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1. INTRODUCTION

Conditionally heterocedastic time series are characterized by having excess kurtosis and positive

autocorrelations of squares. Furthermore, in the presence of leverage e¤ect, the cross-correlations

between the series of returns, yt; and y2t+k are negative. It is very common to analyze the adequacy

of a �tted model by comparing its implied or plug-in kurtosis, autocorrelations of squares and cross-

correlations with the corresponding sample moments of the original returns; see Karanasos and

Kim (2006) and Figà-Talamanca (2008) among many others. However, although the �nite sample

properties of the sample kurtosis and autocorrelations of squares have already been analyzed,

those of the corresponding plug-in moments are unknown. In this paper, we �ll up this gap.

Furthermore, we study whether comparing plug-in and sample moments is appropriate when

analyzing the adequacy of a �tted model. We focus on the TGARCH model of Zakoïan (1994)

for its good performance when representing heterocedastic time series with leverage e¤ect; see

Rodríguez and Ruiz (2009).

2. FINITE SAMPLE PROPERTIES OF PLUG-IN AND SAMPLE MOMENTS

The TGARCH(1,1) model is given by

yt = "t�t

�t = ! + � jyt�1j+ ��t�1 + �yt�1 (1)

where "t is a serially independent sequence with zero mean, variance one and symmetric density

and �t is the volatility. The distribution of "t is assumed to be either Gaussian or Student-7.

The parameters of model (1) have to be adequately restricted to guarantee stationarity, �nite

fourth order moment of yt and positive conditional variances; see, for example, Rodríguez and

Ruiz (2009).

In order to compare the �nite sample properties of the plug-in and sample moments we generate

R = 1000 series of sizes T = 500; 2000 and 5000 by the TGARCH model with parameters

� = 0:17; � = 0:8 and �T = �0:11. The parameter ! is such that the marginal variance of yt is

one. Denote by �; �2(1) and �12(1); the population kurtosis, �rst order autocorrelation of squares

and �rst order cross-correlation between yt and y2t+1; respectively which are given by � = 9:01,

1Results for other speci�cations as EGARCH, TGARCH, GJR and QGARCH models are available from the

authors upon request. The conclusions are similar regardless the model or whether there is or not leverage e¤ects.

2



�2(1) = 0:344 and �12(1) = �0:112 when the errors are Gaussian, whereas � = 16:91, �2(1) = 0:237

and �12(1) = �0:077 when they are Student-7. The corresponding plug-in moments are denoted

by �̂; �̂2(1) and �̂12(1): Finally, the sample moments are denoted by k; r2(1); r12(1): For each time

series generated, we compute the sample and the plug-in moments2. Table 1 reports their Monte

Carlo relative biases and standard deviations.

Consider �rst the results for the kurtosis. The plug-in kurtosis have positive relative biases

which can be very large when T = 500. Both, biases and standard deviations, decrease with

the sample size. However, the relative biases of the sample kurtosis are negative and very large

regardless of the error distribution and sample size considered; see An and Ahmed (2008) for a

similar conclusion. Furthermore, the biases hardly decrease with the sample size. The relative

biases of k � �̂ are rather large and even larger when the errors are Student-7. Therefore, the

sample and plug-in kurtosis tend to be far apart even when the model is correctly speci�ed; see also

the �rst column of Figure 1 which plots kernel densities of k, �̂ and their di¤erences for T=2000

and Gaussian errors. Comparing plug-in and sample kurtosis may lead to misleading conclusions

about the adequacy of a �tted model.

When looking at the results corresponding to the plug-in �rst order autocorrelation of squares,

we can observe that the relative biases are negative. The magnitude of the biases and standard

errors are similar regardless of the error distribution. On the other hand, although the biases

of the sample autocorrelations are also negative, they are much larger in magnitude; Bollerslev

(1988), He and Teräsvirta (1999) and Pérez and Ruiz (2003) also report negative biases of the

sample autocorrelations. As expected, both the biases and standard deviations decrease with

the sample size. Therefore, we expect that the plug-in �rst order autocorrelations of squares

would be in average larger than their sample counterparts and, obviously, closer to the population

autocorrelations. Also note that the standard deviations of the sample autocorrelations are much

larger than those of the plug-in. Consequently, as in the case of the kurtosis, comparing the plug-

in �rst order autocorrelation of squares with the sample autocorrelation can lead to reject the

adequacy of a well speci�ed GARCH model; see also the second column of Figure 1 which plots

kernel densities of r2(1), �̂2(1) and their di¤erences when T = 2000 and the errors are Gaussian.

Finally, the relative biases and standard deviations of the sample cross-correlations depend on

the error distribution and sample size considered. It is also important to note that although, the

2The parameters have been estimated by ML using software developed by the �rst author in Matlab.
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biases of the sample cross-correlations have magnitudes larger than those of the corresponding plug-

in cross-correlations, they are, in general, relatively small. Once more, the standard deviations of

the di¤erences are very large compared with the magnitude of the cross-correlations. Therefore,

comparing �̂12(1) and r12(1) may also be rather misleading to conclude about the adequacy of an

asymmetric GARCH model �tted to a given time series of returns; see the third column of Figure

1.

3. EMPIRICAL APPLICATION

In this section we �t the TGARCH model to series of daily returns of the SP500 index and of the

EUR/USD exchange rate observed from January 2nd 2002 to June 25th 2010. Figure 2 plots both

series together with their corresponding sample autocorrelations of squares and cross-correlations

between yt and y2t+h: The autocorrelations of squares of both series are signi�cant; see also Table

2 which reports the corresponding Box-Ljung statistic. The cross-correlations of SP500 returns

are also signi�cant and negative suggesting the presence of leverage e¤ect. However, the cross-

correlations of EUR/USD returns are not signi�cant. Therefore, a GARCH model with leverage

e¤ect may be appropriate for the SP500 returns while the EUR/USD returns could be represented

by a symmetric GARCH model. We �t the TGARCH model with Student-� errors to each of

these series. The estimated model for the SP500 returns is given by

�t = 0:012
(0:002)

+ 0:054
(0:009)

jyt�1j+ 0:948
(0:008)

�t�1 �0:054
(0:006)

yt�1

with b� = 11:95: The estimated volatility of the EUR/USD returns is given by
�t = 0:003

(0:002)
+ 0:040

(0:007)
jyt�1j+ 0:963

(0:007)
�t�1 �0:004

(0:005)
yt�1

with b� = 15:08. Note that, as expected, the asymmetry of the EUR/USD returns is not signi�cant.
Table 2, which reports several moments of the standardized returns, shows that they have smaller

kurtosis than the original observations. Furthermore, when looking at the Box-Ljung statistic to

test for the signi�cance of the autocorrelations of squares and cross-correlations, we can observe

that they are not any more signi�cant. Therefore, it seems that the TGARCH model is able to

explain the autocorrelations of squares and cross-correlations between returns and future squared

returns.

Finally, Table 2 reports the plug-in moments obtained after substituting the parameter esti-

mates in the expressions of the corresponding population moments. When looking at the results
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for the SP500 returns, we observe that the plug-in kurtosis is much larger than the sample kur-

tosis. Therefore, we may think that the TGARCH model is not adequate to represent the SP500

kurtosis. However, according to our simulation results, the plug-in kurtosis is positively biased

while the sample kurtosis has a negative bias. Therefore, in spite of the large distance between

the sample and plug-in kurtosis, the TGARCH model could still be adequate for the SP500 re-

turns. When comparing the plug-in and sample autocorrelations of squares and cross-correlations

between returns and future squared returns, we can observe that the di¤erences are pretty small;

see also Figure 2 where the plug-in correlations have been plotted together with the corresponding

sample correlations. However, although the sample autocorrelations of squares are larger than

the plug-in autocorrelations, which is in contrast with the bises observed in our Monte Carlo re-

sults, remember that the dispersion of the di¤erences between sample and plug-in autocorrelations

is very large. When comparing plug-in and sample moments of the EUR/USD returns, we can

observe that all moments are very similar.

4. CONCLUSIONS

This paper analyses the suitability of comparing plug-in and sample kurtosis, autocorrelations of

squares and cross-correlations between returns and future squared returns when checking the ade-

quacy of a �tted GARCH model. We show that the biases of the sample and plug-in kurtosis have

opposite sign. The di¤erences between sample and plug-in autocorrelations and cross-correlations

have very large dispersions. Therefore, comparing both quantities is not adequate.
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Table 1.- Monte Carlo relative biases and standard deviations (in parenthesis) of sample and

plug-in moments and their di¤erences.

Gaussian Student-7

T=500 T=2000 T=5000 T=500 T=2000 T=5000

�̂

k

k -�̂

37:89%
(14:448)

�35:67%
(3:540)

�77:11%
(14:027)

19:06%
(8:169)

�24:41%
(3:409)

�43:62%
(3:409)

4:76%
(2:466)

�20:52%
(2:944)

�25:29%
(2:943)

17:38%
(28:600)

�56:56%
(6:261)

�65:56%
(21:559)

15:31%
(14:52)

�42:09%
(5:692)

�57:41%
(14:106)

13:25%
(9:187)

�34:65%
(5:216)

�47:90%
(9:518)

�̂2(1)

r2(1)

r2(1)� �̂2(1)

�6:80%
(0:061)

�27:67%
(0:109)

�22:85%
(0:096)

�1:32%
(0:034)

�15:32%
(0:085)

�14:13%
(0:085)

�0:46%
(0:022)

�11:85%
(0:067)

�11:40%
(0:067)

�8:00%
(0:063)

�26:66%
(0:106)

�18:81%
(0:091)

�2:07%
(0:086)

�11:69%
(0:033)

�9:17%
(0:084)

�0:24%
(0:022)

�8:04%
(0:072)

�7:78%
(0:069)

�̂12(1)

r12(1)

r12(1)� �̂12(1)

�5:47%
(0:023)

�2:18%
(0:084)

3:30%
(0:096)

�1:90%
(0:012)

4:60%
(0:047)

6:92%
(0:047)

�0:08%
(0:007)

3:70%
(0:033)

4:52%
(0:033)

�1:72%
(0:022)

19:93%
(0:079)

21:02%
(0:071)

�1:66%
(0:011)

22:81%
(0:051)

24:41%
(0:049)

�1:80%
(0:007)

23:19%
(0:036)

24:93%
(0:039)

Figure 1.- Kernel densities of the Monte Carlo sample moments (dashed), plug-in moments

(continuous) (top panel) and their di¤erences (lower panel): The vertical line represents the pop-

ulation moments. The �rst column corresponds to �y, the second to �2(1) and the third to �12(1):
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Figure 2.- Daily returns (�rst column), sample autocorrelations of squares (second column)

and cross-correlations between yt and y2t+1 (third column) together with 95% con�dence intervals

(discontinuous line) and plug-in moments (continuous line).

SP500

EUR/USD

Table 2.- Sample moments together with corresponding diagnostic statistics and plug-in mo-

ments.

SP500 EUR/USD

Sample Residuals Plug-in Sample Residuals Plug-in

Kurtosis 7:12 4:19� 16:82 4:28 3:50� 4:71

�2(1) 0:34 �0:07 0:25 0:12 �0:03 0:11

Q2(20) 3148:50� 30:04 � 616:08� 15:86 �

�21(1) �0:07 �0:05 �0:07 0:02 0:02 0:00

Q21(20) 217:15� 30:77 � 34:41 18:30 �
* Signi�cant at 5% level
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