 tree. We have studied the model, and
we have been trying to evade the detection in several ways.
This process could have been done automatically, but this
task is out of the scope of this paper (we will automatize
the process in future work). Finally, we have realized that
if we change the src_port field, resetting it with the value
0, we provoke that the C45 based NIDS fails when trying
to detect some attack traces, i.e, under certain conditions



Fig. 4: Example of model obtained using GP

we have evaded the detection. Obviously most of the TCP
implementations do not takes into account packets being sent
from the port 0, but this is a simple proof of concept of how
easily can be a NIDS evaded modeling its behavior with GP.

6. Conclusions and future work
In order to protect systems against new forms of attacks,

a fast update is one of the main task to perform by NIDS
designers when those new attacks are discovered. However,
nowadays, attackers are using new skills when trying to
attack IT systems. In order to pass unnoticed when attacking
the systems, they must evade the detection engines that mon-
itor those systems. Currently, the major evasive techniques
are based on ambiguities when interpreting the network
protocols by different systems. Most of these techniques
are public and documented, so current NIDS designers are
warned about that and can act in consequence. However, the
apparition of new evasive techniques would be disastrous
for the system administrators who think that all their NIDS
are correctly working, because they can be evaded. In this
paper we have presented a new methodology that improves
the task of looking for new forms of evasion, thus allowing
systems administrators to be warned before the attackers
could exploit them. We have seen that modeling a NIDS
with GP can help when trying to understand the behavior
of it (even impossible when we do not dispose the source
code). We have modeled a simple NIDS based on the C45
classification algorithm. Our results shows that, with an
accuracy of 95 %, we can model the behavior of the NIDS
reducing the complexity in a 33 %. With that, it could be
easy to look for new evasive techniques. Moreover, looking
at the model we have modified some attack traces from the
original dataset and we have evaded the detection by the
C45 based NIDS. We show how, if the modeling process is
correctly done, an evasion thought the model can succeed
thought the original NIDS.

We are now challenged to apply the entire methodology to
a real NIDS, and to compare the complexities of our model
with the original behavior of the NIDS in the cases that is
possible (i.e., when the NIDS are open source). We will try

also to improve the GP evolution with new fitness functions,
new operators or new methodologies.
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