
 
 
Working Paper 10-36  
Statistics and Econometrics Series 20 
September 2010 
 

Departamento de Estadística 
Universidad Carlos III de Madrid

Calle Madrid, 126
28903 Getafe (Spain)

Fax (34) 91 624-98-49

EXPONENTIAL CONDITIONAL VOLATILITY MODELS 
 

Andrew Harvey* 
Faculty of Economics, Cambridge University and Departamento de Estadística, Universidad Carlos III de 

Madrid 
 

 
 
Abstract  
 
The asymptotic distribution of maximum likelihood estimators is derived for a class of 
exponential generalized autoregressive conditional heteroskedasticity (EGARCH) 
models. The result carries over to models for duration and realised volatility that use an 
exponential link function. A key feature of the model formulation is that the dynamics 
are driven by the score. 
 
 
 

Keywords: Duration models; gamma distribution; general error distribution; 
heteroskedasticity; leverage; score; Student's t. 
 
 
 
 
 
 
 
 
 
 
 
 
* Faculty of Economics, Cambridge University, Sidgwick Avenue, Cambridge CB3 9DD, 
England, e-mail: ach34@cam.ac.uk  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/30042907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ach34@cam.ac.uk


Exponential Conditional Volatility Models

Andrew Harvey
Faculty of Economics, Cambridge University

ACH34@ECON.CAM.AC.UK

October 4, 2010

Abstract

The asymptotic distribution of maximum likelihood estimators is
derived for a class of exponential generalized autoregressive condi-
tional heteroskedasticity (EGARCH) models. The result carries over
to models for duration and realised volatility that use an exponen-
tial link function. A key feature of the model formulation is that the
dynamics are driven by the score.
KEYWORDS: Duration models; gamma distribution; general er-

ror distribution; heteroskedasticity; leverage; score; Student�s t.
JEL classi�cation; C22, G17

1 Introduction

Time series models in which a parameter of a conditional distribution is a
function of past observations are widely used in econometrics. Such models
are termed �observation driven� as opposed to �parameter driven�. Lead-
ing examples of observation driven models are contained within the class of
generalized autoregressive conditional heteroskedasticity (GARCH) models,
introduced by Bollerslev (1986) and Taylor (1986). These models contrast
with stochastic volatility (SV) models which are parameter driven in that
volatility is determined by an unobserved stochastic process. Other exam-
ples of observation driven models which are directly or indirectly related to
volatility are duration and multiplicative error models (MEMs); see Engle
and Russell (1998), Engle (2002) and Engle and Gallo (2006). Like GARCH
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and SV they are used primarily for �nancial time series, but for intra-daily
data rather than daily or weekly observations.
Despite the enormous e¤ort put into developing the theory of GARCH

models, there are still outstanding issues. For example, the parameter restric-
tions needed to ensure positive variance are not always easy to determine and
they can be restrictive. Furthermore, there is no general uni�ed theory for
asymptotic distributions of maximum likelihood (ML) estimators. To quote
a recent review by Zivot (2009, p 124): �Unfortunately, veri�cation of the
appropriate regularity conditions has only been done for a limited number of
simple GARCH models,...�. The class of exponential GARCH, or EGARCH,
models proposed by Nelson (1991) takes the logarithm of the conditional
variance to be a linear function of the absolute values of past observations
and by doing so eliminates the di¢ culties surrounding parameter restrictions
since the variance is automatically constrained to be positive. However, the
asymptotic theory remains a problem; see Linton (2008). Apart from some
very special cases studied in Straumann (2005), the asymptotic distribution
of the ML estimator1 has not been derived. Furthermore, EGARCH mod-
els su¤er from a signi�cant practical drawback in that when the conditional
distribution is Student�s t (with �nite degrees of freedom) the observations
from stationary models have no moments.
This paper proposes an approach to the formulation of observation driven

volatility models that solves many of the existing di¢ culties. The �rst ele-
ment of the approach is that time-varying parameters (TVPs) are driven by
the score. This idea was suggested independently in papers2 by Creal et al
(2010) and Harvey and Chakravarty (2009). Creal et al (2010) went on to
develop a whole class of score driven models, while Harvey and Chakravarty
(2009) concentrated on EGARCH. However, in neither paper was the as-
ymptotic theory addressed. It is argued here that a key condition for the
development of such a theory is that the asymptotic covariance matrix of
the ML estimators in the corresponding static model should not depend on
parameters that subsequently become time-varying. This condition is not
su¢ cient because certain functions of the score and its derivative must also
be independent of TVPs. For the exponential models studied here, this turns
out to be the case.

1Some progress has been made with quasi-ML estimation applied to the logarithms of
squared observations; see Za¤aroni (2010).

2Earlier versions of both papers appeared as discussion papers in 2008.

2



The exponential conditional volatility models considered here have a num-
ber of attractions, apart from the fact that their asymptotic properties can
be established. In particular, an exponential link function ensures positive
scale parameters and enables the conditions for stationarity to be obtained
straightforwardly. Furthermore, although deriving a formula for an autocor-
relation function (ACF) is less straightforward than it is for a GARCHmodel,
analytic expressions can be obtained and these expressions are more general.
Speci�cally, formulae for the ACF of the (absolute values of ) the observations
raised to any power can be obtained. Finally, not only can expressions for
multi-step forecasts of volatility be derived, but their conditional variances
can be also found.
The main result on the asymptotic distribution is set out in section 2. It is

shown that the information matrix can be broken down into two parts. One is
the information matrix for the static model, while the other is obtained as the
expectation of the outer product of �rst derivatives of the time-varying pa-
rameters with respect to the parameters upon which their dynamics depend.
Only the �rst-order dynamic model is considered, but this model corresponds
to the GARCH(1,1) speci�cation, which is generally regarded as being ade-
quate for most applications. For the exponential conditional volatility class
the outer product matrix depends only on expectations associated with the
score and its �rst derivative in the static model. An analytic expression for
the information matrix for the (�xed) parameters in the model is obtained.
This expression is independent of TVPs and hence can be shown to be pos-
itive de�nite under clearly de�ned conditions. The asymptotic distribution
then follows.
The conditional distribution of the observations in the Beta-t-EGARCH

model, introduced by Harvey and Chakravarty (2009), is Student�s t with �
degrees of freedom. The volatility is driven by the score, rather than absolute
values, and, because the score has a beta distribution, all moments of the
observations less than � exist when the volatility process is stationary. The
Beta-t-EGARCH model is reviewed in section 3 and the conditions for the
asymptotic theory to go through are set out. The complementary Gamma-
GED-EGARCH model is also analyzed.
Section 4 proposes an exponential link function for the conditional mean

in gamma and Weibull distributions. As well as setting out the conditions
for the asymptotic theory to be valid, expressions for moments, ACFs and
multi-step forecasts are derived.
Leverage is introduced into the models in section 5 and the asymptotic
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results of section 2 are extended to deal with the extended dynamics. Section
6 reports �tting a Beta-t-EGARCH model to daily stock index returns and
compares the analytic standard errors with numerical standard errors. The
concluding section suggests directions for future research.

2 General model

Let yt; t = 1; :::; T; be a set of time series observations, each of which is drawn
from a distribution with probability density function (p.d.f.), p(yt;�), where
� is a vector of parameters. When the observations are serially indepen-
dent, p(yt;�) satis�es the standard regularity conditions for the maximum
likelihood estimator, e�; to be consistent and asymptotically normal. The
information matrix associated with the t� th observation is

It(�) = E

�
@ lnLt
@�

@ lnLt
@�0

�
= �E

�
@2 lnLt
@�@�0

�
; t = 1; :::; T;

where lnLt is the log-likelihood of the t � th observation. This information
matrix is positive de�nite (p.d.), provided the model is identi�able. The
score vector is @ lnLt=@�:
In the class of models to be considered, some or all of the parameters in

� are time-varying, with the dynamics driven by a vector that is equal or
proportional to the score. This vector may be the standardized score or a
residual, the choice being largely a matter of convenience. The parameters
may be connected to more usual parameters by a link function. For example,
a parameter may be the logarithm of the variance, rather than the variance
itself. Here the link function is exponential in all cases. A crucial requirement
for establishing results on asymptotic distributions is that It(�) does not
depend on parameters in � that are subsequently allowed to be time-varying.
Suppose initially that there is just one parameter, � = �tpt�1; which

evolves over time as a linear function of past values of the score. Let k
be a �nite constant and de�ne ut = k:@ lnLt=@�: Since ut is proportional to
the score, it is a martingale di¤erence (MD) and it has �nite variance because
standard regularity conditions hold in the static model. A linear dynamic
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model of order3 (p; q � 1) is de�ned as

�tpt�1 = � + �1�t�1pt�2 + :::+ �p�t�ppt�p�1 + �1ut�1 + :::+ �qut�q; (1)

where p � 0 and q � 1 are �nite integers and �; �1; ::; �p; �1; ::; �q are (�xed)
parameters. The process is assumed to have started in the in�nite past.
Stationarity (both strict and covariance) of �tpt�1 requires that the roots of the
autoregressive polynomial lie outside the unit circle, as in an autoregressive-
moving average model.
The �rst-order model,

�tpt�1 = � + ��t�1pt�2 + �ut�1; (2)

is stationary if j�j < 1; in which case the moving average representation is

�tpt�1 = 
 + �
1X
j=1

�j�1ut�j;

where 
 = �=(1� �) is the unconditional mean, E (�tpt�1) :

Lemma 1 Consider a model with a single time-varying parameter, �tpt�1;
which evolves according to a process, such as (1), that depends on variables
which are �xed at time t � 1: The process is governed by a set of �xed pa-
rameters, �; which in the case of (1) are �; �1; ::; �p; �1; ::; �q. Conditional
on �tpt�1; the observations are independently and identically distributed with
a positive information scalar, It; that in the corresponding static model does
not depend on �: The t-th observation information matrix for � is then

It(�) = It:Dt(�); t = 1; ::::; T; (3)

where

Dt(�) = E

�
@�tpt�1
@�

@�tpt�1
@�0

�
: (4)

Proof. Write the outer product as�
@ lnLt
@�tpt�1

@�tpt�1
@�

��
@ lnLt
@�tpt�1

@�tpt�1
@�

�0
=

�
@ lnLt
@�tpt�1

�2�
@�tpt�1
@�

@�tpt�1
@�0

�
:

3The terminology for the order follows that of Nelson (1991). The notation �tpt�1
stresses that �tpt�1 is a �lter; see also Andersen et al (2006).
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Now take expectations conditional on information at time t�1: IfEt�1 (@ lnLt/@�tpt�1)2
does not depend on �tpt�1; it is �xed and equal to the unconditional expec-
tation in the static model. Therefore, since �tpt�1 is �xed at time t� 1;

Et�1

��
@ lnLt
@�tpt�1

@�tpt�1
@�

��
@ lnLt
@�tpt�1

@�tpt�1
@�

�0�
=

"
E

�
@ lnLt
@�

�2#
@�tpt�1
@�

@�tpt�1
@�0

:

Taking unconditional expectations gives (3).

Lemma 2 If Dt(�) is time-invariant and p.d., the limiting distribution ofp
T e�; where e� is the ML estimator of �, is multivariate normal with meanp
T� and covariance matrix

V ar(e�) = I�1t (�):
Proof. See Davidson (2000, pp 271-6), but note that only �rst derivatives
of lnLt are needed; see the discussion in van der Vaart (1998). The score,
@ lnLt=@�; is a MD because the score in the static model is a MD and
@�tpt�1=@� is �xed at time t� 1:
In theorem 1 below, theDt(�) matrix is derived for the �rst-order model,

(2), and shown to be p.d. when the model is identi�able. The complications
arise because ut�1 depends on �t�1pt�2 and hence on the parameters in �:
The vector @�tpt�1=@� is

@�tpt�1
@�

= �
@�t�1pt�2

@�
+ �

@ut�1
@�

+ ut�1 (5)

@�tpt�1
@�

= �
@�t�1pt�2
@�

+ �
@ut�1
@�

+ �t�1pt�2

@�tpt�1
@�

= �
@�t�1pt�2

@�
+ �

@ut�1
@�

+ 1:

However,
@ut
@�

=
@ut

@�tpt�1

@�tpt�1
@�

;
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and similarly for the other two derivatives. Therefore

@�tpt�1
@�

= xt�1
@�t�1pt�2

@�
+ ut�1 (6)

@�tpt�1
@�

= xt�1
@�t�1pt�2
@�

+ �t�1pt�2

@�tpt�1
@�

= xt�1
@�t�1pt�2

@�
+ 1:

where

xt = �+ �
@ut

@�tpt�1
; t = 1; ::::; T: (7)

Evaluation of the above derivatives and their squares requires taking con-
ditional expectations of functions of ut and its �rst derivative. In the class
of exponential conditional volatility models these quantities are independent
of �tpt�1 and the expectational formulae are as in the corresponding static
model. These results, coupled with the fact that the elements of @�tpt�1=@�
are �xed at time t� 1, enable the information matrix of � to be found.
The following de�nitions are needed for theorem 1:

a = Et�1(xt) = Et�1

�
�+ �

@ut
@�tpt�1

�
= �+ �Et�1

�
@ut

@�tpt�1

�
(8)

b = Et�1(x
2
t ) = �2 + 2��Et�1

�
@ut

@�tpt�1

�
+ �2Et�1

�
@ut

@�tpt�1

�2
c = Et�1(utxt) = �Et�1

�
ut

@ut
@�tpt�1

�
:

Note that the �rst derivative of ut is (proportional to) the Hessian and so

Et�1

�
@ut

@�tpt�1

�
= �k:It = ��2u=k < 0; (9)

where �2u = Et�1(u
2
t ):

The following lemma is a pre-requisite for theorem 1. The formulae also
appear directly in the information matrix when there is a second parameter
in the static model that is not allowed to be time-varying; see (17).

Lemma 3 Suppose that the process for �tpt�1 starts in the in�nite past.
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Then, provided jaj < 1 and j�j < 1;

E

�
@�tpt�1
@�

�
= 0; t = 1; :::; T; (10)

E

�
@�tpt�1
@�

�
=

�

(1� a)(1� �)
;

E

�
@�tpt�1
@�

�
=

1

1� a
: (11)

Proof. Applying the law of iterated expectations (LIE) to (6)

Et�2

�
@�tpt�1
@�

�
= Et�2

�
xt�1

@�t�1pt�2
@�

+ ut�1

�
= a

@�t�1pt�2
@�

+ 0

and

Et�3Et�2

�
@�tpt�1
@�

�
= aEt�3

�
@�t�1pt�2

@�

�
= aEt�3

�
xt�2

@�t�2pt�3
@�

+ ut�2

�
= a2

@�t�2pt�3
@�

Hence, if jaj < 1;

lim
n!1

Et�n

�
@�tpt�1
@�

�
= 0; t = 1; :::; T:

Taking conditional expectations of @�tpt�1=@� at time t� 2 gives

Et�2

�
@�tpt�1
@�

�
= a

@�t�1pt�2
@�

+ �t�1pt�2: (12)

We can continue to evaluate this expression by substituting for @�t�1pt�2=@�,
taking conditional expectations at time t�3; and then repeating this process.
However, if a solution is assumed to exist, taking unconditional expectations
in (12) gives

E

�
@�tpt�1
@�

�
= aE

�
@�t�1pt�2
@�

�
+

�

1� �
;
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from which

E

�
@�tpt�1
@�

�
=

�

(1� a)(1� �)
:

As regards �;

Et�2

�
@�tpt�1
@�

�
= a

@�t�1pt�2
@�

+ 1 (13)

and taking unconditional expectations gives the result.

Theorem 1 Assume � 6= 0; j�j < 1; jaj < 1 and jbj < 1: Then Dt(�) is p.d.
and the limiting distribution of

p
T (e�, e�, e�)0 is normal with mean pT (�, �,

�)0 and covariance matrix

V ar

0B@ e�e�e�
1CA =

k2(1� b)

�2u

24 A D E
D B F
E F C

35�1 (14)

where

A = �2u

B =
2a�(� + �c)

(1� �)(1� a)(1� a�)
+

1 + a�

(1� a�)(1� �)

�
�2

1� �
+
�2�2u
1 + �

�
C = (1 + a)=(1� a)

D =
c�

(1� �)(1� a)
+

a��2u
1� a�

E = c=(1� a)

F =
� � a��+ a� � a2��+ a�c� a�c�

(1� �)(1� a)(1� a�)
:

Proof. First note that It in (3) is given by

It = Et�1(u
2
t )=k

2 = E(u2t )=k
2 = �2u=k

2 <1:

This expression is then combined with the formula forDt(�) which is derived
in appendix A. The derivation of the �rst term, A, is given here to illustrate
the method. This term is the unconditional expectation of the square of the
�rst derivative in (6). To evaluate it, �rst take conditional expectations at
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time t� 2; to obtain

Et�2

�
@�tpt�1
@�

�2
= Et�2

�
xt�1

@�t�1pt�2
@�

+ ut�1

�2
= b

�
@�t�1pt�2

@�

�2
+ 2c

@�t�1pt�2
@�

+ �2u: (15)

It was shown in lemma 3 that the unconditional expectation of the second
term is zero. Eliminating this term, and taking expectations at t� 3 gives

Et�3

�
@�tpt�1
@�

�2
= bEt�3

�
xt�2

@�t�2pt�3
@�

+ ut�2

�2
+ �2u

= b2
�
@�t�2pt�3

@�

�2
+ 2cb

@�t�2pt�3
@�

+ b�2u + �2u:

Again the second term can be eliminated and it is clear that

lim
n!1

Et�n

�
@�tpt�1
@�

�2
=

�2u
1� b

:

Taking unconditional expectations in (15) gives the same result. The deriv-
atives are all evaluated in this way in appendix A

Remark 1 Note that a; b and c depend on the model. However, if, as is
usually the case, � and � are positive, then a < �:

Corollary 1 The information matrix when � = � = 0 is

It(�; �; �) =
�2u
k2

24 �2u 0 0
0 �2 �
0 � 1

35
and so � and � are not identi�ed. When � 6= 0; all three parameters are
identi�ed even if � = 0.

Corollary 2 When � is taken to be unity, but jbj < 1 and jaj < 1; the
information matrix for e� and e� is

I(e�;e�) = �2u
k2(1� b)

�
�2u

c
1�a

c
1�a

1+a
1�a

�
10



with a = 1� ��2u=k and

b = 1� 2��2u=k + �2Et�1

�
@ut

@�tpt�1

�2
:

Since I(e�, e�) is p.d., pT (e�;e�)0 has a limiting normal distribution with meanp
T (�; �)0 and covariance matrix I�1(e�;e�): Note that � > 0 is a necessary

condition for jbj < 1 and a su¢ cient condition for a < 1:

Lemma 1 can be extended to deal with n parameters in � and a general-
ization of theorem 1 then follows. The lemma below is for n = 2 but this is
simply for notational convenience.

Lemma 4 Suppose that there are two parameters in �, but that �j;tpt�1 =
f(�j); j = 1; 2 with the vectors �1 and �2 having no elements in common.
When the information matrix in the static model does not depend on �1 and
�2

It(�1;�2) = E

"� @ lnLt
@�1

@�1
@�1

@ lnLt
@�2

@�2
@�2

�� @ lnLt
@�1

@�1
@�1

@ lnLt
@�2

@�2
@�2

�0#
(16)

=

24 E
�
@ lnLt
@�1

�2
E
�
@�1
@�1

@�1
@�01

�
E
�
@ lnLt
@�1

@ lnLt
@�2

�
E
�
@�1
@�1

@�2
@�02

�
E
�
@ lnLt
@�1

@ lnLt
@�2

�
E
�
@�2
@�2

@�1
@�01

�
E
�
@ lnLt
@�2

�2
E
�
@�2
@�2

@�2
@�02

�
35 :

The above matrix is p.d. if It(�) and Dt(�1;�1) are both p.d.

The conditions for the above lemma will rarely be satis�ed. A more
useful result concerns the case when � contains some �xed parameters. As
in theorem 1, it will be assumed that there is only one TVP, but if there are
more it is straightforward to combine this result with the previous one.

Lemma 5 When �2 contains n � 1 � 1 �xed parameters and the terms in
the information matrix of the static model that involve �1, including cross-
products, do not depend on �1;

It(�1;�2) =

24 E
�
@ lnLt
@�1

�2
E
�
@�1
@�1

@�1
@�01

�
E
�
@ lnLt
@�1

@ lnLt
@�02

�
E
�
@�1
@�1

�
E
�
@ lnLt
@�1

@ lnLt
@�2

�
E
�
@�1
@�01

�
E
�
@ lnLt
@�2

@ lnLt
@�02

�
35 : (17)
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3 Exponential GARCH

The Beta-t-EGARCH and Gamma-GED-EGARCH models are studied in
Harvey and Chakravarty (2009). Theoretical properties, such as moments
and ACFs, are derived and the �rst-order model is shown to provide a good
�t to daily data on stock indices.

3.1 Beta-t-EGARCH

In the Beta-t-EGARCH model the observations can be written as

yt = "t exp(�tpt�1=2); t = 1; ::::; T; (18)

where the serially independent, zero mean variable "t has a t��distribution
with positive degrees of freedom, �.
The principal feature of the Beta-t-EGARCH class is that �tpt�1 is a linear

combination of past values of the MD

ut =
(� + 1)y2t

� exp(�tpt�1) + y2t
� 1; �1 � ut � �; � > 0: (19)

This variable is the score multiplied by two. It may be expressed as

ut = (� + 1)bt � 1; (20)

where, for �nite degrees of freedom,

bt =
y2t =� exp(�tpt�1)

1 + y2t =� exp(�tpt�1)
; 0 � bt � 1; 0 < � <1; (21)

is distributed as Beta(1=2; �=2). Since E(bt) = 1=(� + 1) and V ar(bt) =
2�=f(� + 3)(� + 1)2g; ut has zero mean and variance 2�=(� + 3):

Proposition 1 For a given value of �; the asymptotic covariance matrix of
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the dynamic parameters is as in (14) with

a = �� �
�

� + 3

b = �2 � 2�� �

� + 3
+ �2

3�(� + 1)

(� + 5)(� + 3)

c = �
2�(1� �)

(� + 5)(� + 3)
:

and k = 2.

Proof. Di¤erentiating (19) gives

@ut
@�tpt�1

=
�(� + 1)y2t � exp(�tpt�1)
(� exp(�tpt�1) + y2t )

2
= �(� + 1)bt(1� bt):

From appendix B,

Et�1

��
@ut

@�tpt�1

��
= �(� + 1)E(bt(1� bt)) =

��
� + 3

;

which is ��2u=2: For b and c;

Et�1

"�
@ut

@�tpt�1

�2#
= (� + 1)2E(b2t (1� bt)) =

3�(� + 1)

(� + 5)(� + 3)

and

Et�1

�
ut

�
@ut

@�tpt�1

��
= �Et�1 [((� + 1)bt � 1)(� + 1)bt(1� bt)]

= �(� + 1)2Et�1(b2t (1� bt)) + (� + 1)Et�1(bt(1� bt))

=
�3�(� + 1)
(� + 5)(� + 3)

+
�

� + 3
=

2�(1� �)

(� + 5)(� + 3)
:

Proposition 2 The asymptotic distribution of the dynamic parameters given
in proposition 1 changes when � is estimated because the ML estimators of �

13



and � are not asymptotically independent in the static model. Speci�cally

I(�; �) =
1

2

"
�

(�+3)
1

(�+3)(�+1)
1

(�+3)(�+1)
h(�)

#
;

where
h(�) =

1

2
 0 (�=2)� 1

2
 0 ((� + 1)=2)� � + 5

� (� + 3) (� + 1)

and  0 (:) is the trigamma function; see Taylor and Verbyla (2004). In (17),
�2 = �2 = � and, using (10),

I(�1; �) =

26664 I(�1)
1

2(�+3)(�+1)

0@ 0
�

(1�a)(1��)
1=(1� a)

1A
1

2(�+3)(�+1)

�
0 �

(1�a)(1��)
1
1�a

�
h(�)=2

37775
where I(�1) is the inverse of the matrix in (14) with a; b and c as in propo-
sition 1.

Remark 2 A non-zero median can be introduced into the t-distribution with-
out complicating the asymptotic theory. More generally the median may de-
pend linearly on a set of static exogenous variables, in which case the ML
estimators of the associated parameters are asymptotically independent of
the estimators of �1 and �:

Remark 3 Instead of (18), let

yt = �tpt�1zt; � > 2;

where zt = ((� � 2) =�)1=2"t has a t��distribution, but standardized so as to
have unit variance. The Beta-t-GARCH(1; 1) model is

�2tpt�1 = � + ��2t�1pt�2 + ��2t�1pt�2ut�1; � > 0; � � 0; � � 0

where ut is as in (19); see Harvey and Chakravarty (2009). The model can
be re-written as

�2tpt�1 = � + ��2t�1pt�2 + ��2t�1pt�2(� + 1)bt�1; � > 0; � � 0; � � 0:
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where � = � and � = �� �: In the limit as � !1; (� +1)bt = y2t leading to
the standard GARCH(1; 1) speci�cation. The asymptotic result in Theorem
1 does not apply here as the information matrix in the static model depends on
�2: For a recent discussion of the asymptotics of the Gaussian GARCH(1,1)
model see Fiorentina et al. (1996). Note that an analytic expression for the
information matrix cannot be obtained.

3.2 Gamma-GED-EGARCH

In the Gamma-GED-EGARCH model4, yt = "t exp(�tpt�1) and "t has a gen-
eral error distribution (GED) with positive shape (tail-thickness) parameter
� and scale �tpt�1. The log-likelihood function of the t�th observation is

lnLt(�; �) = �
�
1 + ��1

�
ln 2� ln �(1+��1)��� 1

2

��yt � �tpt�1
��� exp(���);

leading to a model in which �tpt�1 evolves as a linear function of the score,

ut = (�=2)(jytj� = exp(�tpt�1�)� 1; t = 1; :::; T: (22)

Hence �2u = �: When �tpt�1 is stationary, the properties of the Gamma-
GED-EGARCH model can be obtained in much the same way as those of
Beta-t-EGARCH. The name Gamma-GED-EGARCH is adopted because
ut = (�=2)& t � 1; where & t = jytj� = exp(�tpt�1�) has a gamma(1=2, 1=�)
distribution; see expression (37) in appendix D.

Proposition 3 For a given value of �; the asymptotic5 covariance matrix of
the dynamic parameters is as in (14) with k = 1 and

a = �� ��

b = �2 � 2��� + 4�2(� + 1)
c = ���2:

4Harvey and Chakravarty (2009) have yt = "t exp(�tpt�1=�):
5When � < 2 the pdf at y = 0 does not satisfy all the regularity conditions for the

usual ML properties to hold; see Varanasi and Aazhang (1989, p 1408-9). However, this
irregularity only a¤ects the mean which here is assumed to be given. Note that Varanasi
and Aazhang refer to the GED as the generalized Gaussian distribution.
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Proof. The derivative of ut with respect to �tpt�1 is

@ut
@�tpt�1

= �(�2=2) jytj� = exp(�tpt�1�) = �(�2=2)& t

and taking conditional expectations gives ��; which is ��2u: In addition,

Et�1

"�
@ut

@�tpt�1

�2#
= (�2=2)2Et�1

�
&2t
�
= 4(� + 1)

and

Et�1

�
ut

�
@ut

@�tpt�1

��
= ��(� + 1) + � = ��2:

Important special cases are the normal distribution, � = 2; and the
Laplace distribution, � = 1: However, as with the Beta-t-EGARCH model,
the asymptotic distribution of the dynamic parameters changes when � is
estimated since the ML estimators of � and � are not asymptotically inde-
pendent in the static model.

Proposition 4 The information matrix for the GED distribution is 6

I(�; �) =

�
� ���1(1 + 0:5�(2=�) (2=�)=�(1=�))

���1(1 + 0:5�(2=�) (2=�)=�(1=�)) ��3 ln 2 + g(�) + h(�)

�
;

where  (:) is the digamma function,

g(�) = 2��3 (1 + 1=�) + ��4 0 (1 + 1=�)

and

h(�) =
�(2=�)(( (2=�))2 �  �(2=�))

2�2�(1=�)
:

When �2 = �2 = �; I(�1; �) has the same form as I(�1; �) in proposition 2.

Proof. See appendix D.

Remark 4 In the equation for the logarithm of the conditional variance,
�2tpt�1; in the Gaussian EGARCH model (without leverage) of Nelson (1991),
ut is replaced by [jztj � E jztj] where zt = yt=�tpt�1. The di¢ culties arise

6Varanasi and Aazhang (1989) give some formulae but not for the exponential link.
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because, unless � = 1; the conditional expectation of [jztj � E jztj] depends on
�tpt�1:

4 Intra-day data: realized volatility and du-
ration

Engle (2002) introduced a class of multiplicative error models for modeling
non-negative variables, such as duration, realized volatility and spreads. In
these models, the conditional mean, �tpt�1; and hence the conditional scale,
is a GARCH-type process and the observations can be written

yt = "t�tpt�1; 0 � yt <1; t = 1; ::::; T;

where "t has a distribution with mean one. The leading cases are the gamma
and Weibull distributions. Both include the exponential distribution as a
special case.
The use of an exponential link function, �tpt�1 = exp(�tpt�1); not only

ensures that �tpt�1 is positive, but also allows theorem 1 to be applied. The
model can be written

yt = "t exp(�tpt�1); t = 1; ::::; T; (23)

with dynamics as in (1).

4.1 Gamma distribution

The pdf of a gamma variable can be written as

f(y;�; 
) = 

��
y
�1e�
y=�=�(
); 0 � y <1; �; 
 > 0;

where 
 is the shape parameter, � is the mean and the variance is �2=
;
see, for example, Engle and Gallo (2006). The exponential distribution is a
special case in which 
 = 1: The scale parameter in the parameterization of
appendix C is � = 
=�:
The exponential link function gives a score of

ut = (yt � exp(�tpt�1))= exp(�tpt�1) (24)
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with �2u = 1=
: Hence the asymptotic variance of the ML estimator of � in
the static model is independent of �:

Proposition 5 The ML estimators of the parameters �; � and � in (23) and
(2) are asymptotically normal with covariance matrix as in (14) with

a = �� �

b = �2 � 2�� + �2(1 + 
)=


c = ��=


and k = 1=
: The result is unchanged if 
 is estimated.

Proof. Since
@ut

@�tpt�1
= �yt exp(��tpt�1)

is gamma distributed, its conditional expectation is minus one (as given by
��2u=k). Furthermore

Et�1

"�
@ut

@�tpt�1

�2#
= Et�1

�
(�yt exp(��tpt�1))2

�
= (1 + 
)=
;

and

Et�1

�
ut

�
@ut

@�tpt�1

��
= Et�1 [�yt exp(��tpt�1)((yt � exp(�tpt�1))= exp(�tpt�1))]

= Et�1
�
�y2t exp(�2�tpt�1)) + (yt � exp(�tpt�1)

�
= �1=
:

The independence of the ML estimators of � and 
 follows on noting that
E(@2 lnLt=@�@
) = 0: Indeed this must be the case because the ML estimator
of 
 in the static model is just the sample mean.

4.1.1 Moments and ACF

Proposition 6 For the gamma model de�ned by (23) and �tpt�1 generated
by a stationary process with mean !; that is

�tpt�1 = ! +

1X
j=1

 jut�j; (25)
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with  j; j = 1; 2; :: �xed and ut as in (24), the m� th moment exists if and
only if  j < 
=2m; for all j = 1; 2; :::; and is given by the expression

E (ymt ) =
�(m+ 
)


m�(
)
em(!�� j)

1Y
j=1

(1�m j=
)
�
;  j < 
=m; m > 0:

(26)

Proof.

Et�1 (y
m
t ) = Et�1 ("

m
t ) :e

m�tpt�1 = Et�1 ("
m
t ) :e

m(!�� j)
1Y
j=1

em j"t�j

as ut = "t�1: It follows from the formula for the moment generating function
of a standardized gamma distribution that, if k is a constant,

E(ek") = (1� k=
)�
; �1 < k < 
; 
 > 0: (27)

Hence the result is given by taking iterated expectations of the product term
and substituting for Et�1 ("mt ) = E ("mt ) from the formula in appendix D.

Corollary 3 The level increases by a factor of �1j=1e
� j(1� j=
)�
; while

the variance increases by �1j=1e
�2 j(1 � 2 j=
)�
: Just as the increase in

kurtosis minus one can be taken as a measure of volatility in a GARCH
model, so one subtracted from the increase in variance divided by the square
of the increase in level can be taken as a measure of volatility here.

Proposition 7 When �tpt�1 is covariance stationary and  j < 
=2c, j =
1; 2; :::; the ACF of yct is

�(�) =
G
(�)� 1
�cV
 � 1

; � = 1; 2; :::; (28)

where

�c =
E ("2ct )

(E ("ct))
2 =

�(2c+ 
)�(
)

(�(c+ 
))2
; c > 0;

V
 =

 1Y
j=1

(1� c j=
)
�


!�2 1Y
j=1

(1� 2c j=
)�
;
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and G�(� ; c); � = 2; :; is

(1�c �=
)�(c+1)

 1Y
j=1

(1� c j=
)
�


!�2 ��1Y
j=1

(1�c j=
)�

1Y
i=1

(1�c( �+i+ i)=
)�
;

or, for � = 1;

G�(1; c) = (1�c 1=
)�(c+1)

 1Y
j=1

(1� c j=
)
�


!�2 1Y
i=1

(1�c( �+i+ i)=
)�
:

Proof. The autocorrelations of the powers of a stationary model are

�(� ; yct ) =
E
�
ycty

c
t��
�
� E (yct )E

�
yct��

�
E (y2ct )� E (yct )E (y

c
t�� )

:

Using (26) with m = c gives all the terms except E
�
ycty

c
t��
�
: Evaluating this

expression is not straightforward because of the dependence between e�tpt�1

and "ct�� : Following the argument in Harvey and Chakravarty (2009) gives
the result.
The autocorrelations for ln yt; which corresponds to c = 0, are easily

derived because ln yt = �tpt�1 + ln "t:

4.1.2 Forecasts

When �tpt�1 has a moving average representation, as in (25), it follows from
standard prediction theory that the optimal estimator of

�T+`pT+`�1 = ! +

`�1X
j=1

 juT+`�j +

1X
k=0

 `+kuT�k

is its conditional expectation

�T+`pT = ! +
1X
k=0

 `+kuT�k; ` = 1; 2; 3; :: (29)

Proposition 8 The optimal (MMSE) predictor of the level, assuming that
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 j < 
, j = 1; 2; :::; is

�T+`pT = ET
�
e�T+`pT+`�1

�
= e�T+`pT

`�1Y
j=1

e� j(1�  j=
)
�
; ` = 2; 3; :: (30)

The volatility of the volatility, what Engle (2002, sect 5) calls the V oV , is,
for  j < 
=2, j = 1; 2; :::;

V oV (`) = ET
�
e2�T+`pT+`�1

�
� (ET

�
e�T+`pT+`�1

�
)2; ` = 1; 2; 3; ::

= e2�T+`pT
`�1Y
j=1

e�2 j(1� 2 j=
)�
 � �2T+`pT :

The optimal (MMSE) predictor of the observation at T +`; that is ET (yT+`),
is the same as �T+`pT , since ET+`�1 ("T+`) = 1: The optimal predictor of the
variance of yT+`; ` = 2; 3; ::; is

V arT (yT+`) = (1 + 
)

�1e2�T+`pT

`�1Y
j=1

e�2 j(1� 2 j=
)�
 � (ET (yT+`))2:

Remark 5 Since e� j(1 �  j=
)
�
 > 1 for  j 6= 0; the forecast function,

�T+`pT ; will converge to a level above e
�T+`pT :

4.2 Weibull distribution

The pdf of a Weibull distribution is

f(y;�; �) =
�

�

� y
�

���1
exp (�(y=�)�) ; 0 � y <1; �; � > 0:

where � is the scale parameter and � is the shape parameter. The mean is
� = ��(1+1=�) and the variance is �2�(1+2=�)��2: Again it is convenient
to parameterize in terms of the mean so that when the scale is time-varying

f(yt) = (�=yt)wt exp (�wt) ; 0 � yt <1; � > 0;

where

wt =

�
yt�(1 + 1=�)

�tpt�1

��
; t = 1; :::; T:
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The exponential link function, �tpt�1 = exp(�tpt�1); yields the log-likelihood
function

lnL = ln � � ln yt � � ln(yt�(1 + 1=�)e
��tpt�1)� (yt�(1 + 1=�)e��tpt�1)� :

Hence the score is

@ lnLt
@�tpt�1

= �� + �(yt�(1 + 1=�)e
��tpt�1)� = �� + �wt:

A convenient choice for ut in (1) is

ut = wt � 1; t = 1; :::; T;

and since wt has a standard exponential distribution, E(ut) = 0 and �2u = 1:
The �rst-order dynamic model for �tpt�1 is of the same form as (2) and

the following result applies.

Proposition 9 For a given value of �; the ML estimators of the parameters
�; � and � are asymptotically normal with covariance matrix as in (14) with

a = �� ��

b = �2 � 2��� + 2�2�2

c = ���

and k = 1=�:
Proof.

Et�1

�
@ut

@�tpt�1

�
= ��Et�1[(yte��tpt�1�(1 + 1=�))� ] = ��Et�1(wt) = ��

while

Et�1

�
@ut

@�tpt�1

�2
= �2Et�1

�
(yte

��tpt�1�(1 + 1=�))2�
�
= �2Et�1(w

2
t ) = 2�

2

and

Et�1

�
ut

@ut
@�tpt�1

�
= ��Et�1

�
w2t � wt

�
= ��:
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In contrast to the gamma case, estimation of the shape parameter does
make a di¤erence to the asymptotic distribution since the information matrix
for � and � in the static model is not diagonal. The inverse of the information
matrix for � and �, derived in appendix E, is

I�1(�; �) =

�
1: 108 7��2 �0:257 0
�0:257 0 0:607 9�2

�
:

Expressions for the moments, ACF and forecasts are obtained as follows.

Proposition 10 Assuming that, in (25),  j < 1=m; j = 1; 2; :::;

E(ymt ) =
�(1 +m=�)

(�(1 + 1=�))m
em(!�� j)

1Y
j=1

(1�m j)
�1; m > 0:

Proof. Taking conditional expectations

Et�1(y
m
t ) =

�(1 +m=�)

(�(1 + 1=�))m
em�tpt�1 :

Since �tpt�1 depends on exponential variables its unconditional expectation
is as in (27) with 
 = 1:

Proposition 11 The ACF of yct is as in (28) with 
 = 1 and

�c =
E ("2ct )

(E ("ct))
2 =

�(1 + 2c=�)

(�(1 + c=�))2
; c > 0:

Proposition 12 The MMSE of the level and the V oV (`) are as in proposi-
tion 8 with 
 = 1: The MMSE of yT+`; ` = 2; 3; ::; is the same as the level
while

V arT (yT+`) =
�(1 + 2=�)

(�(1 + 1=�))2
e2�T+`pT

`�1Y
j=1

e�2 j(1� 2 j)�1 � (ET (yT+`))2:

5 Leverage

The standard way of incorporating leverage e¤ects into GARCH models is
by including a variable in which the squared observations are multiplied by
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an indicator taking the value one for yt < 0 and zero otherwise; see Taylor
(2005, pp. 220-1). In the Beta-t-EGARCH and Gamma-GED-EGARCH
models this additional variable is constructed by multiplying ut + 1 by the
indicator. Alternatively, the sign of the observation may be used, so the
�rst-order model, (2), becomes

�tpt�1 = � + ��t�1pt�2 + �ut�1 + ��sgn(�yt�1)(ut�1 + 1): (31)

Taking the sign of minus yt means that the parameter �
� is normally non-

negative for stock returns7. With the above parameterization �tpt�1 is driven
by a MD. The mean of �tpt�1 is as before, but

E(�2tpt�1) = �2=(1� �)2 + �2�2u=(1� �2) + ��2(�2u + 1)=(1� �2): (32)

Engle and Gallo (2006) estimate their MEM models with leverage. Such
e¤ects may be introduced into gamma and Weibull exponential models using
(31). The results on ACFs may be extended to deal with leverage in the
same way as for the Beta-t-EGARCH and Gamma-GED-EGARCH models;
see Harvey and Chakravarty (2009, sect 3.4, sect. 4)

Theorem 2 The asymptotic covariance matrix of the ML estimator of the
parameters in (31), assuming that the parameter � or � is known, is

V ar

0BBB@
e�e�e�e��
1CCCA =

k2(1� b�)

�2u

2664
A D E 0
D B� F � D�

E F � C E�

0 D� E� A�

3775
�1

(33)

where A;C;D and E are as in (14), F � is F with �c expanded to become

7Although the statistical validity of the model does not require it, the restriction � �
�� � 0 may be imposed in order to ensure that an increase in the absolute values of a
standardized observation does not lead to a decrease in volatility.
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�c+ ��c�;

A� = �2u + 1

B� =
2a�(� + �c)

(1� �)(1� a)(1� a�)
+

1 + a�

(1� a�)(1� �)

�
�2

1� �
+
�2�2u
1 + �

+
��2(�2u + 1)

1 + �

�
E� = c�=(1� a)

D� =
�c�

(1� �)(1� a)
+
a��(�2u + 1)

1� a�

with

b� = �2 � 2���2u=k + (�2 + ��2)Et�1

�
@ut

@�tpt�1

�2
;

and

c� = ��Et�1

�
ut

@ut
@�tpt�1

�
+ ��Et�1

�
@ut

@�tpt�1

�
:

Proof.

@�tpt�1
@��

= �
@�t�1pt�2
@��

+ �
@ut�1
@��

+ ��sgn(�yt�1)
@ut�1
@��

+ sgn(�yt�1)(ut�1 + 1)

= x�t�1
@�t�1pt�2
@��

+ sgn(�yt�1)(ut�1 + 1)

where

x�t = �+ (� + ��sgn(�yt))
@ut

@�tpt�1

Since yt is symmetric and ut depends only on y2t , E(sgn(�yt�1)(ut�1+1)) = 0;
and so

E(
@�tpt�1
@��

) = 0:

The derivatives in (5) are similarly modi�ed by the addition of the deriv-
atives of the leverage term, so x�t replaces xt in all cases. However

Et�1(x
�
t ) = �+ Et�1

�
(� + ��sgn(�yt))

@ut
@�tpt�1

�
= a

and the formulae for the expectations in (10) are unchanged.
The expected values of the squares and cross-products in the extended

information matrix are obtained in much the same way as in appendix A.
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Note that

x�t sgn(�yt)(ut + 1) = (�+ ((� + ��sgn(�yt))
@ut

@�tpt�1
)(sgn(�yt)(ut + 1))

= (�+ �
@ut

@�tpt�1
)(sgn(�yt)(ut + 1) + ��

@ut
@�tpt�1

(ut + 1)

so

c� = Et�1(x
�
t sgn(�yt)(ut + 1)) = ��Et�1

�
@ut

@�tpt�1
(ut + 1)

�
:

The formula for b� is similarly derived. Further details can be found in
appendix F.

Corollary 4 When � is estimated by ML in the Beta-t-EGARCH model,
the asymptotic covariance matrix of the full set of parameters is given by
proposition 2 with I(�1) as in (33). The asymptotic covariance matrices for
the Gamma-GED-EGARCH model with � estimated and the Weibull model
with � estimated are similarly obtained.

6 Daily Hang-Seng and Dow-Jones returns

First-order Beta-t-EGARCHmodels were estimated by Harvey and Chakravarty
(2009) for the daily de-meaned returns of two stock market indices, the Dow
Jones Industrial Average and the Hang Seng. The Dow-Jones data runs
from 1st October 1975 to 13th August 2009, giving T = 8548 returns. The
Hang Seng runs from 31st December 1986 to 10th September 2009, giving
T = 5630. The ML estimates and associated numerical standard errors
(SEs) reported in Harvey and Chakravarty (2009) are shown in table 1 be-
low. The asymptotic SEs are close to the numerical SEs. A Wald test on
the leverage parameter, ��; shows it to be signi�cantly di¤erent from zero for
both series. The values of a and b are also given in table 1: both are well
below the corresponding value of � (which is less than one).
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Hang Seng DOW-JONES
Parameter Estimates (num. SE) Asy. SE Estimates (num. SE) Asy. SE

� 0.006 (0.002) 0.0018 -0.005 (0.001) 0.0026
� 0.993 (0.003) 0.0017 0.989 (0.002) 0.0028
� 0.093 (0.008) 0.0073 0.060 (0.005) 0.0052
�� 0.042 (0.006) 0.0054 0.031 (0.004) 0.0038
� 5.98 (0.45) 0.355 7.64 (0.56) 0.475
a .931 .946
b .876 .898
Table 1 Estimates and standard errors for Beta-t-EGARCH models

Harvey and Chakravarty (2009) also estimate the Gamma-GED-EGARCH
model. However, the �t is not as good. In general the Beta-t-EGARCH
model seems to be a better choice.

7 Conclusions

This article has established the asymptotic distribution of maximum like-
lihood estimators for a class of exponential volatility models and provided
an analytic expression for the asymptotic covariance matrix. The models
include a modi�cation of EGARCH that retains all the advantages of the
original EGARCH while eliminating disadvantages such as the absence of
moments for a conditional t-distribution. The asymptotics carry over to
models for duration and realized volatility by simply employing an exponen-
tial link function. The uni�ed theory is attractive in its simplicity. Only the
�rst-order model has been analyzed, but this model is the one used in most
situations. Clearly there is work to be done to extend the results to more
general dynamics.
The analysis shows that stationarity of the (�rst-order) dynamic equation

is not su¢ cient for the asymptotic theory to be valid. However, it will be
su¢ cient in most situations and the other conditions are easily checked. If
a unit root is imposed on the dynamic equation the asymptotic theory can
still be established.
A key feature of the model formulation is that the dynamics are driven

by the score. The associated Lagrange multiplier portmanteau tests for the
presence of volatility similarly depend on residuals derived from the score.
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The properties of such tests are currently under investigation. The resid-
uals derived from the Beta-t-EGARCH model have the advantage of being
more robust to outliers than tests based on squares, or even absolute values,
and this property may well translate into increased power in many practical
situations.
The analytic expression obtained for the information matrix establishes

that it is positive de�nite. This is crucial in demonstrating the validity of
the asymptotic distribution of the ML estimators. In practice, numerical
derivatives may be used for computing ML estimates and at present this is
necessary for higher order models. However, the analytic information ma-
trix for the �rst-order model may be of value in enabling ML estimates to
be computed rapidly, by the method of scoring, as well as in providing ac-
curate estimates of asymptotic standard errors; see the comments made by
Fiorentini et al (1996) in the context of GARCH estimation.
When observations are from a Gamma�GED-EGARCH model, the stan-

dardized observations, yt exp(��tpt�1); have a gamma(1=2; 1=�) distribution
when their absolute values are raised to the power �: This link suggests a ra-
tionale for using the gamma distribution for certain types of non-negative ob-
servations, for example those derived from squares or absolute values. Given
the attractions of Beta-t-EGARCH and the fact that t2� = F1;� , a model for
non-negative observations in which "t in (23) is distributed as F1;� may be
worthy of consideration. In other words if a variable is similar to the square
of an observation from Beta-t-EGARCH, a conditional F1;� is appropriate.
More generally "t may be modeled as an F-distribution with (�1; �2) degrees
of freedom. The score has a beta distribution8 and theorem 1 still applies.
The theory for deriving moments, ACFs and forecasts is similar to that for
Beta-t-EGARCH. Although the argument from squaring Beta-t-EGARCH
observations suggests that the F-distribution be applied in MEM models,
the versatility of the F-distribution may make it applicable to duration data
as well; Gonzalez-Rivera et al (2010, sect 5) have recently highlighted the
failure of the usual distributions to capture all features of such data.
The fact that we have a formula for the expectation of (the absolute val-

ues of) observations raised to any positive power ( not just integers) o¤ers
the possibility of approximating the unconditional distribution of the obser-
vations; see Stuart and Ord (1987, ch 4). The conditional distribution of

8For an F (�1; �2) distribution, the score is (�1 + �2)bt=2 � �1=2; where bt has a
beta(�1=2; �2=2) distribution.
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the forecasts of volatility may be similarly approximated. The importance of
being able to make such approximations is discussed in Engle (2002, sect 5).
Investigation of this issue is a topic for future research as is the possibility of
extending the asymptotics to other models.
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APPENDIX

A Derivation of the formulae for theorem 1

The LIE is used to evaluate the outer product form of the Dt(�) matrix, as
in (4). The formula for � was derived in the main text. For �

Et�2

�
@�tpt�1
@�

�2
= Et�2

�
xt�1

@�t�1pt�2
@�

+ �t�1pt�2

�2
(34)

= b

�
@�t�1pt�2
@�

�2
+ �2t�1pt�2 + 2a

@�t�1pt�2
@�

�t�1pt�2

The unconditional expectation of the last term is found by writing (shifted
forward one period)

Et�2

�
@�tpt�1
@�

�tpt�1

�
= Et�2

�
xt�1

@�t�1pt�2
@�

+ �t�1pt�2

�
(��t�1pt�2 + � + �ut�1)

= �Et�2

�
xt�1

@�t�1pt�2
@�

�t�1pt�2

�
+ ��2t�1pt�2 + �Et�2

�
xt�1

@�t�1pt�2
@�

�
+��t�1pt�2 + �Et�2

�
ut�1xt�1

@�t�1pt�2
@�

�
+ �Et�2(ut�1�t�1pt�2)

The last term is zero. Taking unconditional expectations and substituting
for E(�tpt�1) gives

E

�
@�tpt�1
@�

�tpt�1

�
=
�E(�2tpt�1)

1� a�
+


(� + �c)

(1� a)(1� a�)
(35)
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Taking unconditional expectations in (34) and substituting from (35) gives

E

�
@�tpt�1
@�

�2
= bE

�
@�t�1pt�2
@�

�2
+E(�2tpt�1)+

2a�E(�2tpt�1)

1� a�
+

2a�(� + �c)

(1� a)(1� �)(1� a�)

which leads to B on substituting for

E
�
�2tpt�1

�
= �2=(1� �)2 + �2u�

2=(1� �2):

Now consider �

Et�2

�
@�tpt�1
@�

�2
= b

�
@�t�1pt�2

@�

�2
+ 2a

�
@�tpt�1
@�

�
+ 1:

Unconditional expectations give

E

�
@�tpt�1
@�

�2
=

1 + a

(1� a)(1� b)

As regards the cross-products

Et�2

�
@�tpt�1
@�

@�tpt�1
@�

�
= Et�2

��
xt�1

@�t�1pt�2
@�

+ ut�1

��
xt�1

@�t�1pt�2
@�

+ �t�1pt�2

��
= Et�2

�
x2t�1

@�t�1pt�2
@�

@�t�1pt�2
@�

�
+ Et�2

��
xt�1ut�1

@�t�1pt�2
@�

��
+Et�2

��
xt�1

@�t�1pt�2
@�

�t�1pt�2

��
+ Et�2 [�t�1pt�2ut�1]

= b

�
@�t�1pt�2

@�

@�t�1pt�2
@�

�
+ c

@�t�1pt�2
@�

+ a

�
@�t�1pt�2

@�
�t�1pt�2

�
+ 0

The unconditional expectation of the last (non-zero) term is found by writing
(shifted forward one period)

Et�2

�
@�tpt�1
@�

�tpt�1

�
= Et�2

��
xt�1

@�t�1pt�2
@�

+ ut�1

�
(��t�1pt�2 + � + �ut�1)

�
= a�E

�
@�t�1pt�2

@�
�t�1pt�2

�
+ ��2u
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Thus

E

�
@�tpt�1
@�

�tpt�1

�
=

��2u
1� a�

leading to D.

Et�2

�
@�tpt�1
@�

@�tpt�1
@�

�
= Et�2

��
xt�1

@�t�1pt�2
@�

+ 1

��
xt�1

@�t�1pt�2
@�

+ �t�1pt�2

��
= b

�
@�t�1pt�2

@�

@�t�1pt�2
@�

�
+ �t�1pt�2 + a

@�t�1pt�2
@�

+ a
@�t�1pt�2

@�
�t�1pt�2

For � and �; taking unconditional expectations gives

E

�
@�tpt�1
@�

@�tpt�1
@�

�
= bE

�
@�t�1pt�2

@�

@�t�1pt�2
@�

�
+
+

a


1� a
+aE

�
@�t�1pt�2

@�
�t�1pt�2

�
(36)

but we require

Et�1

�
@�tpt�1
@�

�tpt�1

�
= Et�1

��
xt�1

@�t�1pt�2
@�

+ 1

�
(� + ��t�1pt�2 + �ut�1)

�
= a�

�
@�t�1pt�2

@�
�t�1pt�2

�
+ �a

@�t�1pt�2
@�

+ � + ��t�1pt�2

+Et�1

�
xt�1ut�1

@�t�1pt�2
@�

�
+ �Et�1(ut�1)

= a�

�
@�t�1pt�2

@�
�t�1pt�2

�
+ �a

@�t�1pt�2
@�

+ � + ��t�1pt�2 + �c
@�t�1pt�2

@�
+ 0

Taking unconditional expectations in the above expression yields

E

�
@�tpt�1
@�

�tpt�1

�
= a�E

�
@�t�1pt�2

@�
�t�1pt�2

�
+

�a

1� a
+ � + �
 +

�c

1� a

= a�E

�
@�t�1pt�2

@�
�t�1pt�2

�
+
� � a�� + �c� ��c

(1� a)(1� �)

and so

E

�
@�tpt�1
@�

�tpt�1

�
=

� � a�� + �c� ��c

(1� a�)(1� a)(1� �)

and substituting in (36) gives F (divided by 1� b).
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Finally

Et�2

�
@�tpt�1
@�

@�tpt�1
@�

�
= Et�2

��
xt�1

@�t�1pt�2
@�

+ 1

��
xt�1

@�t�1pt�2
@�

+ ut�1

��
Expanding and taking unconditional expectations gives E.

B Functions of beta

When b has a Beta(1=2; �=2) distribution, the pdf is

f(b) =
1

B(1=2; �=2)
b�1=2(1� b)�=2�1;

where B(:; :) is the beta function. Hence

E(bh(1� b)k) =
1

B(1=2; �=2)

Z
bh(1� b)kb�1=2(1� b)�=2�1db

=
B(1=2 + h; �=2 + k)

B(1=2; �=2)

1

B(1=2 + h; �=2 + k)

Z
b�1=2+h(1� b)�=2�1+kdb

=
B(1=2 + h; �=2 + k)

B(1=2; �=2)

Now B(�; �) = �(�)�(�)=�(�+ �): Thus

E(b(1� b)) =
B(1=2 + 1; �=2 + 1)

B(1=2; �=2)
=
�(1=2 + 1)�(�=2 + 1)

�(1=2 + �=2 + 2)

�(1=2 + �=2)

�(1=2)�(�=2)

=
(1=2)(�=2)

(1=2 + �=2 + 1)(1=2 + �=2)
=

�

(3 + �)(� + 1)

and

E(b2(1� b)) =
B(1=2 + 2; �=2 + 1)

B(1=2; �=2)
=

3�

(� + 3)(� + 1)(� + 5)
:
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C Information matrix for GED

Di¤erentiating the log-likelihood function for the GED gives

@ lnLt
@�

=
ln 2

�2
� ��2 (1 + 1=�)� 1

2
jyt exp(��tpt�1)j� ln jyt exp(��tpt�1)j

or

@ lnLt
@�

=
ln 2

�2
� ��2 (1 + 1=�)� 1

2
jyt exp(��tpt�1)j� (ln jytj � �tpt�1):

Hence

@2 lnLt
@�2

=
�2 ln 2
�3

� g(�)� 1
2
jyt exp(��tpt�1)j� (ln jyt exp(��tpt�1)j)2

and

@2 lnLt
@�@�tpt�1

= (1=2) jyt exp(��tpt�1)j� (1 + ln(jyt exp(��tpt�1)j)�)

Taking expectations, and recalling that & t = jyt exp(��tpt�1)j� is gamma
distributed, gives

E

�
@2 lnLt
@�2

�
=

�2 ln 2
�3

� g(�)� 1
2
E(& t(ln & t)

2)

=
�2 ln 2
�3

� g(�)� �(2=�)(( (2=�))
2 �  �(2=�))

2�2�(1=�)

and

E

�
@2 lnLt
@�@�tpt�1

�
= (1=2)(E(& t)+E(& t ln & t)) = ��1+��10:5�(2=�) (2=�)=�(1=�)):

D Gamma distribution

The pdf of a gamma(�; 
) variable is

f(y) = �
y
�1e��y=�(
); 0 � y <1; �; 
 > 0; (37)

and the raw moments are given by E(yc) = ��c�(c+ 
)=�(
); c > 0:
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E Weibull information matrix
@2 lnLt
@�tpt�1@�

= �1+(yte��tpt�1�(1+1=�))���(yte��tpt�1�(1+1=�))� ln(yte��tpt�1)

and so

E

�
@2 lnLt
@�tpt�1@�

�
= �E

�
(yte

��tpt�1�(1 + 1=�))� ln(yte
��tpt�1)�

�
= �0:422 8;

since, if x has a standard exponential distribution,
R1
0
x lnx exp(�x)dx =

1� 
; where 
 is Euler�s constant. Furthermore

@2 lnLt
@�2

= ���2 + ��2(ln(yte
��tpt�1�(1 + 1=�))�)2(yte

��tpt�1�(1 + 1=�))�

giving

E

�
@2 lnLt
@�2

�
= ���2 � ��2(
2 � 2
 + �2=6) = �1:823 7=�2:

F Proof of theorem 2

To derive B�; �rst observe that the conditional expectation of the last term
in expression (34), that is Et�2 (�tpt�1:@�tpt�1=@�) ; is now

Et�2

�
x�t�1

@�t�1pt�2
@�

+ �t�1pt�2

�
(��t�1pt�2 + � + �ut�1 + ��sgn(�yt�1)(ut�1 + 1))

= �Et�2

�
x�t�1

@�t�1pt�2
@�

�t�1pt�2

�
+ ��2t�1pt�2 + �Et�2

�
x�t�1

@�t�1pt�2
@�

�
+��t�1pt�2 + �Et�2

�
ut�1x

�
t�1

@�t�1pt�2
@�

�
+ �Et�2(ut�1�t�1pt�2)

+��Et�2

�
x�t�1

@�t�1pt�2
@�

sgn(�yt�1)(ut�1 + 1)
�
+ ��Et�2(sgn(�yt�1)(ut�1 + 1)�t�1pt�2)

The last term is zero, but the penultimate term is not. Taking unconditional
expectations, and substituting for E(�t�1pt�2); which is unchanged, gives

E

�
@�tpt�1
@�

�tpt�1

�
=
�E(�2tpt�1)

1� a�
+

(� + �c+ ��c�)

(1� a)(1� a�)
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Substituting in (34) and noting that E(�2tpt�1) is now given by (32) gives B
�:
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