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Abstract—A Type-2 Fuzzy logic controller adapted 

with genetic algorithm, called type-2 genetic fuzzy 

logic controller (T2GFLC), is presented in this paper 

to handle uncertainty with dynamic optimal learning. 

Genetic algorithm is employed to simultaneous design 

of type-2 membership functions and rule sets for type-

2 fuzzy logic controllers. Traditional fuzzy logic 

controllers (FLCs), often termed as type-1 fuzzy logic 

systems using type-1 fuzzy sets, cannot handle large 

amount of uncertainties present in many real 

environments. Therefore, recently type-2 FLC has 

been proposed. The type-2 FLC can be considered as 

a collection of different embedded type-1 FLCs. 

However, the current design process of type-2 FLC is 

not automatic and relies on human experts. The 

purpose of our study is to make the design process 

automatic. Moreover, to reduce the computation time 

of T2GFLC an efficient type-reduction strategy for 

interval type-2 fuzzy set is also introduced. The 

evolved type-2 FLCs can deal with large amount of 

uncertainties and exhibit better performance for the 

mobile robot. Furthermore, it has outperformed their 

type-1 counterparts as well as the adaptive type-1 

FLCs. 

Index Terms—Interval Type-2 FLC, Interval Type-2 

Fuzzy Sets, Genetic-Algorithms, Mobile Robot, 

Optimization. 

I. INTRODUCTION 

UZZY systems are fundamental 

methodologies to represent and process 

linguistic information, with mechanisms to 

deal with uncertainty and imprecision. With such 

remarkable attributes, fuzzy systems have been 

widely and successfully applied to control, 

classification and modeling problem and in a 

considerable number of applications. A fuzzy model 

is a set of fuzzy rules and the associated membership 

functions (MFs) that maps inputs to outputs. Fuzzy 
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rules and MFs are either provided by human experts 

or learned from sample data. Many decision-making 

and problem-solving tasks are too complex to be 

understood quantitatively. People however succeed by 

using knowledge that is imprecise rather than precise.  

The construction of fuzzy logic controllers (FLCs) 

based on the appropriate expert knowledge base (KB) 

can be quick and effective. On the other hand, without 

such an expert KB the design of FLCs can be 

frustrating as it relies on trial and error rather than a 

guided approach. 

To surmount this shortcoming, genetic algorithms 

(GAs) can be considered as a powerful tool to 

perform tasks such as generation of fuzzy rule base 

(RB), optimization of fuzzy RB, generation of MFs, 

and tuning of MFs types. These algorithms mimics 

the natural evolution and provide an effective way for 

searching a  large  and  complex  solution  space  to  

give  close  to  optimal  solutions  in much faster 

times than random trial-and-error.  

For most fuzzy logic control problems, the most 

important issue is to determine the parameters that 

define the type-2 MFs. Because of this, the type-2 

MFs optimization problems can be converted to 

parameter optimization problems.  These parameters 

are generally based on the expert KB that is derived 

from heuristic knowledge of experienced control 

engineers and/or generated automatically. A variety of 

methods such as GAs, neural networks (NNs) have 

been used to improve the behavior of parameter 

optimization problem as well as selection and 

definition of fuzzy rules. 

Mendel [1] and Hagras [2] have shown that the 

type-1 fuzzy logic systems (FLSs) may be unable to 

model and minimize the effect of uncertainties that 

prevails’ in the real world applications. One 

restriction is that a type-1 fuzzy set is certain in the 

logic where the membership grade for each input is a 

crisp value. On the other hand, interval type-2 FLCs 

(that use interval type-2 fuzzy sets, characterized by 

fuzzy MFs) can handle the uncertainties.   

GA was used by Martínez [3] in optimization of 

type-2 FLC. He applied GA to design FLC for the 

control of the perturbed autonomous wheeled mobile 

robot. Melin and Castillo [4] proposed a method 

based on type-2 fuzzy sets and neural networks called 

neuro-fuzzy to learn the parameters of the fuzzy 

system for intelligent control of nonlinear dynamic 

plants. Tan [5] used GA to optimize the parameters of 

FLCs. His proposed approach used mixed (type-1 and 

type-2) fuzzy sets for real time control. 
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Type-1 fuzzy logic controllers (FLCs) are known 

for their ability to compensate for structured and 

unstructured uncertainties, to a certain degree. 

However, type-2 fuzzy engines have been credited to 

be more powerful in compensating for even higher 

degrees of uncertainties [6]-[8]. They are particularly 

suitable for time-variant systems with unknown time-

varying dynamics. They also allow for more 

flexibility to alleviate the problems associated to the 

uncertainties pertaining to the choice of the system’s 

fuzzy control rules and fuzzy membership functions. 

This paper highlights a contribution to the 

development of type-2 fuzzy logic controller with 

GA.GA is employed to the simultaneous design of 

type-2 MFs and rule sets for type-2 fuzzy logic 

controllers. It is found that our proposed integrated 

architecture is able to generate comprehensible and 

reliable fuzzy rules and tuning the optimal MFs 

parameters by a self-learning adaptive method. We 

simulated type-1 and type-2 fuzzy logic controllers to 

perform a comparative analysis of the systems' 

response, in the presence of uncertainty. 

The rest of the paper is organized as follows: 

Section II presents an introductory explanation of 

type-2 fuzzy sets and FLC. In Section III presents the 

problem statement and the kinematic and dynamic 

models of the mobile robot. Section IV we introduce 

the key ideas of our approach called the type-2 

genetic fuzzy logic controller (T2GFLC), Section V 

provides a simulation study of the mobile robot using 

the controller described in Section IV. Section VI 

describes the sensitivity of T2GLC with respect to the 

type reduction strategy. Finally, Section VII presents 

some concluding remarks and some future directions. 

II. TYPE-2 FUZZY SETS AND FLC 

A. Interval Type-2 Fuzzy sets 

The concept of a type-2 fuzzy set was introduced 

by Prof. Zadeh [9] in 1975. A type-2 fuzzy set is 

defined by membership function. The fuzzy grade of 

that is a fuzzy set in the closed interval [0,1] rather 

than a point in [0,1].  

 

 
Fig. 1 An Interval type-2 fuzzy set. 
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 denotes union over all admissible x and u. xJ is 

called primary membership of x, where ]1,0[xJ for 

Xx  [10]. The uncertainty in the primary 

memberships of a type-2 fuzzy set
~

A , consists of a 

bounded region that is called the footprint of 

uncertainty (FOU)[10]. It is the union of all primary 

memberships [10].  

B. Type-2 FLC 

A type-2 FLC comprises five components, which 

are fuzzifier, knowledge base (KB) consisting of rule 

base (RB) and database (DB), fuzzy inference engine, 

type- reducer and defuzzifier as depicted in Fig. 2. 

 

 
 

B.1 Fuzzifier 

    Since the input is in crisp normalized values, a 

fuzzification operator fuzz  is used to fuzzify it in 

fuzzy form. The fuzzifier maps a crisp input vector 

with p inputs 

XXXXxxx p
T

p  .......),......( 211  into 

input fuzzy sets, x

~

A [11-12]. However, we will use 

most frequently used singleton fuzzification method 

as it is fast to compute and thus it is suitable for 

mobile real time operation. In the singleton fuzzifier, 

fuzzy set 
~

A  has only a single point of non-zero 

membership with support ix , where 1),(~

A
ux for 

ixx   and 0),(~

A
ux for ixx  which input 

measurement x is perfect crisp. 
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Fig. 2 A type-2 FLC. 

 



SHILL ET AL: ADAPTIVE INTERVAL TYPE-2 FUZZY LOGIC CONTROLLER FOR AUTONOMOUS MOBILE ROBOT 

8 Green University Press 

 

B.2 Rule base 

The rules will remain the same as in type-1 FLC 

but the antecedents and consequents will be 

represented by interval type-2 fuzzy sets [12]. Like 

most FLCs [13], the FLC discussed here applies the 

concepts of fuzzy implication and the compositional 

rules of inference for approximate reasoning. Suppose 

that we need to design a multiple-input-multiple-

output (MIMO) mobile robot type-2 FLC having p 

inputs pp XxXx  ,,.........11  and c outputs 

cc YyYy  ,.....,11  with ith fuzzy rule of the form: 
~ ~

i

1 1

~ ~
i

1 1 c

:  IF  is F .......and  is ,     THEN

                             is G  ......... y  is ,    1,...,

i i

MIMO p p

i

c

R x x F

y G i M

 

where

~~

1 ,........, i

p

i FF  and 

~~

1 ,........, i
c

i GG are the 

antecedent and consequent MFs associated with the 

linguistic p input variables and c output variables, 

respectively, and M is the number of rules in the rule 

base. 

B.3 Fuzzy Inference Engine 

The fuzzy inference engine combines rules and 

gives a mapping from type-2 fuzzy sets in the input 

universe of discourse 
nRU  to type-2 fuzzy sets in 

the output universe of discourse RV  based on the 

fuzzy logic principle. The structure of ith type-2 rule 

is having one output kk Yy  : 
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,where  denotes meet operation. The 

membership grades in the input type-2 fuzzy sets are 

combined with those in the output type-2 fuzzy sets 

using the extended sup–star composition; multiple 

rules are combined using the Join operation. They are 

defined and explained in a greater detail in [14]-[15].  

B.4 Type- reduction 

Type-reduction is that when an interval type-2 

fuzzy sets is reduced to an interval-valued type-1 

fuzzy set and then these type reduced sets are 

defuzzified to obtain crisp outputs. In this paper we 

will use centroid type reduction due to its reasonable 

computational complexity.  For the centroid type 

reduction process, firstly combines the output type-2 

fuzzy sets using union [4] (minimum t-norm),


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centroid of 
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centroid type reduction can be expressed as: 
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,where i=1,….,N. To compute this process, at first y 

domain is discretized into N points and then 
iyJ  is 

discretized into Ti (i=0,1,…N) points. Total number of 

computations is  

N

i
iT

1
. 

B.5 Defuzzification 

After the type-reduction stage, Defuzzify the type 

reduced interval set )(

xyc , determined by its left 

most ly and right most point ky  using the average of 

of ly and ky . Hence the defuzzified crisp output is 

2
)( rl yy

xY



  

III. MATHEMATICAL FORMULATION OF THE 

PROBLEM 

A mobile robot has to move from an initial position 

to the target (dock) by avoiding collisions with a 

single stationary obstacle in optimal path. It may have 

to move along a straight path or take a turn depending 

on the current situations in order to generate a 

collision-free path. The problem is taken from [16]. 

Figure 3 depicts the simulated geometry for the robot 

and loading dock schematically, in which mobile 

robot is moving among single stationary obstacles, in 

the same workspace. The control system must find 

incrementally a path to the loading dock, 

independently of the initial position of the robot. 

The path planning of the mobile robot is 

determined by the three input variables x, y and   , 

(considered as a point mass),  where x and y are the 

Cartesian co-ordinates of the mobile robot and  is 

the robot direction angle relative to the horizontal axis 

x. The output variable is the control steering signal . 

As a first investigation, let us assume that there exists 

enough clearance between the robot, the walls and the 

obstacle in the workspace so that we can ignore the y-

position co-ordinate of the robot. The co-ordinate y 

TABLE I 
DEFINITION OF LINGUISTIC VARIABLE. 

x  θ 

LE-Left End 
LC-Left Center 

CE-Center 
RC-Right Center 

RE-Right End 

NL-Negative Large 
NM-Negative Medium 

NS-Negative Small 
ZE-Zero 

PS-Positive Small 
PM-positive Medium 

PL-Positive Large 

NB-Negative Large 
NM-Negative Medium 

NS-Negative Small 
ZE-Zero 

PS-Positive Small 
PM-positive Medium 

PB-Positive Large 

 

. 
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will be re-introduced into the discussion shortly. The 

state spaces of two inputs are 00 295115   &

1000  x , and one output   within [-40
0
, 40

0
]. At 

every stage, the simulated mobile robot only moved 

forward until it hits the border of the loading dock. 

The final states ),( ffx  will be equal or close to (10, 

90
0
).  The robot kinematics model is described by the 

following dynamic equations.  

 

 
Fig. 3 Mobile Robot and loading dock illustration. 
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where l is the length of the robot, we assume l=4. 

Eqs. (1) will be used to derive the next state when 

present state and control are given. This experiment 

should be considered as an example of highly 

nonlinear complex problems. In this application we 

compare the performances of two differences i.e., 

type-1 FLCs called type-1 genetic fuzzy logic 

controller (T1GFLC) and T2GFLC. 

IV. HYBRID GENETIC-FUZZY OPTIMIZATION OF 

THE TYPE-2 FLCS 

A genetic-type-2 fuzzy system depict in Fig.4 is a 

fuzzy system that uses a learning algorithm derived 

from genetic algorithm theory to determine its 

parameters (type- 2 fuzzy sets and fuzzy control 

rules). One of the most important factors for 

designing an effective type-2 FLC is to determine the 

optimal type-2 FLC parameters quickly and 

efficiently. In this paper, we employed GA to 

optimize the parameters of the MFs of Type-2 FLC; 

we consider using Gaussian Interval Type-2 MFs to 

each one of our three variables. At the same time, we 

also employed GA for the selection and definition of 

RB of type-2 FLC. 

 

A. Encoding  

Often one  of  the main  challenges  in  designing  a  

genetic  algorithm  to  find  a  solution  to  a problem 

is finding a suitable way to encode the parameters. A  

chromosome  is  an  encoded  string  of  possible  

values  for  the  parameters  to  be  optimized. In this 

case, a chromosome is encodedby the defining 

parameters of interval type-2 MFs to each one of our 

three variables: x,  (input variables) and control 

action θ(output variable) and the parameters of fuzzy 

control rules.  

 
 

Fig. 4 Integration of type-2 FLCs and GA. 

 

For this study, the domains for x,   and    are 

divided into   5, 7 and 7 interval type-2 fuzzy sets 

respectively. The linguistic terms (MFs) for each of 

the input and output variables are used to describe 

them, as in the following Table I. Here, each input 

and output type-2 MF is characterized by three 

parameters, one mean and two standard deviations. 
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Thus, 57 genes are used to represent the type-2 MFs 

FLC inputs and outputs.  

An important characteristic of fuzzy models, FM, is 

the partitioning of the input and output space of 

system variables (input, output) into fuzzy regions 

using fuzzy sets [17]. The range of   is divided into 

five non-uniform intervals [0, 32.5], [32.5, 47.5], 

[47.5, 52.5], [52.5, 67.5], and [67.5, 100] and they are 

represented by five linguistic variables LE, LC, CE, 

RC and RE respectively. The range of   is divided 

into seven non-uniform regions [-115, -27.5], [-27.5, 

46], [46, 86.5],[86.5, 98.5] , [98.5, 146], [146,   216], 

[216, 295] and  then they are represented by seven 

linguistic variables NL, NM, NS, ZE, PS, PM, and PL     

respectively. Similarly seven divided regions of the 

range of θ, [-40, -28], [-28, -12.5], [-12.5, -2.5], [-2.5, 

2.5], [2.5, 12.5], [12.5, 28], [28, 40] are represented 

by variables NB, NM, NS, ZE, PS, PM and PB.     

In this study five and seven gaussian type-2 fuzzy 

sets were used to partition the input spaces x and 
respectively and seven gaussian type-2 fuzzy sets for 

output spaces. The rule base, then, contains thirty-five 

(7 x 5) rules to account for every possible 

combination of input fuzzy sets. The fuzzy control if 

then rules are of the form: If x is ({LE, LC, CE, RC, 

RE}) and is ({NL, NM, NS, ZE, PS,PM, PL}) then 

  is ({NB, NM, NS, ZE, PS, PM, PB}), output is one 

of the type-2 fuzzy sets used to partition the output 

space. 35 genes are used to represent the rule set. 

Therefore, we need to encode a total of (57+35) 

parameters for each individual of our population. In 

order to make this encoding schema we design a 

chromosome of 92 consecutive real genes. Figure 5 

show a schematic of the chromosome structure to our 

genetic-type-2 FLS optimization approach. 

B. Decoding Schema 

In order to improving the accuracy of the type-2 

FLC, we propose a genetic fuzzy model depending on 

the cooperation of the linguistic fuzzy rule base and 

type-2 fuzzy sets. Two tokens, parameters of MFs and 

rule base parameters, are included in the GA-

chromosome, which are decoded to the knowledge 

base to evaluate each controller. Figure 6 shows the 

decoding schema of GA chromosome. 

 
Fig. 6. GA Decoding schema of type-2 FLC 

 

C. Measure of FIS performance-Objective function 

The convergence of the GA to a feasible solution 

depends upon some objective measure of each 

potential FLC,s performance, when applied to the 

application. The FLC generates a fitness value 

according to the following evaluation function:  
Length of robot trajectory

Trajectory error/fitness
Distance (Initail position, Desired final position)



 
D.  GA procedure 

The GA based approach uses real value encoding 

schema to encode each parameter (gene) in the 

chromosome.  
For the integrated architecture, the GA based 

system works in the following ways (Fig.7): 

Step1: Initialization: 60 strings (chromosomes), 

each string representing a potential solution, are 

generated by randomly chosen real numbers. 

Initialization of every chromosome followed by the 

grammatical correctness, the inner standard deviation 

1  is less than the outer standard deviation 2 . 

Initialize the chromosome counter=1 and generation 

counter=1. 

Step2: Decode and Evaluation: Decode the every 

chromosome into RB and MFs for the construction of 

type-2 FLC and FLC is executed on the mobile robot 

until it reaches the goal position or near to the goal 

position. Each potential solution (FLC) is evaluated 

and assigned a fitness value according to its 
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performance to the problem. Sort the individuals 

according to their fitness value. A potential solution 

(controller) that would have caused collision with the 

obstacle is automatically assigned a disastrous fitness 

Step3: Recombination: Apply crossover and 

mutation operator to chromosomes and generate new 

chromosomes as well as new generation i.e., 

increment the generation counter. Check the 

termination condition (generation counter<number of 

maximum generations). Reset the chromosome 

counter to 1 and go to step 2 otherwise go to step 4. 

Step4: Stop: The best fitted chromosome is kept 

and solution has been achieved.  

V.  SIMULATION RESULTS AND COMPARATIVE 

ANALYSIS 

To evaluate the accuracy of the proposed system, 

we have carried out a series of experiments which the 

controller were evolved in our simulated arena. The 

optimal means and standard deviations of MFs for x, 

 , and  are shown in table II(a-b). The generated 

optimal rule base (after the conversion from optimal 

parameter to linguistic form) also shown in Table II 

(a). 

 

TABLE III. FIVE INITIAL POSITIONS (x, y,) AND THEIR STEPS OF 

RESULT. 

Case 1 2 3 4 5 

x y 10 15 80 50 10 30 40 50 75 25 

 180 -60 45 90 -44 

T1GFLC 42 57 37 32 48 

T2GFLC 29 42 28 21 37 

 

Figures 8(a), (b), and (c) show the two antecedents 

and one consequents type-2 MFs of T2GFLC. Figure 

9(b) shows the performance comparison with 

T1GFLC (type-1) and T2GFLC. Figure 9 shows the 

times for the mobile robot to reach the goal position in 

5 different initial conditions and their trajectories are 

plotted in Fig.10. Table III shows the five initial 

conditions for ),,( yx with their steps. From Figure 

9, 10 and table III, it is obvious that the performances 

of T2GFLC are better than those in T1GFLC. It not 

only takes less steps to arrive the goal position using 

interval T2FLC, but also it shows the smoother 

trajectories (shown in Fig.10). 

It has been found that the GA based system evolves 

to optimal type-2 MFs and RB after some generations. 

TABLE II (A) OPTIMAL MEANS AND STANDARD DEVIATION OF INTERVAL T2GFLC ANTECEDENTS MFS OF X AND  
 MFS OF x 

LE LC CE RC RE 

m σ1 σ2 m σ1 σ2 m σ1 σ2 m σ1 σ2 m σ1 σ2 

15.2148 32.6131 19.118 40.365 39.863 29.92 50.8752 21.8461 14.9546 63.59 43.8689 27.3946 95.51 55.38 63.63 

M
FS

  O
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  
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σ2 170.334 

 

NS 

m 77.545 
11 

NM 

12 

NS 

13 

PS 

14 

PM 

15 

PB 
σ1 134.909 

σ2 91.6082 

 

ZE 

m 89.8335 
16 

NM 

17 

ZE 

18 

ZE 

19 

PM 

20 

PM 
σ1 120.334 

σ2 97.334 

 

PS 

m 143.303 
21 

NB 

22 

NM 

23 

NS 

24 

PS 

25 

PM 
σ1 71.484 

σ2 50.114 

 

PM 

m 185.3798 
26 

PS 

27 

NB 

28 

PS 

29 

NS 

30 

PS 
σ1 82.0035 

σ2 42.18 

 

PL 

m 256.759 
31 

NB 

32 

NB 

33 

NM 

34 

NM 

35 

NS 
σ1 140.079 

σ2 97.44 

 

TABLE II (B) OPTIMAL MEANS AND STANDARD DEVIATION OF INTERVAL T2GFLC CONSEQUENTS MFS OFθ. 

MFs of θ 

NB NM NS ZE PS PM PB 

m σ1 σ2 m σ1 σ2 m σ1 σ2 m σ1 σ2 m σ1 σ2 m σ1 σ2 m σ1 σ2 

-35.14 20.35 14.23 -26.27 22.76 10.56 -9.15 26.53 20.75 1.45 16.47 12.44 11.18 14.45 6.76 25.96 26.74 15.79 38.97 18.63 7.96 
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An example of the genetic progress is presented in 

Fig. 9 (a) which demonstrations the performance of 

the best chromosome found so far against the number 

of generations. 

VI. SENSITIVITY ANALYSIS AND EVALUATING OUR 

WORK 

In order to improve the overall performance of 

T2GFLC, we presented the modified type reduction 

strategy and used it as a type reducer. Then the 

simulation results are compared to the existing 

approach for evaluating our work. 

A. Modified Type reduction method 

The computation complexity of doing of type 

reduction strategy is very high. This has urged 

researchers to search for ways to alleviate this high 

computational burden if type-2 FLCs are to find their 

way to real-world applications. In order to reduce the 

computational complexity, in our study we introduced 

a type reduction strategy based on the vertical slice 

representation of interval type-2 fuzzy set. A type-2 

fuzzy set 
~

A can be represented as a collection of its 

vertical slices for the discrete case, 
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The vertical slice is embedded type-1 fuzzy set that 

can be easily reduced. The centroid of each vertical slice 

can be computed as follows:   
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For an interval type-2 fuzzy set, the average of n 

point’s discrete vertical slice is the mean of upper and 

lower MFs. 
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,where 


u  and 

u  are upper and lower grades of the type 

reduced set.  The centroid of the interval type-2 set can 

be expressed as follows: 
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It has been shown that the crisp value )( cx of interval 

type -2 fuzzy set can be depends on lower and upper 

bounds on the foot print of uncertainty. The overall 

computation cost of our proposed approach has been 

reduced by using this modified type reduction strategy 

and compared with the other existing approach, our 

proposed algorithm much more efficient. 

 

 

Fig. 8 Fuzzy type-2 MFs Gaussian shape for each linguistic fuzzy set value of the optimal solution (a) Input x (b) Input  and (c) Output  
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(a) 

 
(b) 

Fig. 9 (a) Shows the results of trajectory errors in T1GFLC and 

T2GFLC, and (b) Show the total steps to reach goal position by 5 

different initial cases. 

A. Evaluating the work 

The mobile robot is a typical problem in nonlinear 

motion control of nonholonomic systems. It is a 

notable example that is generally used as benchmark 

problem for the evaluation of new control algorithms 

and as such it has been well analyzed [16].  

Recently Mohammadian and Stonier in [16] have 

presented the fuzzy control system based on a genetic 

algorithm for trajectory tracking of a mobile robot in 

the presence of obstacle. In their work, binary coded 

GA used to tune the consequent of fuzzy rules. They 

define a mapping from the input space to the output 

space based on the combined fuzzy rule base using 

the defuzzifying procedure. According to the robot 

kinematics equations, the work of Mohammadian and 

Stonier has been used for comparison. Figure 11 

shows simulated results of Mohammadian and 

Stonier. 

Simulated results using the present proposed 

approach with enhanced type reduction strategy for 

the different initial positions are shown in Fig. 12. We 

compare our approach with existing approaches [16]; 

the comparison results show that the proposed 

approach outperforms in terms of shorter trajectories, 

trajectories smoothness and the processing time. 

 
(a) 

 

 
(b) 

Fig. 10 (a) Show truck trajectories avoiding stationary obstacle 

(cross-hatched circle) via T1GFLC, and (b) Show via interval 
T2GFLC, all from 5 different initial conditions. 

 

 
(a) 

 
(b) 

Fig. 11 Trajectories from the fuzzy controller for initial 

positions: (a) (62, 35, 1350) and (b) (62, 10, 2000 ). 
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(a) 

 
(b) 

Fig. 12Trajectories from the type-2 fuzzy controller for initial 

positions: (a) (62, 35, 1350)  and (b) (62, 10, 2000 ). 

VII. CONCLUSIONS 

This paper has revealed the possibility of using GA 

based architecture to evolve the type-2 MFs and Rule 

set parameters of interval type-2 FLCs. We have 

shown that an integrated FLCs and hybrid GAs 

architecture is a self-learning adaptive method were 

able to generate optimal MFs parameters and establish 

a reliable fuzzy control rules without any priori 

knowledge aimed at mobile robot control in real 

world environments. The ability of evolved type-2 

FLCs is to provide control problems where no priori 

knowledge is available such as in mobile robots 

domain. The type-2 FLCs which were genetically 

evolved achieved a superior control performance in 

comparison to the type-1 FLCs (T1GFLC) and 

adaptive approach [16]. 

Suggestions for follow-up works that may come 

after this paper are as follows: This research work is 

to be extended for intelligent control of a mobile 

robot, control of a robotic arm in the presence of 

moving obstacle, the path planning problem for 

multiple mobile robots with more than one obstacles 

either moving or fixed in the workspace.  

REFERENCE 

[1] H. A. Hagras, “A hierarchical type-2 fuzzy logic 

control architecture for autonomous mobile robots,” 

IEEE Trans. on Fuzzy Systems, vol.12, no.4, pp.524–

539, 2004. 

[2]  J.M. Mendel, Rule-Based Fuzzy Logic Systems: 

Introduction and New Directions, Prentice-Hall, 

Englewood Cliffs, NJ, 2001. 

[3] R. Martínez, O. Castillo, L. T. Aguilar, “Optimization 

of interval type-2 fuzzy logic controllers for a 

perturbed autonomous wheeled mobile robot using 

genetic algorithms,” Information Sciences, pp.2158–

2174, 2009 

[4] P. Melinand O. Castillo, “Intelligent control of 

nonlinear dynamic plants using type-2 fuzzy logic and 

neural networks,” in proc. of NAFIPS, 2002,  pp. 22–

27. 

[5] D. W. W. W. Tan, “A simplified type-2 fuzzy logic 

controller for real-time control,” ISA Trans., vol.45, 

pp.503-516, 2006. 

[6] Hagras, H.A, “A hierarchical type-2 fuzzy logic control 

architecture for autonomous mobile robots,” IEEE 

Trans. Fuzzy Syst., vol. 12, no.4, pp. 524–539 2004. 

[7] Mendel, J.M, Uncertain Rule-Based Fuzzy Logic 

Systems: Introduction and New Directions,.Prentice-

Hall, 2001. 

[8]  Mendel, J.M. and John, R.I.B., “Type-2 fuzzy sets 

made simple,” IEEE Trans. Fuzzy Syst.,vol. 10, no. 2, 

pp.117–127, 2002.  

 [9] L. A. Zadeh, “The concept of a linguistic variable and 

its application to approximate reasoning-I,” Inform. 

Sci., vol.8,  pp.199-249, 1975. 

[10] J. Mendel and R. John, “Type-2 fuzzy sets made 

simple,” IEEE Trans. Fuzzy Syst., vol. 10, pp. 117–

127, Apr. 2002. 

[11] Q. Liang, N. Karnik, and J. Mendel, “Connection 

admission control in ATM networks using survey-

based type-2 fuzzy logic systems,” IEEE Trans. Syst., 

Man, Cybern. C, vol. 30, pp. 329–339, Aug. 2000. 

[12] J. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: 

Introduction and New Directions, Upper Saddle River, 

NJ: Prentice-Hall, 2001 

[13] J. M. Jou, P. Y. Chen, and S. F.Yang, “An Adaptive 

Fuzzy Logic Controller: Its VLSI Architecture and 

Applications,” IEEE Trans. on Very Large Scale 

Integration (VLSI) Systems, vol.8, no.1, Feb. 2000. 

[14] N. N. Karnik and J. M. Mendel, “Operations on type-2 

fuzzy sets,” Fuzzy Sets and Systems, vol.122, pp. 327–

348, 2001.  

[15] M. Mizumoto and K. Tanaka, “Some Properties of 

fuzzy sets of type-2,” Infom. Control, vol. 31 pp.312-

340, 1976. 

[16] M. Mohammadian and R. J. Stonier, “Fuzzy logic and 

genetic algorithms for intelligent control and obstacle 

avoidance,” in Complex Systems: Mechanism of 

Adaptation, R. J. Stonier and X. H. Yu, Eds. 

Amsterdam: IOS Press, 1994, pp. 149-156. 
[17] L. X. Wang, Adaptive Fuzzy systems and control: 

Design and Stability Analysis, PTR Prentice-Hall, 
Englewood cliffs, NJ. 1994. 

[18] R. I. John, “Embeded interval valued type-2 fuzzy 

sets,” in Proc. FUZZ-IEEE Init. Conf., May 2002, pp. 

1316-1319. 

[20] B. Kosko .Neural networks and fuzzy Systems: A 

Dynamical Systems Approach to Machine Intelligence, 

Englewood Cliffs, NJ: Prentice-Hall, 1992. 

[21] R.I. John and C. Czarnecki, “A type 2 adaptive fuzzy 

inferencing system,” in Proc. IEEE Systems, Man and 

Cybernetics, 1998, pp.2068-2073,. 

[22] Q. Liang and J.M. Mendel, “Interval type-2 logic 

systems: theory and design,” IEEE Trans. on Fuzzy 

Syst., vol. 8 no.5, pp.535-550, Oct. 2000. 

0

20

40

60

80

100

0 20 40 60 80 100

y-
P

o
si

ti
o

n
 

x-Position 

Goal 

0

20

40

60

80

100

0 20 40 60 80 100

Y-
P

o
si

ti
o

n
 

x-Position 

Goal 



GUB JOURNAL OF SCIENCE AND ENGINEERING, VOLUME 1, ISSUE 1, JULY 2014 

   

Green University Press   15 

 

Pintu Chandra Shill received the 

B.Sc. degree in Computer Science 

Engineering (CSE) from Khulna 

University of Engineering and 

Technology (KUET), Bangladesh in 

2003, M.Sc. degree in Computer 

Engineering from Politecnico di 

Milano, Italy in 2008 and Doctoral 

degree in System Design Engineering 

in 2009 from University of Fukui, 

Japan. He joined as a lecturer at the Department of CSE, 

KUET in 2004 and currently he is serving as an Assistant 

Professor. He has published several research papers in some 

reputed Journal and Conference. His research interest 

includes evolutionary computation, fuzzy logic and artificial 

neural networks. 

 

 

 

 

M. A. H. Akhand received the B.Sc. 

degree in Electrical and Electronic 

Engineering from Khulna University 

of Engineering and Technology 

(KUET), Bangladesh in 1999, the 

M.E. degree in Human and Artificial 

Intelligent Systems in 2006, and the 

Doctoral degree in System Design 

Engineering in 2009 from University 

of Fukui, Japan. He joined as a lecturer at the Department of 

Computer Science and Engineering at KUET in 2001, and is 

now a Professor. He is a member of Institution of Engineers, 

Bangladesh (IEB). His research interest includes artificial 

neural networks, evolutionary computation, bioinformatics, 

swarm intelligence and other bio-inspired computing 

techniques. 

 

 

Md. Saidul Islam received the B.Sc. 

degree in Electrical and Electronic 

Engineering (EEE) from Rajshahi 

University of Engineering and 

Technology (RUET), Bangladesh in 

2011. He joined as a industrial 

engineer at the Department of 

Industrial Engineering & Planning, 

Dird Composite textile ltd. in 2011 

and currently he is serving as a 

senior industrial engineer. His research interest includes soft 

computing, power system and bio-informatics. 

 

 

 

 

M. M. Hafizur Rahman received 

his B.Sc. degree in Electrical and 

Electronic Engineering from Khulna 

University of Engineering and 

Technology (KUET), Khulna, 

Bangladesh, in 1996. He received his 

M.Sc. and Ph.D. degree in 

Information Science from the Japan 

Advanced Institute of Science and 

Technology (JAIST) in 2003 and 2006, respectively. Dr. 

Rahman is now an Assistant Professor in the Dept. of 

Computer Science, KICT, IIUM, Malaysia. Prior to join in 

the IIUM, he was an Associate Professor in the Dept. of 

CSE, KUET, Khulna, Bangladesh. He was also a visiting 

researcher in the School of Information Science at JAIST 

and a JSPS Postdoctoral Research Fellow at Research 

Center for Advanced Computing Infrastructure, JAIST & 

Graduate School of Information Science (GSIS), Tohoku 

University, Japan in 2008 and 2009 & 2010-2011, 

respectively. His current research includes parallel and 

distributed computer architecture, hierarchical 

interconnection networks, and optical switching networks. 
 

http://www.iebbd.org/
http://www.iebbd.org/

