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Autocorrelation-Robust Inference* 

P. M. Robinson and C. Ve/asco 

1. Introduction 

11 

Time series data occur commonly in the natural and engineering sciences, eco­
nomics and many other fields of enquiry. A typical feature of such data is their 
apparent dependence across time, for example sometimes records close together 
in time are strongly correlated. Accounting for serial dependence can con­
siderably complicate statistical inference. The attempt to model the dependence 
parametrically, or even nonparametrically, can be difficult and computationally 
expensive. 

In sorne circumstances, the serial dependence is merely a nuisance feature, 
interest focusing on "static" aspects such as a location parameter, or a probability 
density function. Here, we can frequently base inference on point or function 
estimates that are natural ones to use in case of independence, and may well be 
optimal in that case. Such estimates will often be less efficient, at least asymp­
totically, than ones based on a comprehensive model that incorporates the serial 
dependence. But apart from their relative computational simplicity, they often 
remain consistent even in the presence of certain forms of dependence, and can be 
more reliable than the "efficient" ones, which can sometimes become inconsistent 
when the dependence is inappropriately dealt with, leading to statistical inferences 
that are invalid, even asymptotically. In this sense the estimates can be more 
"robust" than "efficient" ones, and the main focus in this paper is their use in 
statistical inference, though we also discuss attempts at more efficient inference. 

The stress in this paper is on large sample inference, due to the relative in­
tractability of finite-sample properties in all but a few situations. First order 
asymptotic theory is relatively simple to use, and also often relies on milder 
assumptions than finite-sample, or even higher order, asymptotic theory, and can 
thus be more widely applied, at least given data sets of reasonable size. Even a 
comprehensive discussion of first order asymptotics is impossible, however, 
because the form of the asymptotic distribution can depend on the nature of 
the dependence structure, which can vary immensely, across many forms of 
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stationarity and a vast range of nonstationary processes. We mainly stress 
inferences based on asymptotically normal statistics. Here, a very important 
role is played by stationarity or asymptotic stationarity, and indeed on further 
restrictions on the dependence of a (possibly unobservable) process associated 
with the data and the statistical model. 

Valid inference based on an asymptotically normal statistic requires only a 
consistent estimate of the variance matrix in the limiting distribution. Then the 
statistic can be studentized, consistent confidence regions set, and asymptotically 
valid hypothesis tests carried out, where one-sided tests are possible in single­
parameter cases but two-sided ones based on the X~ distribution would be used in 
p-parameter cases with p > 1. Usually the variance is affected by the dependence, 
and requires a different, and more complicated, type of estimate than that under 
independence. This can be based on a parametric model for the autocorrelations. 
However nonparametric types of estimate are more popular, being consistent 
under broader conditions. 

The next section discusses inference on the mean of a covariance stationary 
series, based on the sample mean. The methods used to robustify many of the 
more complicated statistics discussed subsequently, and especially methods used 
recently in econometrics, can be seen as extensions of those proposed much 
earlier for the mean by such authors as Jowett (1955), Hannan (1957) and 
Brillinger (1~79). The limiting variance is proportional to the spectral density at 
frequency zero of the process, and so we briefiy describe sorne methods of 
spectrum estimation. Section 3 considers inference on slope parameters in linear 
regression, using least squares. While the methods of Section 2 can be used here, 
an alternative approach due to Eicker (1967) is described. Section 4 discusses 
extensions to M-estimates of location and regression models, and other robust 
estimates. Section 5 considers nonlinear and more general econometric models. 
In each case, nonparametric spectrum estimation is involved in one way or an­
other, and Section 6 discusses the important problem of selecting bandwidth 
numbers. Section 7 departs from the first-order asymptotics stressed previously to 
consider higher order theory, and the bootstrap. In each of Sections 2-7, the type 
of dependence assumed is weak, or short-term, and the methods of inference 
considered differ from those under independence. The final two sections each 
depart from one of these features. Section 8 concerns long range dependence, 
while Section 9 concerns inference on smoothed probability density and regres­
sion estimates. 

2. Inference based on the sample mean 

Let {Xí, t = 1,2, ... } be a covariance stationary sequence of random variables with 
mean and lag-j autocovariance given by 

J1 = E(X¡), Yj = E(X¡ - J1)(X¡+j - J1) , (2.1 ) 

and spectrum f(Je) given by 
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rr 

Yj = J f(A)cosjAdA (2.2) 

To estimate /1 given observations XI, ... ,XN , consider the sample mean 

(2.3) 

which is the ordinary least squares estimate (OLSE) of /1. 
In case the x¡ are also uncorrelated, that is, 

(2.4) 

X is the best linear unbiased estimate (BLUE), and if in addition X t is Gaussian it 
is the maximum likelihood estimate (MLE), having minimum variance, Yo/N, 
within the class of all regular estimates. Yo can be estimated unbiasedly by 
Neo/(N - 1) where for future use we define the sequence 

1 ~ . 
ej = - ¿ (x¡ - X) (X¡+j - X), ° ::; } < N . 

N I<t t+"<N _, J_ 

(2.5) 

Then t = (N - 1)1/2(X - /1)/e6/2 has the tN-I distribution. If the Xt are not 
Gaussian, but independent and identically distributed, then t -+d N(O, 1), as 
N -+ oo. 

When (2.4) is not true, X is no longer a BLUE or MLE. However, it is still 
unbiased, and Grenander (1954) showed that if: 

feA) is continuous and positive at A = ° , (2.6) 

X is asymptotically efficient within the class of linear unbiased estimates, so no 
differential weighting need be considered. However, t is no longer asymptotically 
N(O, 1), indeed 

(2.7) 

and the second component is only zero for all N under (2.4). We have nevertheless 
the central limit theorem (CLT) 

X - /1 
---::-1=/2 -+d N(O, 1) 
V(X) 

(2.8) 

under various conditions permitting dependence in Xt, such as (see Ibragimov and 
Linnik, 1971, Hannan, 1979): 

Condition A x¡ is stationary, and for sorne c5 > 0, EIXII2+b < 00 and Xt is 
a-mixing with El=1 a]l(2+b) < 00, where aj is the /h a-mixing number of Xt, or: 
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Condition B Xt = 11 + 2:;-00 f3/it-i' where the B; are uniformly integrable, 
E(BtIFr-I) = E(B; - EB;IFr-I) = O a.s., where Fr IS the a-field generated by 
{Bt,Bt-l, ... }, and 2:;-00 lf3i l < oo. 

Both conditions imply that the "Ii decay fast enough to be absolutely summable, 
and that f(Je) is continuous for all Je, and so can be referred to as 'weak depen­
dence' conditions. Thus we also have from Fejér's theorem (Zygmund, 1977, p.89) 

NV(X) ---+ 2nf(0), as N ---+ 00 , (2.9) 

indeed this follows also from (2.6), which also implies that the right side is po­
sitive. We deduce that X is N 1/ 2-consistent and 

N 1
/
2(X - 11) ---+d N(0,2nf(0)), as N ---+ 00 (2.10) 

To do large-sample inference it remains to find an estimate ](0) of f(O) such that 

for then 

](0) ---+p f(O), as N ---+ 00 , 

N 1/ 2(X - 11) 

{2n](0)} 1/2 

(2.11 ) 

(2.12) 

can be approximated by a N(O, 1) variate. Given a parametric model for "Ii' 
equivalently for f(Je), for example a stationary autoregression (AR), invertible 
moving average (MA), or stationary and invertible autoregressive moving average 
(ARMA), we can estimate the unknown parameters, insert them in the formula 
for f(O), and obtain an N 1/ 2-consistent estimate. However, (2.11) requires no rate 
of convergence, and there has been greater stress on using nonparametric spec­
trum estimates which are consistent in the absence of assumptions on functional 
form, though as even the early papers on studentizing the sample mean of a time 
series by Jowett (1955), Hannan (1957) illustrate, the same estimates of ](0) can 
be interpreted as either parametric or nonparametric. These authors both chose 
quadratic functions of X; for ](0), mirroring estimates stressed in the early 
nonparametric spectrum estimation literature. These are still widely used today 
and are described as follows. 

Introduce the mean-corrected periodogram 

(2.13) 

and, a real, even, bounded and integrable function K(Je), satisfying 

00 J K(Je)dJe = 1 . (2.14) 

-00 
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Define 

00 

KM(A) = M L K(M(A + 2nj)) , (2.15) 
j=-oo 

where M is called a "lag number", or "bandwidth" number. Weighted auto­
covariance estimates of f(A) are given as 

where 

n 

]c(A) = J KM(A - 8)/(8) d8 
-n 

1 N-I [.] = - Lk L CjCOSjA , 
2n

l
_

N 
M 

00 

k(x) = J K(A)eiXA dA 
-00 

(2.16) 

(2.17) 

For the same K and M, ]c(A) is typically closely approximated by the averaged 
periodogram form 

(2.18) 

where Aj = 2nj/N, and because these /(Aj) are invariant to location shift in Xt no 
mean correction of Xt is necessary in (2.18). 
One set of sufficient conditions for (2.11) with ](0) given by (2.16) and (2.18) is as 
follows (see e.g. Hannan, 1970, Chapter 5): X t is fourth-order stationary with 

00 

Ljlrjl < 00, 

j=O 

00 

LLL Icum(XI,Xl+h,XI+i,XI+j)1 < 00 , (2.19) 
h,i,}=-oo 

k(x) is continuous, limx-+o Ik(x) - Il/lxl---t O, and l/M + M/N ---t O as N ---t oo. 
The choice of M and K has been extensively discussed, mainly from the 

standpoint of bias and variability. For given K, variances tend to increase with M. 
On the other hand, a small M can lead to KM(A) not being heavily concentrated 
around the origin, and bias from the influence of frequencies near zero, most 
likely negative bias if there is a spectral peak there. For given M, a similar 
dilemma is faced in the choice of K. Frequencies distant from zero can also cause 
bias. Many K produce side-Iobes in KM, so coincidence of a si de-lo be with a large 
spectral peak in f(A) can give an inflated estimate of f(O). The precise relevance 
of moment behaviour of ](0) to (2.12) is unclear, but obviously too large an ] 
will produce an overly narrow interval estimate for X, and vice versa. On com­
putational grounds k having compact support in ]c(O), k(x) = O, Ixl > 1, is de­
sirable beca use then only about M Cj need be computed, whereas the 
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(contradictory) practice of choosing K to have compact support in lp(O), so 
K(A) = O, IAI > n, is de si rabie because then only about N 12M of the I(Aj) need be 
computed. On the other hand, all N - 1 Cj and N 12 I(Aj) can be rapidly com­
puted via the fast Fourier transform, so these considerations are of minor im­
portance. The desirable requirement of non-negativity of a variance estimate is 
implied if 

K(A) ~ O, all A . (2.20) 

The estimates of NV(X) proposed by Jowett (1955) and Hannan (1957) ap­
proximate the so-called truncated version of le(O), where 

k(x) = 1, Ixl < 1· = O -, , Ixl > 1, (2.21 ) 

but the corresponding K does not satisfy (2.20) and has relatively large side-lobes. 
Jowett derived his estimate without reference to spectrum estimation, and his 
discussion of asymptotic theory is essentially appropriate to the parametric finite 
MA case, with M remaining fixed as N increases. Hannan pointed out the con­
nection with spectrum estimation, and also indicated that the more general c1ass 
le(O) could be used. In particular, K due to Parzen and Bartlett are still com­
monly used, satisfying (2.20), and have more acceptable side-lobes than those 
inherent in (2.21). For example, the modified Bartlett k is given by 

k(x) = 1 -Ixl, Ixl < 1,= O -, , Ixl > 1. (2.22) 

Hannan al so referred to the desirability of 1(0) being almost uninfluenced by /1, 
but noted that this conflicts with the need to reduce the bias due to smoothing. 

Elaborations on le and lp, involving such techniques as tapering and pre­
whitening, have been proposed in the spectrum estimation literature. Tapering 
(Tukey, 1967) multiplies X; by a sequence which decays smoothly to zero at t = 1 
and t = N in order to reduce the effect of contamination of I(A) from other 
frequencies. Prewhitening (Press and Tukey, 1956) entails fitting a preliminary 
AR to Xt, forming le or lp from the residuals, and then multiplying by the AR 
transfer function. This recognizes that a quadratic spectrum estimate may not be 
very good at fitting a sharp peak, such as indeed appears at zero frequency in 
many empirical series. In fact pure AR spectrum estimation, without the kernel 
smoothing involved in le or lp, became popular, see Burg (1975), Parzen (1969); 
here the AR order replaces M as the bandwidth and is regarded as increasing 
slowly to infinity with N in the asymptotics. Mixed ARMA models have also been 
used. Other spectrum estimates with similar 'high-resolution' potential have been 
proposed, see e.g. Pisarenko (1972). These and other ideas are discussed further 
by Robinson (1983a) in the Handbook of Statistics volume on Time Series in the 
Frequency Domain. 

Brillinger (1975, 1979) developed the approach of Jowett (1955) and Hannan 
(1957) to an important c1ass ofmultivariate problems. LetXt temporarily be vector­
valued with mean vector /1 and autocovariance matrix rj = E(X¡ -/1)(X¡+j -/1)' 
and spectral density matrix f(A) given by r j = J~" f(A)eijA dA. Brillinger (1975) 
gave a CLT and covariance matrix estimate for the di serete Fourier transform 
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(2nN)-172 L~l Xteid , which reduces to one for the sample mean at A = O. Bril­
linger (1979) noted that apart from the mean correction the elements of the 
sample autocovariance matrix N- l Llg,l+j:SN(Xt -X)(Xt+j -X)', are essentially 
sample means themselves, so that the preceding methods of inference extend 
readily to these quadratic statistics, while the delta method can then be applied to 
determine inference rules for such statistics as sample autocorrelations. The ap­
proach deve10ped collective1y by Jowett, Hannan and Brillinger will be seen to 
extend readily to other situations described in the paper such as ones considered 
in econometrics, and we shall refer to it as the JHB approach. 

Brillinger (1973) discussed the problem of inference on f1 in case it is the mean 
of a continuous time process, which is either observed continuously or at possibly 
unequally-spaced times that are either finite or random. He suggested splitting the 
observation interval (O, N) into m disjoint subseries of lengths e = N 1m, showed 
that for fixed m the sample means of each stretch are asymptotically independent 
and identically distributed as N ----* 00, and then used the sample variance of the m 
sub-series means to estimate the variance of the overall sample mean. This gives a 
studentized statistic that is asymptotically tm-l, as N ----* oo. Of course for this 
approach to be useful it must be possible to choose m fairly large, at the same time 
as e is large. Thus, Carlstein (1986) (in the context of a more general class of 
statistics than X) deve10ped Brillinger's approach by allowing m, as well as e, to 
increase with N, in discrete time series. He showed that Brillinger's estima te can 
then be consistent for 2nf(0), and discussed the choice of e and m when XI is a 
first-order AR. The estimates considered by Brillinger and Carlstein are, like Jc(O) 
and Jp(O), quadratic functions of the data, and so the asymptotic theory of all 
these estimates can undoubtedly be treated in a unified way. Indeed Künsch 
(1989) considered ajackknifed estimate of NV(X) based on overlapping sub series, 
and showed it to be a special case of 2nJc(0). 

In a somewhat similar vein, Politis and Romano (1995), Bertail et al. (1995) 
have developed a procedure ofWu (1990), proposed for iid data and státistics that 
are asymptotically normal, to data that can be dependent and statistics TN , say, 
that can have an arbitrary limit distribution. Politis and Romano propose to 
construct blocks of size e with a given (possibly zero) degree of overlap, and to 
construct the statistic of interest (say the sample mean) from each. Then the 
empirical distribution across blocks of the latter, centred at TN and suitably 
normalised, converges, at continuity points, to the distribution function of TN 

centred at its probability limit and suitably normalised, in case of stationary rI.­

mixing observations. Clearly this approach to constructing asymptotically valid 
confidence intervals has extremely wide applicability. 

The problem of inference on the mean of a stationary time series has al so been 
discussed in the operations research literature. Many estimates of V(X) con­
sidered there are also quadratic forms but tend to have been motivated by con­
siderations other than asymptotic theory. For a recent review see Song and 
Schmeiser (1993). 
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3. Inference on linear regression 

The simple location model of the previous section extends to the multiple re­
gression 

Jí={3'Zt+Xt, t=I,2, ... , (3.1 ) 

where X; is, as before, covariance stationary, but it now has zero mean and is 
unobservable, the scalar Jí and q-dimensional column vector Zt being observed. 
Throughout the present section we presume for convenience that the spectrum 
f(A) of X; satisfies at least the condition: 

f(A) is continuous and positive for aIl A E (-n, n] 

Again the properties under (2.4) of the OLSE 

p ~ ¡tz,z;ftz,y, 
(3.2) 

(3.3) 

of the vector {3 partiaIly extend to dependent situations. In particular, Grenander 
(1954) gave conditions under which íJ is asymptoticaIly as efficient as the BLUE of 
{3, in case of nonstochastic Zt. These conditions are satisfied under (3.2) if, for 
example, Zt is a vector of polynomials or trigonometric functions in t. Even when 
these conditions are not satisfied íJ is often consistent and asymptoticaIly normal, 
whereas a generalized least squares estimate (GLSE) of {3, obtained under a 
misspecified parametric model for f(A), might be inconsistent. However, whether 
or not it is asymptoticaIly efficient, the asymptotic variance of íJ is not the same as 
it would be under (2.4). 

Consider two general specifications for Zt, taking Zjt to be Z/s /h element and 
_ ( N 2) 1/2 

Dj - 2:t=1 Zjt . 

Conditíon C Zt is nonstochastic and, as N ---> 00, 

Di ---> 00, i = 1, ... ,q , (3.4) 

l· IZitl ° 1 1m max - ---> , i = , ... , q , 
Ig:S;N Di 

(3.5) 

N-1jIZ Z 
'""' ht i,t+j h· 1 . ° ±1 ~ ---> Phij' ,1 = , ... ,q, ] =, , .... 
t=1 DhDi 

(3.6) 

Condition D Zt is strictly and covariance stationary and ergodic and independent 
of Xu for aIl t,u, and we put Phij = E(ZhtZi,t+j)j{E(Zlt)E(Zlrn1/2. 

In either case we assume that Rj = (Phij)qxq is positive definite for j = 0, and we 
have 
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n 

Rj = J eijAdF()..) , j = O, ±I, ... , (3.7) 
-n 

for some F with Hermitian nonnegative definite increments, which is uniquely 
defined by the requirement that it be continuous from the right and F( -n) = O. 
Then under similar conditions on X¡ to those described in Conditions A or E, 

D(íJ - fJ) ----+d N(O,RüISRÜI), as N ----+ 00 , 

where D = diag{DI, ... ,Dq } and 

n 

S = 2n J f()..) dF()") . 

-n 

(3.8) 

(3.9) 

Because Ro is consistently estimated by D- I L~I Z¡Z;D- I , it remains to estímate 
S. Equivalently, we have the approximation 

(3.10) 

where V(.) now refers to the covariance matrix of its argument, and comparison 
with (3.8) indicates that 

V [tz¡.Kt 1 rv D 1
/
2SD I

/
2 = T as N ----+ 00 

Thus we require an estímate T such that 

D- I / 2(T - T)D- I / 2 ----+p O . 

Eicker (1967) proposed (see his equation (4.124)) 

M-I e A 

A 2" jej TI=N ~--
j=I_M N -111 ' 

where 

(3.11 ) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

and M is analogous to the M of Section 2, increasing slowly with N in the 
asymptotics. He indicated that (3.12) holds for T = TI under reasonable con di­
tions. TI is suggested by applying Parseval's equality, 
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00 

S = I: R}y} , (3.16) 
}=-oo 

and then inserting sample estimates and truncating the sumo However TI has the 
disadvantage of not necessarily being positive semi-definite (psd). It is possible to 
obtain a guaranteed psd T by introducing suitable weights in (3.13), to corre­
spond to weights guaranteeing a non-negative estimate of f(O), see Section 2. 
This is best seen in the frequency-domain version 

N 

T2 = (2nf ¿lz(Aj)j(A}) , (3.17) 
}=I 

considered by Hannan and Robinson (1973), Robinson (1976), where 
lz(A) = (~nN(1 (~;=I ZteitA) (2:!I z;e-iO

} and ~(A) is a smoothed estimate of 

f(A). If f = fe or f p ' with K satisfying (2.20), then T2 is psd. Unlike Eicker (1967) 
and Hannan (1979), who stressed Condition e, Hannan and Robinson (1973), 
Robinson (1976) imposed Condition D, but (3.17) is equally appropriate in either 
case. In the asymptotic theory of these authors, and of Eicker (1967), the band­
width M in (3.13) and in j(A}) in (3.17), is treated as nonstochastic with 
M a IN + N 1Mb 

--7 O for suitable a, b such that 1 S; a < b. In practice, and as de­
scribed in Section 6, M may well depend on the same data {Jí,Zt, t = 1, ... ,N}, 
and this was permitted by Robinson (l991a), who showed that 
(eo1T2eoI )-1/2(íJ - 13) has the same limiting multivariate standard normal dis­
tribution under a condition on the stochastic M of the type M a IN + N 1Mb 

--7 P O 
as it do es under M a IN + N 1Mb --7 O for deterministic M. 

The OLSE is a special case (with </1(A) == 1) of 

(3.18) 

where lzy(A) = (2nN)-I (2:!I Ztéf}·) (2:!IJíe- itA ) and </1(A) IS a real, non­
negative function. For general </1, 

N [o, {! ~('!ldF('!lf2.1 !(W'(,!ldF(,!l{!4>(,!ldF(,!lfl ' 
(3.19) 

under Conditions A or B, Conditions C or D, and other conditions (e.g. Hannan, 
1973), and also 
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[ { ~ t. ~(-\j )lx(.IJ) } -1 ~ t. J( -\J )~2(-\J )lz(-\J) { ~ t. ~(-\¡)lz(-\j) } -lj- 1/2 

(/J(cjJ) - f3) 

(3.20) 

is approximately multivariate standard normally distributed, where again j is a 
smoothed nonparametric estimate. 

The user-chosen function cjJ can achieve two distinct goals. One is to reduce 
bias due to misspecification of (3.1) from errors in the observation of regressors. 
In particular the actual model may be Jí = f3'Z; + Xt where Zt = Z; + Ut is ob­
served, and the signal-to-noise ratio may vary across frequency in a manner that 
can be approximately predicted. For example the spectral mass of Zt* might be 
assumed to be relatively large at low frequencies, and so if Ut is assumed to be 
white noise the signal-to-noise ratio may be expected to be relatively high at low 
frequencies, but possibly low at higher frequencies. On the other hand if seasonal 
noise Ut is anticipated the signal-to-noise ratio is likely to be low in the neigh­
bourhood of the seasonal frequencies. In either case we take cjJ(A) = O where 
signal-to-noise ratio is feared to be low, thereby approximately achieving another 
form of 'robustness'. This idea of omission of frequencies was proposed by 
Hannan (1963a), and justified theoretically by Hannan and Ro binson (1973), 
Robinson (1972). It was developed in an econometric context, and named 'band 
spectrum regression', by Engle (1974). Notice that there will nevertheless be 
'leakage' from the omitted frequencies, and Robinson (1986) showed that this can 
be reduced by tapering the data. 

Irrespective of whether or not we eliminate frequencies, there remains the 
choice of cjJ at remaining frequencies. Hannan (1963b) showed, for a modification 
of (3.18), that the data-dependent choice cjJ(A) = j-I(A), with j again re­
presenting a nonparametric spectrum estimate, achieves the same asymptotic 
efficiency as the GLSE using a parametric model for f(A), and 

(3.21 ) 

is asymptotically multivariate standard normal. Robinson (1991a) showed that 
this remains true in case of a general data dependent bandwidth M in j, and 
allowed also for omission of frequencies. Samarov (1987) investigated if adapting 
unknown correlation is necessary when there is only a small unspecified auto­
correlation. He described in terms of the relation between regressors and dis­
turbances the loss of efficiency of the OLSE when the disturbances depart from a 
central model (usually white noise) with additive, autocorrelated contamination. 
He found that the loss of efficiency is higher when the spectrum dF(A) of the 
regressors Zt exhibits large peaks. In a minimax context, he obtained the function 
cjJ in (3.18) that minimizes the mean squared error of the regression estimates at 
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the central model subject to an upper bound on the loss of efficiency of the OLSE. 
That function follows 1-1 when dF is small, but it is proportional to dF- I at the 
frequencies where the spectrum of the regressors shows high peaks, down­
weighting their contribution to the variance in (3.19). 

Because of the ease with which they extend to more general problems, we shall 
refer to the use of convolution-type estimates such as (3.13) or (3.17) as the E 
approach, following Eicker's original suggestion. However, the JHB approach 
also applies to (3.1), because under Condition D we can estimate T by 

(3.22) 

where Ju(A) is an estimate of the spectral density matrix of Ut = Zt Xt, computed 
with Xi replaced by Xt by methods analogous to those of Section 2. This approach 
has been stressed in the econometric literature and it has the advantage over TI 
and 1'2 of not requiring independence, at least up to fourth moments, between Zt 
and Xt, but only that Xt and Zt are uncorrelated. On the other hand, it makes less 
use of the structure of the model if such independence is reasonable, when it might 
be expected to possess inferior finite-sample properties. 

A different line of investigation was pursued by authors such as Bickel and 
Herzberg (1979), namely robustness of experimental design with respect to au­
tocorrelated errors. They considered a linear model similar to (3.1), but with 
observations on Y and Z recorded at possibly unequally spaced points of time, 
where the choice of time points is the design problem. They developed an 
asymptotic theory under which equal-spacing retains its known optimality under 
independence of Xt, in a strong sen se for location-estimation and in a weaker 
sen se for slope estimation. Their approach is one of trying to minimize the var­
iance of least squares in case of dependence, subject to a minimum of efficiency in 
case of independence. 

4. Inference based on robust estima tes 

The essentially linear estimates of location and regression models of the preceding 
sections are generally not fully efficient asymptotically when X t is non-Gaussian, 
and also can be distorted in finite samples by a few 'outliers', seemingly con­
taminated observations that are of much greater magnitude than are the bulk of 
the data. Both criticisms can be to sorne extent overcome by estimates that seem 
appropriate to heavy-tailed distributions. 

One important class, which generalizes the OLSE, are M-estimates. In the 
location problem let p, satisfy 

(4.1 ) 

for a random variable X and a suitable odd function tf¡. Thus p, = EX in case 
tf¡(x) = x, and p, = median (X) in case tf¡(x) = sign(x). Given identically di s­
tributed observations XI, ... , XN define íl by 
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N 

¿I/I(XI - ¡1) = O (4.2) 
1=1 

Huber (e.g. 1964, 1972) discussed such estimates in case of independent Aí, for 
example establishing that 

(4.3) 

where 1/1' is the derivative of 1/1. An optimal 1/1 is given by the score function 
-q/(x)fcP(x), where <p now represents the probability density function of XI and 
<p' is its derivative, so íl is the MLE of 11.. One can form adaptive estimates in 
which this 1/1 is replaced by a smoothed nonparametric estimate of the score 
function, see Stone (1975). On the other hand, Huber and others have suggested 
alternative 1/1 which are optimal in another sense or work well in terms of reducing 
the effects of outliers. 

Now supposeAí are serially dependent, and I/I(Aí - /1) is covariance stationary, 
as when XI is strictly stationary and EI/I2(XI - /1) < oo. Then again from Gre­
nander (1954), if we impose (2.4) with j now representing the spectrum of 
I/I(Aí - /1), we cannot improve on íl by a weighted estimate so far as asymptotic 
efficiency, for given 1/1, is concerned. Under conditions analogous to Conditions A 
or B, 

(4.4) 

and we can consistentIy estimate the asymptotic variance using the JHB ap­
proach, by 

2nj(0)/{~ tl/l'(Aí - íl)}2 , (4.5) 
N 1=1 

where j is as in Section 2, but based on the I/I(Aí - ¡1) instead of the XI - X. 
Parametric linear modelling of the autocorrelation of Aí (e.g. by an AR) does not 
in generallead to a simple models for the autocorrelation of I/I(Aí - /1), or thus to 
a manageable parametric j, while on the other hand a linear model for the 
nonlinear transformation I/I(Aí - /1) might seem contrived, so that nonparametric 
methods of estimating j seem especially natural here; this remark al so has im­
plications for the suitability of Condition B in the asymptotics. 

M-estimates of a location parameter have been extended to incorporate a data­
dependent scale factor, and to regression models, and analogous methods of 
inference to allow for serial dependence can be constructed, where the E method 
is an option in the regression case. M-estimates have also been applied to dynamíc 
time series models, in case of supposed contamination of innovations or ob­
servations, see e.g. Beran (1976), Bustos (1981), Martin and Yohai (1986). Use of 
a 1/1 that would be optimal in case of independence, need not necessarily lead to 
optimality in the presence of dependence. This issue was explored by Portnoy 
(1977, 1978) and Zamar (1990), developing methods of Huber (1964). In case of 
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independence Huber had chosen t/J by a minimax approach, mmlmlzmg the 
asymptotic variance under the worst possible distribution. Such t/J is at least 
bounded. Portnoy studied the location problem in a specialized form of MA, 
deriving estimates which are approximately optimal in Huber's sense, and sug­
gesting the use of piecewise linear t/J with a small amount of redescent. Portnoy 
derived expressions for the asymptotic variance and showed that no M-estimate 
can be optimal to the second order without explicitly adapting itself to the de­
pendence. Zamar also employed a minimax approach in the location problem, 
with known scale. Defining a neighbourhood of contamination for outliers and a 
measure of serial dependence, he obtained a t/J depending on a given upper bound 
for the dependency, and as this increases the optimal t/J(x) tends to sign(x), the 
sample median score function. 

In addition to M-estimates, other approaches to inference have been suggested 
that may be relatively insensitive to outliers. For location and regression models 
these were developed with independent observations in mind, but we mention 
examples in which their properties under dependence have also been studied. 
Gastwirth, Rubin and Wolff (1967) showed that the sign test is no longer di s­
tribution-free. Serfling (1969) considered the Wilcoxon two-sample statistic for 
testing equality of two nonparametric distributions, showing that in case of rx­
mixing processes (cf Condition A) it is asymptotically normal and consistently 
estimating the limiting variance by the JHB approach. Gastwirth and Rubin 
(1971) looked at the effect of dependence on the levels ofthe {-test, the one-sample 
Wilcoxon test and the sign test in case of Gaussian processes and AR's with 
double-exponential marginals. Gastwirth and Rubin (1975) established, under rx­
mixing, asymptotic normality of linear functions of order statistics which inelude 
the median and trimmed mean, as well as the Hodges-Lehmann estimate, and 
studied relative efficiency in special cases. Koul (1977) gave CL T's for several 
robust estimates of the slope coefficient in a simple linear regression under rx­
mixing. In some of the situations studied by the aboye authors consistent esti­
mation of the limiting variance, under nonparametric dependence, has not been 
explicitly studied. 

5. Inference in econometric models 

Due to the occurrence of macroeconomic and financial time series data, many 
econometric methods are devised with possible serial dependence in mind. In fact 
relatively early econometric work stressed the efficiency gains due to the GLSE in 
regression models in the presence of autocorrelated errors, see e.g. Cochrane and 
Orcutt (1949). This interesthas continued, and more recently it has been fash­
ionable to employ point estimates which may well be inefficient, but studentize 
them to allow for serial dependence. A feature of much econometric work is the 
relative complexity of modelling, often involving nonlinearity and multivariate 
data, for example. Some similar models have been used in non-economic appli­
cations but we have chosen to categorize as "econometric models" ones which are 
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more complicated than the simple location and linear regression modds treated" so 
faro The purpose of the present section is to discuss sorne issues that arise when we 
move to a more complex set-up. 

Many important problems are covered by the model 

(5.1 ) 

where now Y; and Xt are p x 1 vectors and Gt(e) is a p x 1 vector of possibly 
nonlinear functions of an unknown s x 1 vector e, and of observable stochastic or 
nonstochastic explanatory variables to which explicit reference is suppressed. 
Again Xi is unobservable. Sometimes Gt(e) is linear in observables, 

00 

Gt(e) = l1(e) + L Aj(e)Zt_j , (5.2) 
j=-oo 

where the Zt are the q x 1 explanatory variables, the Aj(e) are p x q matrix 
functions of e, and l1(e) is a vector. The static linear simultaneous equations 
model of econometrics then arises when Aj(e) == 0, j'¡' 0, Aj(e) = r-IB, where B 
and r are matrices that are possibly, but not necessarily, linear in e. "Distributed 
lag modds" are al so included, and are of interest even in the scalar case p = 1, 
when, for examp1e, Aj(e) = 0, j < O; = el~ for j 2: ° and scalar parameters el, e2 

with le2 1 < 1. AIso included in (5.1) are possibly static scalar or multivariate 
nonlinear regression models such as when 

(5.3) 

for a given function G. 
Suppose first that the processes {Gt ( e)} and {Xt } are independent of each other 

and stationary. A minimum-distance or Gaussian estimate of e is given by 

N 
A '" 1/2 2 e = argmin ~ 11 <P(Aj) {WY(Aj) - WG(Aj; h)}11 , 

hE8 j=1 
(5.4) 

where 11.11 mean s Euclidean norm, <P(A) is a p x p psd Hermitian matrix, and 

1 N 1 N 

WY(A) = 1/2 L Y;eitA
, WG(A; h) = 1/2 L Gt(h)eitA 

, 
(2nN) t=1 (2nN) t=1 

(5.5) 

and e is a compact subset of [Rs. In case (5.2) leads to G including sorne un­
observable Zt (because ZI, ... , ZN only are observed), we can consider instead 

N 

fj = argmin L 11 <P(Aj)1/2{WY(Aj) -A(Aj;h)wZ(Aj)}112 , 
hE8 j=1 

(5.6) 

1 ~ "tA ~. WZ(A) = 1/2~Zte' , A(A;h) = ~Aj(h)e'Jk . 
(2nN) t=1 -00 

(5.7) 
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Such estimates were considered by Hannan (1971), Robinson (1972), and cover 
many cases. Under regularity conditions given in these references, 

(5.8) 

where 

(5.9) 

P(eP feP) is the same quantity with eP(A) replaced by eP(A)f(A)eP(A), and F satisfies 

rr 

E{ Gt(ha)G;+¡(hb)} = J eijAdF(A; ha, hb) (5.10) 
-rr 

We can now apply the E method. Define 

(5.11 ) 

a a 
W(A; 8) = a8' WG(A; 8) or W(A; 8) = a8,A(A; 8)WZ(A) (5.12) 

Let P( eP jeP) be defined analogously, with j(A) an estimate of f(A) as in Section 
2, based on residuals. Then we treat e as approximately 

(5.13) 

This approach was suggested by Hannan and Robinson (1973), Robinson (1976) 
in special cases where Gt is given by (5.2). Robinson (1991a) justified it in case of 
(5.2), allowing the bandwidth parameter used in a nonparametric j to be a quite 
general function of the same data. The choice eP = ¡p, the p x p identity matrix, 
corresponds to nonlinear least squares, while eP = j-I in (5.4) or (5.6) produces 
the most efficient estimate within the aboye class, and thus we have an extension 
of the approach of Hannan (1967) to a much more general model, and again 
Robinson (1991a) justified use of a general data-dependent bandwidth in j. 

The JHB method can alternatively be used. For eP == ¡p, e can be neatly written 
in time domain form, and when p = 1 

N 1/2 (e - 8) -+d N(O,A-1BA- 1) , (5.14) 

where A = E(aGt(8)/a8aGt(8)/a8'), B = 2nfu(O), where fu(A) is the spectral 
density matrix of Ut = XtaGt (8)/a8. Thus the JHB approach can be applied much 
as it was to linear regression in Section 3. This was advocated by Domowitz and 
White (1982), though they suggested using the truncated version of fc(O) given by 
(2.21), whose properties were mentioned in Section 2. 
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The JHB approach has been stressed in the bulk of subsequent relevant 
econometric literature, in which special names have been invented for the topic, 
such as "autocorrelation-consístent variance estimation", "heteroskedasticity and 
autocorrelation-consistent variance estimation" and "long run variance estima­
tion". Let a vector parameter satisfy the equation 

E{Ut (8)} =0, t=1,2, ... , (5.15) 

where the dimension of Ut is at least as great as that of O and may also depend on 
other unknown parametric andj or nonparametric functions. In particular (5.15) 
embodies the econometric model, or the principal part of it. Given a suitable 
matrix S of full row rank equal to the dimension of O and converging in prob­
ability to a matrix S of the same rank, and proxies Ut(O) for Ut(O), involving 
estimates of any nuisance parametersjfunctions, and possibly each depending on 
aH the data, we estimate O by 

N N 

e = argmin ¿ U;(h)S'S¿ Ut(h) 
hE8 t=1 t=1 

( 5.16) 

for a compact set e. Under regularity conditions 

(5.17) 

where 

C = SE [8~~\0)] , D = S2nfu(0)S' , (5.18) 

and fu(A.) is the spectral density matrix of Ut(O) and can be estimated as in 
Section 2, from the Ut(e), while C can be estimated by a sample average. The 
generalized method-of-moments (GMM) estimates of Hansen (1982) faH into this 
scheme, and he indicated the role of nonparametric spectrum estimation in esti­
mating D, and also that an optimal S is E(8/80Ut(0)'){2nfu(0)} -1 so that 
C- 1DC-1' = [E(8/80)Ut(0)' {2nfu(0)} -I E(8/80')Ut (0)r l

, which can be esti­
mated similarly. In Hansen's case the statistic e, though in general only implicitly­
defined, entails Ut(O) that are known functions ofunobservables and O. Robinson 
(1989) considered Ut(O) which are defined in closed form but are functions of 
conditional expectations of derivatives of nonparametric regression functions (cf 
Section 9 below), so that the Ut(O) involve smoothed nonparametric estimates of 
these, and gave conditions under which (5.17) holds and D can be consistently 
estimated by weighted autocovariance estimates. In such circumstances it seems 
hard to motivate parametric models for the autocorrelation in Ut(O), and a 
nonparametric approach seems natural. 

Particular cases of, or modifications of, the various spectral estimation methods 
ofSection 2, have been stressed in the econometric literature. In fact Levine (1983) 
employed le with (2.20) but with Cj replaced by NCj/(N - [ji), giving even more 
weight to the longer 1ags than the truncated estima te, and relating to the un­
desirable practice of approximating a Fourier series by its partial sumo Newey 
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and West (1987) advocated the modified Bartlett k (2.22), beca use of its simplicity 
and the psd property it bestows on the spectrum estimate. Andrews and Monahan 
(1992) employed a version of prewhitening, prior to weighted autocovariance es­
timation, see again Section 2. A number of other contributions focus on alternative 
estimates and on improvements to rates of convergence and regularity conditions, 
e.g. Andrews (1991), Gallant and White (1988), Hansen (1992). The dependence 
conditions stressed in the econometric literature have been mixing conditions, with 
rate conditions on the mixing numbers. These are attractive because the Ut(8) may 
be complicated, nonlinear functions ofunderlying variables, but inherit the mixing 
properties ofthese; this is not the case ifthe underlying variables are linear filters of 
white noise, for example, cf Section 4. The fact that the mixing conditions readily 
allow a degree of non-trending nonstationarity has also been stressed in the 
econometric literature, indeed the expectations A, B, e and D can be replaced by 
limits, indicative of forms of asymptotic stationarity as in Parzen (1962a). 

6. Bandwidth selection 

The nonparametric methods that have mostly been used in statistics to allow for 
serial dependence are appealing beca use they are justifiable in the absence of 
precise assumptions about the dependence, which can be very hard to motivate. 
However, the distinction between 'nonparametric' and 'parametric' estimation 
resides principally in their interpretation in large samples, and in both cases a 
particular functional form has to be chosen, indeed the same one may be used in 
either case, and the outcome of inferences will be dependent, possibly greatly so, 
on the choice of functional formo For example, fe and f p depend on K and M, 
AR spectrum estimates depend on AR arder, and prewhitened quadratic esti­
mates depend on all these quantities. The preceding sections inelude sorne dis­
cussion of the merits of spectrum estimates, and various K, so in the present 
section we focus on choice of bandwidth, in particular lag number M. 

Consider the choice of M in f p or fe in the simple scalar setting of Section 2. 
Because bias tends to vary inversely with M, and variance tends to vary directly, 
minimization of mean squared error (MSE) E{f(A) - f(A)}2 was proposed by 
Grenander and Rosenblatt (1957) as a simple criterion for producing a balancing 
M. Under regularity conditions 

00 

lim N2w E{f(A) - f(A)}2 = f2(A) J k2(x)dx{1 +/(A = O)} 
N~oo b 

N 1/(1+2w) 
b= lim ---

N-'>oo M 

-00 
(6.1) 

(6.2) 
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(ro) 1· 1 - k(x) 
K = lm--..:.....:... 

x ..... o xro (6.3) 

(6.4) 

and ro is the largest real number for which both (6.3) and (6.4) are assumed finite. 
Often ro = 2, though in the modified Bartlett case (2.22), ro = 1. In view of (6.2) 
we should choose M proportional to N 1/(1+2ro) , and minimizing (6.1) with respect 
to b gives the optimal choice of M, 

M* = N 1/(1+2ro) /b* , (6.5) 

where 

(6.6) 

In practice, though ro can reasonably be picked as the largest value such that (6.3) 
is finite (i.e. trusting that (6.4) is finite) there is a strong e1ement of circularity in 
that b* depends on f(A) itself, and also on f(ro)(A). This problem is standard in 
the smoothed estimation of nonparametric functions, and a standard proposal to 
deal with it is to replace f and f(ro) by 'pilot' estimates based on either a simple 
parametric mode1 or on an initial choice of bandwidth, in the hope that M* will 
not be too sensitive to the design of the pilot estimates, though it can be very hard 
to accurately estimate b*. Andrews (1991) has deve10ped this approach in case of 
pilot AR spectrum estimates, and also showed that the eventual spectrum esti­
mates are still consistent in the presence ofthe data-dependentM. Newey and West 
(1994) justified the optimality of methods using an initial choice of bandwidth. 

The preceding discussion is re1evant to the JHB approach, in which f is to be 
estimated at a single, zero, frequency only, and extends readily to vector cases. In 
the E approach, say in the linear regression context of Section 3, f has to be 
estimated across the Nyquist band (-n, n]. It would be possible to determine 
suitable M as in the previous paragraph, in a frequency-dependent way. A simpler 
approach is to obtain a single M which reflects characteristics of the data across 
all frequencies. An informal procedure, called "window c1osing", entails esti­
mating f across (-n, n] for various M and choosing the one which suggests the 
best mix of resolution and stability. To seek an optimal choice, consider the 
integrated MSE 

1[ J E{j(A) - f(A)}2 X(A)dA , (6.7) 
-1[ 

for a weight function X(A). Lomnicki and Zaremba (1957) suggested X(A) == 1, and 
Jenkins and Watts (1968) suggested X(A) = 1/ f(A)2, because j(A) has asymptotic 
variance proportional to f(A)2. We minimize (6.7) asymptotically by 
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(6.8) 

Again this can be estimated using pilot estimates of f and ¡(ro). Pickands (1970) 
proposed a related partly automatic method. Hurvich (1985), Beltrao and 
Bloomfield (1987) and Robinson (199Ia) considered a fully automatic cross va­
lidation method. One version of this is as follows. Introduce the leave-two-out 
spectrum estimate 

cf (2.18), and the pseudo log-likelihood criterion 

N 

¿)loglpj(Aj) +I(Aj)llpj(Aj)} . 
j=l 

(6.9) 

Then M minimizing this is consistent for (6.5) with X(A) = l1 f(A)2. An alternative 
approach for choosing M, based on stochastic complexity, was proposed by 
Hannan and Rissanen (1988), but they gave no theoretical justification for it. 

There is a much larger literature on choice of AR order, for use in AR spec­
trum estimates, particularly by penalized likelihood methods such as Ale. Choice 
of order in ARMA models has al so been studied. Because AR spectrum estima tes 
are less often used in the JHB or E approaches than le or lp, and because an 
adequate discussion of this well developed field would take up a good de al of 
space, we refer the reader to the survey articJe of Hannan (1987). 

7. Higher-order asymptotics and the bootstrap 

In this section we discuss for simplicity only inference based on the scalar sample 
mean, following Section 2. The statistic (2.12) was proposed in view of its 
asymptotic standard normal distribution. However this may well be a poor ap­
proximation to the actual distribution in finite samples, indeed there is evidence 
that serial dependence can slow convergence. In principie, representations of the 
exact distribution of (2.12) can be obtained, at least under the presumption of 
Gaussianity of Xí, but these are likely to be complicated and difficult to use in 
practice. A compromise may be provided by higher-order asymptotics. 

One interesting question which readily lends itself to higher-order asymptotic 
study is the cost of correcting for autocorrelation in estimating V(X) when none 
exists. This is a special case of a more general problem, that of over-specifying M 
in le or lp relative to an actual MA order less than M, or overspecifying the AR 
order. Albers (1978) considered the case when the prescribed MA or AR order is 
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fixed relative to N, and (2.4) holds. He found that while there is no asymptotic 
loss of power of (2.12) relative to the ordinary t-ratio, the deficiency measure of 
Hodges and Lehmann (1970) ~ the difference between the numbers of observa­
tions required to achieve the same power ~ is non-zero to order O(N- l ), and he 
estimated the deficiency. 

Edgeworth expansions of probability distribution functions and densities have 
been extensively studied in many contexts. G6tze and Hipp (1983) developed a 
valid Edgeworth expansion for N I/2(X - Il) in case of fairly generally weakly 
dependent Xt. They showed that the distribution function of N I/ 2(X - Il) is uni­
formly approximated, to order o(N-(s-2)/2), by 

s-2 
ITI ~N-r/2 
T ns = ~ Pr , (7.1 ) 

r=O 

where under stationarity Po is the N(0,2nf(0)) distribution function and for 
r :::: I Pr is a finite signed measure with po-density qr, where qr is a polynomial 
with coefficients uniquely determined by the moments of X t up to order r + 2. In 
fact the qr can be written in terms of higher-order spectra which can in principie 
be estimated in a manner which generalizes ones for f(A). The form of (7.1) 
simplifies in case X; is Gaussian, and here Taniguchi (e.g. 1984, 1987) discussed 
the problem in detail, and for other important statistics besides X. G6tze and 
Hipp (1994) have recently carried out extensions for the non-Gaussian case. 

Even in the Gaussian case higher-order theory becomes more difficult in case 
of the studentized statistic (2.12). In general even the goodness of the usual 
normal approximation (represented, for example, by a Berry~Esseen bound) will 
depend on the rate of increase of the bandwidth number M. Bentkus et al. (1994) 
obtained Berry~Esseen bounds for the studentized sample mean and other sta­
tistics, assuming exponentially decaying autocorrelation. G6tze and Künsch 
(1995), Lahiri (1991) established the validity of a one-term Edgeworth expansion 
(i.e. s = 3 in (7.1)) under conditions of a similar character to G6tze and Hipp's. 
One needs also the validity of the estimated Edgeworth expansion, where the 
unknown features of the r = 1 term are estimated from the data, though even the 
one-term approximation is liable to be complicated. 

An alternative mean s of improving on the normal approximation in many 
statistics, in particular of matching the one-term Edgeworth expansion, is the 
bootstrap. The bootstrap as originally developed for independent observations, 
by Efron (1979), does not work under dependence, but valid extensions to de­
pendent data have been developed. Künsch (1989), Liu and Singh (1992) pro­
posed the following. Let C and m be integers such that N = Cm. Consider blocks 
Xt=(X;, ... ,XtH- I), t= 1, ... ,N-C+1. Draw xi, ... ,x~ randomly with repla-
cement from Xl, ... ,XN-l+l, and denote by XC(t-I)+i the i_th element of x;, 
i = 1, ... , C, t = 1, ... , m. The bootstrapped sample mean is 

X*=~~X* 
N~ l· 

1=1 

(7.2) 
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To studentize 1"*, note that xi, ... , x~ are independent so a bootstrap rj estimate is 

1 m l-j 

cj = N L LX(~-I)I+¡XV-I)I+i+j 
1=1 i=1 

(7.3) 

Write 

v* = .t k[~]Cj , 
J=-M 

(7.4) 

which by comparison with (2.16) is a bootstrap version of 2nf(0), with band­
width M and lag window k. Then the bootstrap distribution for X is the dis­
tribution of 

nl / 2 (1"* -X) 
V*1/2 (7.5) 

conditional on XI ,X2 , ... ,Xn . Moreover, under suitable conditions (see Gotze and 
Künsch (1995), Lahiri (1991)) this distribution differs from that of (2.12) by 
o(N- I / 2), so that the bootstrap approximation is as good as the one-term 
Edgeworth approximation. 

There have been numerous other recent contributions concerning the boot­
strap for dependent variables, including modifications of the aboye procedure 
(e.g. Politis and Romano, 1994), data-driven choice of f (Bühlmann and Künsch, 
1994), extensions to the problem of M-estimation (Lahiri, 1994) and spectral 
density estimation (e.g. Franke and Hardle, 1992, Politis and Romano, 1992), as 
well as versions of the bootstrap based on parametric assumptions about the 
autocorrelation (e.g. Freedman, 1984, Bose, 1988). 

8. Inference under long range dependence 

The methods of Section 2 rely crucially on assumption (2.6), and other previous 
sections take similar assumptions for granted. However, there has been con­
siderable interest in the possibility that (2.6) does not hold, with the main concern 
that feO) = 00, though feO) = O has also been considered. Both possibilities are 
covered by the model 

feA) ~ GA I
-

2H
, as A -+ 0+, 0< H < 1 , (8.1 ) 

for 0< G < oo. The case H = 1/2 ineludes (2.6). When 1/2 < H < 1, the case of 
most interest, we say, there is 'long range dependence'. When O < H < 1/2 there 
is 'anti-persistence'. Thus (2.6) seems a rather specialised assumption. Condition 
(8.1) is elosely related to 

rj ~ gj2H-2, asj -+ 00 , (8.2) 

where 
9 = 2Gr(2 - 2H) cos nH , (8.3) 

22



Autocorrelation-robust inference 289 

so Yj is not summable when H > 1/2. Examples of (8.1) and (8.2) are given by 
fractional ARIMA models, in which 

f( 1) = (J2 11 _ iAll_wla(eiJo)12 1 

/t 2n e b(éA) , -n < A ::::: n , (8.4) 

where (J2 > O and a and b are polynomials offinite degree having no zeros in or on 
the unit circle, and the fractional noise model where 

(8.5) 

Consider a covariance stationary sequence {Xt}, with mean J1 and spectrum and 
autocovariance satisfying (8.4) and (8.5). Now X is no longer asymptoticalIy a 
BLUE of J1 when H -=F 1/2, see Adenstedt (1979). Samarov and Taqqu (1988) 
found that for 0< H < 1/2 the efficiency can be poor, though for 1/2 < H < 1 it 
is at least 0.98. In any case X is stilI unbiased and consistent for J1 and is a 
computationally simple candidate for use in inference, especialIy in the Gaussian 
case. 

Consider now the statistic on the left side of (2.8). In case of (8.2) or (8.3) the 
standard normal limit in (2.8) may or may not hold, but in any case neither 
Conditions A nor B is appropriate when 1/2 < H < 1. For example the sum­
mability conditions on the mixing numbers rt.j and the MA weights {Jj each imply 
f is bounded, violating (8.1). Instead, consider the folIowing alternative condi­
tions: 

Condition E Xt = P(Vr), where Vi is a stationary Gaussian sequen ce with auto­
covanance 

s: , ·2h-2 . h 1 
Uj rv gJ ,as} ---t 00, < . 

for g' > O, and 

m = min{i : J(i) -=F O} , 
i2:0 

where J(i) = E(XtH!(Xt)), and H;(x) = (_ly¿2/2(di/dxi )e-:X1/2. 

(8.6) 

(8.7) 

Condition F Xt is as in Condition B, but with the restriction 2:()()00 l{Jjl < 00 

relaxed to 2:';-00 {J] < 00, and 2:';-oo({Jj-l + ... + {Jj_n)2 ---t 00 as n ---t oo. 

The number m in Condition E is calIed the Hermite rank of P, and was in­
troduced by Taqqu (1975), who showed that it implies (8.2) for 1/2 < H < 1 
when h = 1 + (H - 1) / m satisfies 1 - l/2m < h < 1, and that (2.8) holds if and 
only if m = 1, the limit distribution being a non standard functional of Brownian 
motion for m> 1. Condition F, due to Eicker (1967), Ibragimov and Linnik 
(1971), Hannan (1979), avoids the Gaussianity component, but corresponds only 
to m = 1 in Condition E in that it implies (2.8). 
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No explicit direction has yet been given as to how to conduct inference using 
the non-normal limit distribution under Condition E for m > 1, so we focus on 
studentizing in (2.8). Under (8.2) 

_ gN2(H-l) 

V(X) rv H(2H _ 1) , (8.8) 

so X is les s than N1
/

2-consistent when 1/2 < H < 1. (8.2) holds for all H E (O, 1) 
where H, as well as G, is likely to be unknown in practice. The studentization in 
(2.12) will not produce consistent interval estima tes or asymptotically valid hy­
pothesis tests if H i- 1/2. Given (2.8) and (8.8), Robinson (1994a) observed that 

. H(2H - 1) 
N 1- H X - N O 1 

{

AA }1/2 
2ar(2 _ 2H) cos(nH) ( f.l) --4d (,) 

(8.9) 

if the estimates a, H satisfy 

a --4 p G, (logN)(H - H) --4p O (8.10) 

Robinson (1994b, 1995a, 1995b) has verified these properties for three different 
types of estimate, all of which are based only on local assumptions on I()..) near 
).. = O, and which do not require parameterization of 1 across all frequencies. A 
correctly specified parametric 1 or Yj (as in (8.4) or (8.5)) can yield N1/ 2-consistent 
estimates (see e.g. Fox and Taqqu, 1986), and Beran (1989) considered stu­
dentization based on such estímates, with an alternative type of approximate 
distribution to that arising in (8.9). However, if 1 is incorrectly specified, such 
estimates will be inconsistent, indicating a cost to modelling high frequency be­
haviour in a situation in which only low frequency behaviour is of real interest. In 
case of the estimates in Robinson (1995a, 1995b) the desired properties were 
established for any H E (0,1), so that prior knowledge that 1(0) is infinite, finitej 
positive, or zero, is not needed, thereby considerably generalizating the 
"H = 1 /2" inference discussed in Section 2 (in case H = 1/2, G corresponds to 
1(0)). 

Consider now, briefiy, the case of regression estimation, in model (3.1) with 
long range dependent X¡. Suppose we assume that Zt is nonstochastic, for example 
that it satisfies Condition C. Here, the OLSE is not asymptotically efficient when 
H i- 1/2, but Eicker (1967) justified the approximation (3.10) under a somewhat 
strengthened version of Condition F, which allows for (8.1) or (8.2) for any 
H E (0,1). However he discussed studentization only under (3.2), which can 
apply only when H = 1/2. Yajima (1988, 1991) discussed the structure of the 
asymptotic variance of jJ for polynomial-in-t and other Zt, and Robinson (1994b) 
explicitly justified a suitable studentization in the polynomial-in-t case. Dahlhaus 
(1992) established the asymptotic normality of a studentized GLSE in case of 
Gaussian X¡. Now suppose that Zt is stochastic, in particular that it satisfies 
Condition D. Then the imp1ications for the OLSE of slope coefficients are rather 
different, ifthere is an intercept in the regression. As noted by Robinson (1994a) 
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the process (Zt - EZt)Xt can have a bounded spectral density matrix fu(Je) at Je = O 
even if both Xt and Zt exhibit long range dependence, that is collectively not too 
strong, in particular when fu(Je) increases at rate JeI-2L as Je -+ 0+, and 
H + L < 3/2. Thus the JHB approach can be used as described near the end of 
Section 3 (see (3.22», though existing proofs of consistency of spectrum estimates, 
for example under the mixing conditions stressed in the econometric literature 
(see Section 5), do not apply. On the other hand, if H + L 2': 3/2 the limit dis­
tribution of (3.3) is non-normal. This problem does not arise for the GLSE. 
Robinson and Hidalgo (1997) established (3.19) allowing for an arbitrary degree 
of long range dependence in Xt and Zt, for the elass of 4Y ineluding 4Y = f-I, and 
went on to justify feasible estimates in case of a parametric f. Künsch et al. (1993) 
discussed the effect of long range dependence in errors on standard independence­
based inference rules in the context of certain experimental designs. 

M-estimates of location and linear regression models with long-range depen­
dent errors X t have been considered by Beran (1986), Koul (1992). In case of 
independent Xt, M-estimates will typically be less efficient than the OLSE when Xt 
is Gaussian. However under long range dependen ce there is no efficiency loss, 
because the M-estimate will be dominated by a linear termo Moreover, when 
m = 1 in Condition E but Xt is non-Gaussian, the OLSE can be less efficient than 
sorne M-estimates. Inference in nonlinear models, ineluding nonlinear regressions, 
(5.1), with long range dependent errors, has been discussed by Robinson (1994a), 
Robinson and Hidalgo (1997). 

Long range dependence can be much more broadly defined to inelude also 
forms of nonstationarity. There is any number of such forms that might be 
studied, ineluding the I(d) elass, for real d 2': 1/2, where the d-th differences have 
spectrum satisfying (2.6). (For noninteger d, d_th differences can be defined via the 
binomial theorem and a suitable start-up condition.) The special case d = 1, unit 
root behaviour, has been greatly stressed of late, especially in the econometric 
literature. Dickey and Fuller (1979) derived a representation for the limiting 
distribution of the OLSE of a first order AR coefficient when the true process is a 
random walk, and tabulated the distribution. Phillips (1987) found the limiting 
distribution when the errors X t in the unit root AR are autocorrelated but satisfy 
(2.6). This limiting distribution differs from Dickey and Fuller's in a way that 
depends simply on f(O), such that Dickey and Fuller's tables can still be used 
with a minor modification and an estimate of f(O) ofthe type discussed in Section 
2, as Phillips explicitly proposed. There have been many elaborations on this 
theme in the econometric literature. 

9. Inference on nonparametric probability density and regression functions 

So far the prospect of serial dependence has considerably changed and compli­
c~lted inference, by comparison with independence-based rules. There is an im­
portant elass of problems where the latter rules continue to apply at least in case 
of weak dependence, and so we discuss this in a section to itself. 
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Let Xí now be strictly stationary with marginal probability density p(x). It is 
desired to estimate p(x) without assuming that its functional form is known up to 
finitely many parameters. There are many nonparametric estimates of p(x), but 
they have similar asymptotic properties, and we shall consider only kernel esti­
mates. Let 

jJ(x)=~tk[x-Xí] , (9.1) 
Na (=1 a 

where the given function k, called the kernel, integra tes to one, and the given 
positive scalar a, called the bandwidth, is regarded as converging to zero as 
N --+ 00, while aN --+ oo. 

In case the Xí are independent, asymptotic properties of ft(x) were studied by 
Parzen (1962b) and others. In particular, under suitable additional conditions, for 
fixed points Xl, ... , X" as N --+ 00 

(Na)l!' {Pex)) - p(x))} -" NID [o, Z k,(u)du P(XJj , j ~ 1, ... ,' 

(9.2) 

so that the ft(x}) have a simple approximate distribution and are asymptotically 
independent. From experience with many statistics (such as those discussed 
previously in the paper) it is no surprise that ft(x) will still be consistent and 
asymptotically normal when independence of X( is significantly relaxed to allow 
for various forms of weak dependence. However, the asymptotic variance, and 
the asymptotic independence, in (9.2) also continue to hold, as shown by Roussas 
(1969) and Rosenblatt (1970) in case of Markov XI, by Robinson (1983b) in case 
of IX-mixing Xí, and by subsequent authors under various other conditions. Notice 
that the finite sample distribution of ft(x) will certainly be affected by the de­
pendence, for example if k has compact support then the ft(x}) will, for a suffi­
ciently small, be independent for finite N, if the Xí are independent, but not if they 
are dependent, unless the dependence eventually die s out completely. Thus (9.2) 
can perhaps be taken less seriously as a finite-sample approximation when there is 
dependence. Nevertheless for suitably large N (9.2) is an attractive source of 
simple confidence regions; we treat the 

(9.3) 

as approximately independent standard normal variates. 
The level of the bandwidth a significantly affects ft(x). As with the bandwidth 

in spectral estimation (see Section 6), there are rules for optimally choosing it. It 
turns out that the a that asymptotically minimize MSE criteria in case of in­
dependence continue to be valid under weak dependence, see Prakasa Rao (1978), 
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Ahmad (1982). Moreover automatic data-dependent methods under in­
dependence can carry through to weak dependence. 

Long range dependence, as stressed in the previous section, can however lead 
to considerably different asymptotic distributional behaviour from that under 
independence. In the simple case of Gaussian Xt, Robinson (1991 b) showed that 
while jJ may still be asymptotically normal, the rate of convergence is affected, as 
are the variances in the limiting normal distribution, and far from being 
asymptotically independent across fixed points Xj, they are perfectly correlated. 
Robinson's analysis disallowed any of the Xj from equalling EXí, but here Cheng 
and Robinson (1991) found the asymptotic distribution to be a nonstandard 
functional of Brownian motion; they also generalized Robinson's results in other 
directions. Hall and Hart (1990), Robinson (1991b) also looked at the MSE of 
jJ(x) and found that for suitably strong dependence the optimal a can be affected. 

The density estimate jJ(x) can be extended to estimate the joint density of a 
multivariate X;, conditional densities, and their derivatives, and analogous con­
clusions follow. Similar methods are also used to estimate the nonparametric 
regression function r in 

(9.4) 

where lí and Zt (assumed scalar for simplicity) are observable and X t IS un­
observable, with zero mean. An M-estimate (z) of r(z) satisfies 

N A (Zt- Z ) ~ tf¡(lí - r(z))k -a- = O , (9.5) 

giving the familiar Nadaraya-Watson estimate when tf¡(x) = x. In case Zt, like XI. 
is stochastic and stationary, the r(zj) at fixed points Zj have the same simple 
limiting normal distribution (with diagonal covariance matrix) under weak de­
pendence of Xt and Zt as they do under independence, and so the estima tes can 
still be simply studentized, see e.g. Roussas (1969), Robinson (1983b, 1984), 
Boente and Fraiman (1990). However, a fixed-design version of (9.4) is also of 
importance, where, in the simplest case, 

Zt = t/N , (9.6) 

so that the Zt are equally spaced points in (0,1) that actually get closer as N 
increases. Here, the asymptotic variance of the estimates of r is affected even by 
weak dependence of X;, for example when (2.6) holds but (2.4) does not, see 
Roussas, Tran and Ioannides (1993), Csorgo and Mielniczuk (1995b). Their 
distributional behaviour under long range dependence has also been studied by 
Csorgo and Mielniczuk (1995a) and Robinson (1995c), the latter author showing 
how they can be studentized. 
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