
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

This content was downloaded by: far75m

IP Address: 1.9.98.103

This content was downloaded on 23/11/2014 at 12:09

Please note that terms and conditions apply.

On Derivations Of Genetic Algebras

View the table of contents for this issue, or go to the journal homepage for more

2014 J. Phys.: Conf. Ser. 553 012004

(http://iopscience.iop.org/1742-6596/553/1/012004)

Home Search Collections Journals About Contact us My IOPscience

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The International Islamic University Malaysia Repository

https://core.ac.uk/display/300429122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/553/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


On Derivations Of Genetic Algebras
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Islamic University Malaysia, Kuantan, Pahang, Malaysia

E-mail: 1farrukh m@iium.edu.my, 2izzat math@yahoo.com

Abstract. A genetic algebra is a (possibly non-associative) algebra used to model inheritance in 
genetics. In application of genetics this algebra often has a basis corresponding to genetically 
different gametes, and the structure constant of the algebra encode the probabilities of producing
offspring of various types. In this paper, we find the connection between the genetic algebras
and evolution algebras. Moreover, we prove the existence of nontrivial derivations of genetic 
algebras in dimension two.

1. Introduction
In mathematical genetics, genetic algebras are (possibly non-associative) used to model
inheritance in genetic. In application of genetic this algebra often has a basis corresponding to
genetically different gametes, and the structure constant of the algebra encode the probabilities
of producing offspring of various types. There exist several classes of non-associative algebras
(baric, evolution, Bernstein, train, stochastic, etc.), whose investigation has provided a number
of significant contributions to theoretical population genetics. Such classes have been defined
different times by several authors, and all algebras belonging to these classes are generally
called genetic. In recent years many authors have tried to investigate the difficult problem of
classification of these algebras. The most comprehensive references for the mathematical research
done in this area are [1, 2, 3, 4].
In [1] an evolution algebra A associated to the free population is introduced and using this non-
associative algebra many results are obtained in explicit form, e.g. the explicit description of
stationary quadratic operators, and the explicit solutions of a nonlinear evolutionary equation
in the absence of selection, as well as general theorems on convergence to equilibrium in the
presence of selection.

In [3] a new type of evolution algebra is introduced. This algebra also describes some evolution
laws of genetics and it is an algebra E over a field K with a countable natural basis e1, e2, . . .
and multiplication given by eiei =

∑
j aijej , eiej = 0 if i 6= j. Therefore, eiei is viewed as

“self-reproduction”. The derivation for evolution algebra E is defined as usual, i.e. a linear
operator d : E → E is called a derivation if

d(u ◦ v) = d(u) · v + u · d(v)

for all u, v ∈ E.
Note that for any algebra, the space Der(E) of all derivations is a Lie algebra with the

commutator multiplication.
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In the theory of non-associative algebras, particularly, in genetic algebras, the Lie algebra of
derivations of a given algebra is one of the important tools for studying its structure. There
has been much work on the subject of derivations of genetic algebras ([5],[6],[7]). For evolution
algebras the system of equations describing the derivations are given in [3].

In [8] it was showed that the multiplication is defined in terms of derivations, showing the
significance of derivations in genetic algebras. Several genetic interpretations of derivation of
genetic algebra are given in [9].

The paper is organized as follows. In section 2 we recall some definitions and theorems,
which are needed in this paper. In section 3 we describe derivations of three dimensional genetic
algebras. section 3 is devoted to show the connection between genetic and evolution algebras in
dimension two. In section 4 we prove the existence of nontrivial derivations of genetic algebras
in dimension two.

2. Preliminaries
Let g be an algebra over the field K. Assume that g admits a basis {e1, ..., en} such that the
multiplication constants Pij,k with respect to this basis, are given by

ei · ej =

n∑
k=1

Pij,kek.

We say that g is a genetic algebra if the multiplication constants Pij,k satisfy

(i) Pij,k ≥ 0

(ii)
∑n

k=1 Pij,k = 1.

In that case, the basis {e1, ..., en} is called a natural basis.
Let (E, ·) be an algebra over a field F. If it admits a basis {e1, e2, . . . } such that

ei · ej = 0, for i 6= j, ei · ei =
∑
k

ai,kek, for any i,

then E is called an evolution algebra. By A we denote the structural matrix of E, i.e.
A = (aij)1≤i,j≤n

Recall that the derivation on algebra A is a linear operator d : A→ A such that

d(u · v) = d(u) · v + u · d(v)

for all u, v ∈ A.

Theorem 2.1 [10] Let d : E → E be a derivation of an evolution algebra E with non-singular
evolution matrix in basis 〈e1, . . . , en〉. Then the derivation d is zero.

Theorem 2.2 [10] Let E be an evolution algebra with structural matrix A = (aij)1≤i,j≤n in
the natural basis e1, . . . , en, and rankA = n − 1 such that enen = b(e1e1). Then the following
assertions are hold true:

(i) If b = 0, then the derivations d of E is either zero or it is in one of the following forms up
to basis permutation:
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0 . . . 0 d1n
...

. . .
...

...
0 . . . 0 dn−1n

0 . . . 0 0

 , (D1)

where
n−1∑
k=1

aikdkn = 0, 1 ≤ i ≤ n− 1;

0 . . . 0 0 . . . 0 0
...

. . .
...

...
...

...
0 . . . 0 0 . . . 0 0

0 . . . 0 dnn

2n−k−1 . . . 0 dk+1n
...

. . .
...

...
. . .

...
...

0 . . . 0 0 . . . dnn
2 dn−1n

0 . . . 0 0 . . . 0 dnn


, (D2)

where di+1n = ain
aii+1

(
1

2n−i−1 − 1
)
dnn, aii+1 6= 0, k + 1 ≤ i ≤ n − 2, 1 ≤ k ≤ n − 1 and

dk+1n ∈ C.
(ii) If b 6= 0. Then derivation d is either zero or it is in one of the following forms up to basis

permutation:

(i) (D3), where d11 =
δ

2n−s − 1
, 1 ≤ s ≤ n− 1 and δ2 = −bd21n;

(ii) (D4), where d22 =
1− 2m−k

2k−1
d11, d11 =

δ

2m−k+1 − 1
, 1 ≤ k < m ≤ n−1 and δ2 = −bd21n;

(iii) (D5), where d11 = δ and δ2 = −bd21n.
Here D3, D4 and D5 are respectively given By

d11 0 . . . 0 0 . . . 0 d1n
0 0 . . . 0 0 . . . 0 0
...

...
. . .

...
...

...
...

0 0 . . . 0 0 . . . 0 0
0 0 . . . 0 2d11 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . 0 0 . . . 2n−s−1d11 0
−bd1n 0 . . . 0 0 . . . 0 d11


(D3)



d11 0 . . . 0 0 . . . 0 0 . . . 0 d1n
0 d22 . . . 0 0 . . . 0 0 . . . 0 0
...

...
. . .

...
...

...
...

...
...

0 0 . . . 2k−1d22 0 . . . 0 0 . . . 0 0
0 0 . . . 0 2d11 . . . 0 0 . . . 0 0

0 0 . . .
...

...
. . .

...
...

...
...

0 0 . . . 0 0 . . . 2m−kd11 0 . . . 0 0
0 0 . . . 0 0 . . . 0 0 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 0 0 . . . 0 0 . . . 0 0

−bd1n 0 . . . 0 0 . . . 0 0 . . . 0 d11



(D4)
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d11 0 . . . 0 0 . . . 0 0 d1n
0 0 . . . 0 0 . . . 0 0 0
...

...
. . .

...
...

...
...

...
0 0 . . . 0 0 . . . 0 0 0

0 0 . . . 0 d11
2n−s−2 . . . 0 0 0

...
...

...
...

. . .
...

...
...

0 0 . . . 0 0 . . . d11
2 0 0

0 0 . . . 0 0 . . . 0 d11 0
−bd1n 0 . . . 0 0 . . . 0 0 d11


(D5)

3. Derivations Of Three Dimensional Genetic Algebras
In this section, we are going to describe derivations of three dimensional genetic algebras. Let
{e1, e2, e3} be a basis of three dimensional genetic algebra then the rule of multiplication is
defined as follows:

(ei ◦ ej) =
3∑

i,j=1

Pij,kek, k = 1, 3, (1)

where {Pij,k} are coefficients of heredity, which satisfy the following conditions

Pij,k ≥ 0, Pij,k = Pji,k,
3∑

k=1

Pij,k = 1, i, j, k ∈ {1, 2, 3}. (2)

Let us define a derivation of the genetic algebra. Then one can represent it as

d(ei) =
3∑
j=1

dijej .

So, let us start to calculate

d(e1 ◦ e1) = d(e1)e1 + e1d(e1) = 2d(e1)e1.

Hence,
d(e1 ◦ e1) = d(p11,1e1 + p11,2e2 + p11,3e2) = 2(d11e1 + d12e2 + d13e3)e1,

then
p11,1d(e1) + p11,2d(e2) + p11,3d(e3) = 2(d11(e1.e1) + d12(e2.e1) + d13(e3.e1).

Put the values of d(ei) and (ei ◦ ej) into above expression and compare the coefficients, we get p11,1d11 + p11,2d21 + p11,3d31 = 2p11,1d11 + 2p12,1d12 + 2p13,1d13
p11,1d12 + p11,2d22 + p11,3d32 = 2p11,2d11 + 2p12,2d12 + 2p13,2d13
p11,1d13 + p11,2d23 + p11,3d33 = 2p11,3d11 + 2p12,3d12 + 2p13,3d13

(3)

In the same manner one gets the following system, for d(e2 ◦ e2): p22,1d11 + p22,2d21 + p22,3d31 = 2p12,1d21 + 2p22,1d22 + 2p23,1d23
p22,1d12 + p22,2d22 + p22,3d32 = 2p12,2d21 + 2p22,2d22 + 2p23,2d23
p22,1d13 + p22,2d23 + p22,3d33 = 2p12,3d21 + 2p22,3d22 + 2p23,3d23

(4)
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From d(e3 ◦ e3) one finds p33,1d11 + p33,2d21 + p33,3d31 = 2p13,1d31 + 2p23,1d32 + 2p33,1d33
p33,1d12 + p33,2d22 + p33,3d32 = 2p13,2d31 + 2p23,2d32 + 2p33,2d33
p33,1d13 + p33,2d23 + p33,3d33 = 2p13,3d31 + 2p23,3d32 + 2p33,3d33

(5)

From d(e1 ◦ e2) we obtain

p12,1d11 + p12,2d21 + p12,3d31 = p12,1d11 + p22,1d12 + p23,1d13 + p11,1d21
+p12,1d22 + p13,1d23

p12,1d12 + p12,2d22 + p12,3d32 = p12,2d11 + p22,2d12 + p23,2d13 + p11,2d21
+p12,2d22 + p23,1d23

p12,1d13 + p12,2d23 + p12,3d33 = p12,3d11 + p22,3d12 + p23,3d13 + p11,3d21
+p12,3d22 + p13,3d23

(6)

From d(e1 ◦ e3) one has

p13,1d11 + p13,2d21 + p13,3d31 = p13,1d11 + p23,1d12 + p33,1d13 + p11,1d31
+p12,1d32 + p13,1d33

p13,1d12 + p13,2d22 + p13,3d32 = p13,2d11 + p23,2d12 + p33,2d13 + p11,2d31
+p12,2d32 + p13,1d33

p13,1d13 + p13,2d23 + p13,3d33 = p13,3d11 + p23,3d12 + p33,3d13 + p11,3d31
+p12,3d32 + p13,3d33

(7)

From d(e2 ◦ e3) one finds

p23,1d11 + p23,2d21 + p23,3d31 = p12,1d21 + p23,1d22 + p33,1d23 + p12,1d31
+p22,1d32 + p23,1d33

p23,1d12 + p23,2d22 + p23,3d32 = p12,2d21 + p23,2d22 + p33,2d23 + p12,2d31
+p22,2d32 + p23,2d33

p23,1d13 + p23,2d23 + p23,3d33 = p12,3d21 + p23,3d12 + p33,3d23 + p12,3d31
+p22,3d32 + p23,3d33

(8)

Now, let us consider the following example

Example 3.1 Let

pii,k =

{
0 : i 6= k
1 : i = k

And when i 6= j we have the following matrix

pij,k =

 a a 0
0 0 1

1− a 1− a 0

 , a ∈ [0, 1]
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Now, we are going to find that the derivations of genetic algebra corresponding to {pij,k}. Let
us first substitute the values of pij,k into (3),(4),(5),(6),(7), and (9), Hence, we obtain

−d11 − 2ad12 − 2ad13 = 0
d12 = 0
d13 − (2(1− a))d12 − (2(1− a))d13 = 0
d21 − 2ad21 = 0
−d22 − 2d23 = 0
d23 − (2(1− a))d21 = 0
d31 − 2ad31 = 0
−d32 = 0
−d33 − (2(1− a))d31 = 0
(1− a)d31 − d21 − ad22 − ad23 = 0
ad12 + (1− a)d32 − d12 − d13 = 0
ad13 + (1− a)d33 − (1− a)d11 − (1− a)d22 − (1− a)d23 = 0
(1− a)d31 − d31 − ad32 − ad33 = 0
ad12 + (1− a)d32 − d12 − ad33 = 0
ad13 − (1− a)d11 − d13 − (1− a)d32 = 0
d21 − ad21 − ad31 = 0
−d32 − d33 = 0
−(1− a)d21 − (1− a)d31 = 0

(9)

Now, let us solve the above system. It is clear that d12 = d32 = 0. Therefore, from −d32−d33 = 0
one gets d33 = 0. Now, from (1−a)d31−d31−ad32−ad33 = 0 and−d33−(2(1−a))d31 = 0. we drive
d31 = 0. Also from −(1−a)d21−(1−a)d31 = 0 and d21−2ad21 = 0 we obtain d21 = 0. Therefore,
from d23 − (2(1 − a))d21 = 0 one finds d23 = 0. Consequently, d22 = 0 since −d22 − 2d23 = 0.
From ad12 +(1−a)d32−d12−d13 = 0 we obtain d13 = 0. Then −d11−2ad12−2ad13 = 0 implies
that d11 = 0. So, the derivation is zero
It is interesting to know the existence of nontrivial derivations. So, we will show the existence
of nontrivial derivations in section five.

4. Relation Between Genetic and Evolution algebras
From the definition of genetic algebra and evolution algebra one can ask the following question:
Is there a transformation of genetic algebra to some evolution algebra?
In this section, we are going to answer to this question in dimension two. Let (pij,k) be a
structure matrix of the genetic algebra in dimension two. Namely, if e1, e2 are the basis of
genetic algebra i.e.

ei ◦ ej =
2∑

k=1

pij,kek. (10)

Now, we want to change the given basis e1, e2 to a new basis f1, f2 such that the algebra generated
by f1, f2 becomes an evolution algebra.

Theorem 4.1 Let g be a genetic algebra generated by the basis e1, e2 with structure constant
(pij,k). Then g is an evolution algebra with respect to new basis f1, f2 if and only if one of the
following conditions are satisfied:

(i) p21,1 = p12,1 6= p11,1+p22,1
2

(ii) p11,1 = p12,1 = p22,1
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Proof. Assume that the change of bases is given by fu =
∑2

j=1 tujej . One can see that

f1 ◦ f2 =

( 2∑
j=1

t1jej

)
◦
( 2∑
l=1

t2lel

)

=

2∑
j, l=1

t1jt2l ◦
2∑

k=1

pjl,kek

=
2∑

k=1

( 2∑
j, l=1

t1jt2lpjl,k

)
ek

(11)

Due to the definition evolution algebra we conclude that an algebra generated by f1, f2 is
evolution if and only if f1 ◦ f2 = 0. So, from (11) we infer that f1 ◦ f2 = 0 if and only if∑2

j, l=1 t1jt2lpjl,k = 0. Let us redefine the matrix (til) as follows (tjl) =

(
x y
u v

)
, and explicitly

rewrite the expression
∑2

j, l=1 t1jt2lpjl,k = 0. Hence, one finds

p11,1xu+ p12,1xv + p21,1yu+ p22,1yv = 0 (12)

(1− p11,1)xu+ (1− p12,1)xv + (1− p21,1)yu+ (1− p22,1)yv = 0 (13)

By adding (12) and (13) we obtain

xu+ xv + yu+ yv = 0.

So, (u+ v)(x+ y) = 0. This means y = −x or u+ v = 0. without loss of generosity we assume
y = −x
Now, let y = −x then the matrix (tjl), after making a simple scale, takes the following form

(tjl) =

(
1 −1
u v

)
And by back substituting into (12) we have

p11,1u+ p12,1v − p21,1u− p22,1v = 0. (14)

Now consider several cases
Case 1. Let u = 0, then v 6= 0, since det(tjl) 6= 0. Therefore, from (14) one has (p12,1−p22,1)v = 0
which yields p12,1 = p22,1. So, the matrix (tjl) has the following form

(tjl) =

(
1 −1
0 1

)
Case 2. Let u 6= 0 and p12,1 = p22,1. Then from (14) we have (p11,1 − p12,1)u = 0. Therefore,
p11,1 = p12,1 = p12,1. So, the matrix (tjl) takes the following form

(tjl) =

(
1 −1
1 0

)
Case 3. Let u 6= 0 and p12,1 6= p22,1. Then from (14) one finds

p11,1 + p12,1

(
v

u

)
− p21,1 − p22,1

(
v

u

)
= 0
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By a simple algebra we get
v

u
=
p21,1 − p11,1
p12,1 − p22,1

.

Therefore, v =
p21,1−p11,1
p12,1−p22,1 · u Then the matrix (tjl), by making simple scale, takes the following

form:

(tjl) =

(
1 −1

u
p21,1−p11,1
p12,1−p22,1 .u

)
If p11,1 + p22,1 6= 2p12,1, then the matrix (tjl) is non singular,i.e. det(tij) 6= 0, and it teaks the
following form

(tjl) =

(
1 −1

1
p21,1−p11,1
p12,1−p22,1

)
.

This completes the proof.

5. Derivations of genetic algebras in dimension two
Its natural to know the existence of nontrivial derivations of genetic algebras. In this section by
means of the pervious section we are able to provide some conditions on structure constants of
genetic algebra for that algebra exists a nontrivial derivation.

Theorem 5.1 Let g be a genetic algebra with basis {e1, e2} of dimension two.

(i) If p21,1 = p12,1 6= p11,1+p22,1
2 . Then any derivation is trivial,i.e. zero.

(ii) If p11,1 = p12,1 = p22,1. Then there exists a nontrivial derivation.

Proof. Let g be a genetic algebra. Now, we choose such a basis f1, f2 in g such that g becomes
an evolution algebra. Due theorem 4.1, this occurs if (i), (ii) are satisfied.

(i) Let p12,1 = p21,1 6= p11,1+p22,1
2 . Then we have the following transformation matrix

(tjl) =

(
1 −1

1
p21,1−p11,1
p12,1−p22,1

)
One can see that f1 = e1−e2, f2 = e1−αe2 where α =

p21,1−p11,1
p12,1−p22,1 . Then by a simple algebra

we find

f21 =

(
γα

1 + α
− β

1 + α

)
f1 +

(
γ

1 + α
+

β

1 + α

)
f2

f22 =

(
xα

1 + α
− y

1 + α

)
f1 +

(
x

1 + α
+

y

1 + α

)
f2

Where γ = p11,1 + p22,1 − 2p12,1, β = p11,2 + p22,2 − 2p12,2, x = p11,1 + 2αp12,1 + α2p22,1
and y = p11,2 + 2αp12,2 + α2p22,2. So, we have the following structural matrix of evolution
algebra

A =

(
γα− β γ + β
xα− y x+ y

)
Suppose that det(A) = 0, then det(A) = (α + 1)(γy − βx) = 0. If α = −1 then one

can find p12,1 = p21,1 =
p11,1+p22,1

2 , which is a contradiction to our case. So, γ
β = x

y , i.e.
p11,1+p22,1−2p12,1

1−p11,1+1−p22,1−2+2p12,1
= x

y therefore, x = −y then

p11,1 + 2αp12,1 + α2p22,1 = −1 + p11,1 − 2α(1− p12,1)− α2(1− p22,1),

this means that (α+ 1)2 = 0, which is impossible. Hence, det(A) 6= 0. Then by theorem 2.1
any derivation is zero in this case.
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(ii) Let p11,1 = p12,1 = p22,1 then we have the following matrix

(tjl) =

(
1 −1
1 0

)
Therefore, one finds f1 = e1 − e2, f2 = e1. Then by simple algebra we get

f21 = −βf1 + (γ + β)f2

f22 = −p11,2f1 + f2,

where γ = p11,1 +p22,1−2p12,1, β = p11,2 +p22,2−2p12,2. So, we have the following structure
matrix of evolution algebra:

A =

(
−β γ + β
−p11,2 1

)
But γ = p11,1 + p22,1 − 2p12,1 = 0 = −β. Therefore, the det(A) = 0. Then according to
Theorem 2.2, we have a nontrivial derivation. This completes the proof.

Corollary 5.2 Let g be a genetic algebra with basis {e1, e2}. Then the nontrivial derivations
genetic algebra take the following form

d =

(
0 d12
−d12 0

)
Proof. By Theorem 2.2 we have the following nontrivial derivation evolution algebra

d =

(
0 d12
0 0

)
.

Since in the Theorem 5.1 we have f1f1 = 0, then the nontrivial derivation evolution algebra

d =

(
0 d12
0 0

)
.

takes the following form

d1 =

(
0 0
d12 0

)
.

and by using Theorem 5.1(ii) one has

d =

(
1 −1
1 0

)(
0 0
d12 0

)(
0 1
−1 1

)
=

(
0 d12
−d12 0

)
This completes the proof.
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