

IN-VIVO TOXICITY OF PROPHET'S MEDICINAL PLANT, *Lawsonia inermis* (HENNA) LEAVES

Noor Nabilah Binti Talik Sisin, Assoc. Prof. Dr. Deny Susanti Darnis International Islamic University Malaysia (IIUM)

INTRODUCTION

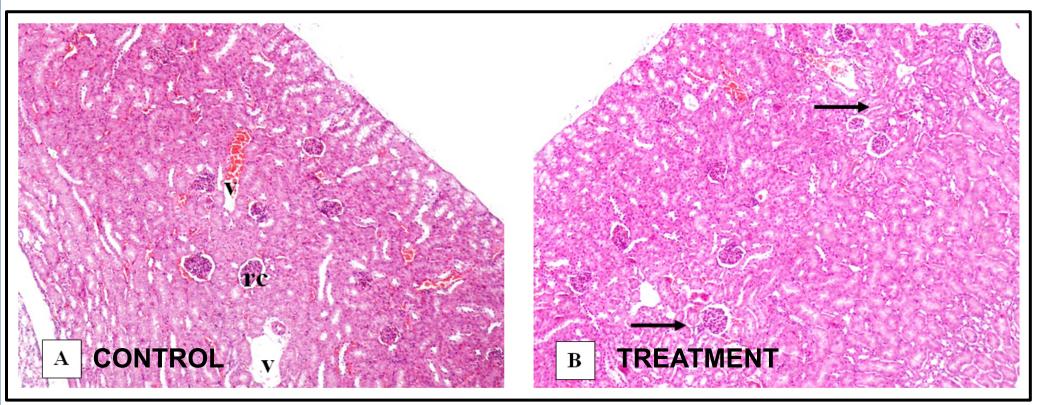
1) Background of study:

In-vitro anti-	Toxicity of	In-vivo anti-
urolithiatic effect	henna	urolithiatic effect
(proven ¹)	(present study)	(future)

- only scant toxicity studies about Malaysia henna
- hardly any study on histopathological changes of liver and kidneys of mice due to henna leaves extracts administration.

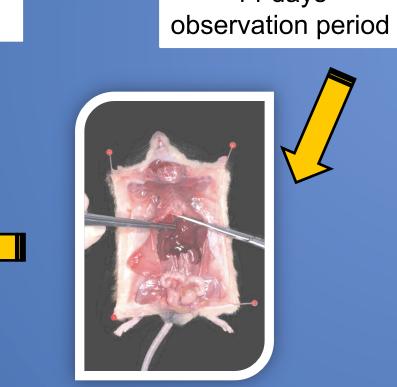
2) Objective:

To compare the histopathological changes of liver and kidneys between control and treatment groups of the mice due to the administration of hydroethanolic extract of henna leaves.

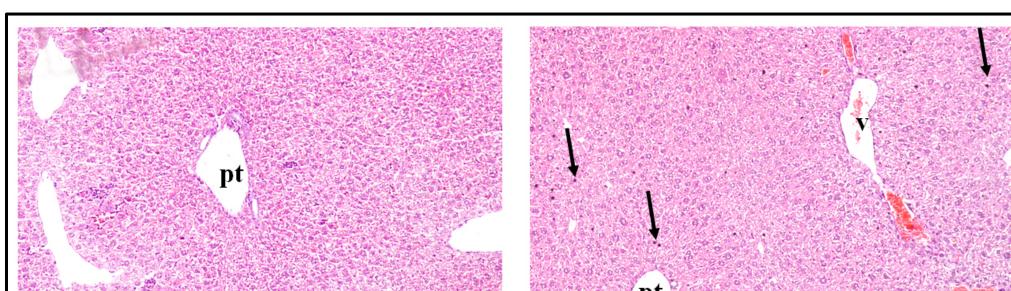

METHODOLOGY

RESULTS AND DISCUSSION

2) KIDNEYS


Figure 2. (A) Control section showing normal histology, with the presence of renal corpuscles (rc), veins (v), arteries (a) and convoluted tubules. **(B)** Treated mouse section showing area in which degeneration of connective tissues between the tubules happened (arrows). H & E stained. 100x.

- Degeneration of connective tissues between the tubules
 - → possibly occur due to flavone apigenins that present in Malaysian henna extracts².


Histopathological assessments (liver and kidneys)

Sacrifice and dissection

RESULTS AND DISCUSSION

1) Liver

→ Gradolatto *et al.* (2005) detected 1.18% and 0.32% apigenins in livers and kidneys on the 10th day following oral administration⁵.

Table 1 Comparing Organs Weight between Control and Treatment(Independent t-test)

Organs	Means	Means	<i>p</i> -value
Weight (g)	Control (n=8)	Treatment (n=10)	(Sig.)
Kidneys	0.546 ± 0.106	0.538 ± 0.051	0.816
Liver	2.028 ± 0.353	2.135 ± 0.220	0.442
Heart	0.165 ± 0.030	0.201 ± 0.068	0.186
Spleen	0.225 ± 0.045	0.187 ± 0.025	0.036
Lung	0.382 ± 0.061	0.264 ± 0.059	0.529

• The mean weight of spleen between the control and treatment groups are considered statistically significant (*p*-value <0.05).

- →There might be immune reactions happened in spleen due to the administration of henna extracts⁶
- \rightarrow May be justified as the effect of phytochemical saponins⁷.

CONCLUSION

It is scientifically proven that single dose of ethanolic extract of *L. inermis* (henna) leaves can cause toxicity towards liver and kidneys of the mice.

ACKNOWLEDGEMENT

I would like to acknowledge my supervisor Dr. Deny Susanti, co-supervisor Dr. Zaitunnatakhin , lecturer Dr. Norazsida and my labmates.

Figure 1. (A) Control section showing normal histology consisting portal triad (pt), veins (v), and cords of hepatocytes with sinusoids at the sides. **(B)** Treated mouse section showing pyknotic nuclei (arrows). H & E stained. 100x.

- Presence of pyknotic nuclei indicated occurrence of apoptosis.
 → could be triggered by quercetin or naringenin that present in Malaysian henna extracts ².
 - \succ Quercetin was established as a pro-apoptotic agent³
 - Naringenin could elicit cytotoxic effect and deter the metabolism of toxic compound by inhibiting cytochrome P450 enzymes⁴ present in liver and kidneys.

- ¹ Nur Azfa, M. S.(2013). *Antiurolithiatic Effect of Five Selected Prophetic Plants*. (Unpublished final year project). International Islamic University Malaysia.
- ² Mustafa, R. A., Abdul Hamid, A., Mohamed, S., Abu Bakar, F. (2010). Total Phenolic Compounds, Flavonoids, and Radical Scavenging Activity of 21 Selected Tropical Plants. *Journal of Food Science*. 75 (1), p.28-34.
- ³ Nguyen, T. T. T., Tran, E., Nguyen, T. h., Do, P. T., Huynh, T. H., Huynh, H. (2004). The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells. *Oxford University Press*. 25 (5), p.647-659.
- ⁴ Szkudelska, K., Nogowski, L., Nowicka, E., Szkudelski, T. (2007). *In-vivo* metabolic effects of naringenin in the ethanol consuming rat and the effect of naringenin on adipocytes *in-vitro*. *J Anim Physiol Anim Nutr.* 91, p.91–99.
- ⁵ Gradolatto, A., Basly, J., Berges, R., Teyssier, C., Chagnon, M., Siess, M., Canivec-Lavier, M. (2005). Pharmacokinetics and Metabolism of Apigenin in female and male rats after a single oral administration. *J Pharmacol Exp Ther.* 33 (1), p.49-54.
- ⁶ Mikhaeil, B. R., Badria, F. A., Maatooq, G. T., & Amer, M. M. (2004). Antioxidant and immunomodulatory constituents of henna leaves. *Journal of Biosciences*, 59, p.468-476.
 ⁷ Oda, K., Matsuda, H., Murakami, T., Katayama, S., Ohgitani, T., Yoshikawa, M. (2005). Adjuvant and Haemolytic Activities of 47 Saponins Derived from Medicinal and Food Plants. *Biological Chemistry*. 381 (1), p.67-74.