

Antimicrobial And Cytotoxic Acitivities Of Sterculia Parviflora Muhammad Syamil Rozmi¹; Muhammad Taher²; Deny Susanti³

¹Department of Biomedical Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Pahang.
²Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Pahang.
³ Department of Chemistry, Kulliyyah of Sciences, International Islamic University Malaysia, Pahang.

INTRODUCTION

- Antimicrobial resistance nowadays has becoming a public health emergency according to the World Health Organization (WHO, 2013).
- There are also growing concerns of breast cancer which ranks as the third most frequent cancer and single most common female malignancy worldwide (Ibrahim et al., 2012).
- The lower cases of adverse reaction among plant extraction has revive the interest in herbal medications nowadays (Amirah et al., 2011).
- Hence, there is a need for study of local medicinal plants focusing on its antimicrobial and cytotoxic activity for new remedies.

OBJECTIVES

- 1) To evaluate the antimicrobial activity of *S. parviflora*'s leaves extracts against Gram-positive bacteria (*Staphylococcus aureus* and *Bacillus cereus*), Gram-negative bacteria (*Escherichia coli* and *Pseudomonas aeruginosa*) and fungi (*Candida albicans* and *Aspergillus spp.*).
- 2) To determine the cytotoxicity of S. parviflora's leaves extracts on human breast adenocarcinoma

cell line (MCF 7).

Treatment of

cell

MATERIALS & METHODS

Statistical

analysis

 Sterculia parviflora (S. parviflora) is one of the species of family Sterculiaceae and is known in local Malay language as *Kelumpang* in Malaysia (Burkill et al., 1966).

Antimicrobial Activities

RESUL

Zone of Inhibition of Plant Extracts (mm)								
	Negative	Positive	<i>п</i> -Не	exane	Ethyl	Acetate	Met	hanol
wiicroorganisms	control	control	100	200	100	200	100	200
C. aurous	ΝΙΛ	30.7 ±	NA	NA	NA	NA	8.0 ±	10.3 ±
S. dureus	NA	1.2					0.0	0.5
R corous	. <i>cereus</i> NA	29.0 ±	NA	NA	14.7	26.3 ±	8.0 +	10.7 ±
D. CETEUS		3.6			± 5.8	1.5	1.0	1.2
E coli	ΝΛ	10.0 ±	ΝΛ	ΝΛ	ΝΛ	ΝΛ	ΝΛ	ΝΑ
<i>L. con</i>		0.0	0.0					
P. aeruginosa	NA	17.1 ±	NA	NA	NA	NA	NA	NA
		3.2						
C. albicans	NA	24 ± 1.0	NA	NA	NA	NA	NA	NA
Asperaillus son	NΛ	10.8 ±	ΝΛ	ΝΛ	ΝΛ	NΛ	ΝΛ	ΝΙΛ
Asperginus spp.	INA	0.2	INA	INA	INA	INA	INA	NA

*NA = No Activity (Did not proceed with further tests) *Data are mean ± standard deviation of triplicate experiments.

Table 1: Zone of inhibition resulting through disc diffusion screening by

Plant Extracts	Microorganisms	MIC (mg/mL)	MBC (mg/mL)	
	S. Aureus	25	50	
vietnanoi	B. Cereus 25	25	50	
Ethyl acetate	B. Cereus	50	100	

Table 2: Minimum inhibitory concentration (MIC) andminimum bactericidal concentration (MBC) values

Cytotoxic Activities

Subculture of

cells

Percentage of Cells Viability vs Concentration of *S. parviflora* Extracts

Figure 6: Cytotoxicity result of *S. parviflora's* extracts on MCF-7 determined by MTT assay

using disc concentrated with specific concentration of extracts

Figure 5: Methanol extract of *S. parviflora* showed antimicrobial efficacy against *S. aureus*

CONCLUSION

This study found that the methanol and ethyl acetate extracts of *S. parviflora*'s leaves exhibited moderate antimicrobial activities against *S. aureus* and *B. cereus*. The lowest MIC and MBC value determined is 25 mg/mL and 50 mg/mL respectively both in methanol extract against *S. aureus* and *B. cereus*. In cytotoxicity study, the crude extracts of *S. Parviflora* was unable to possess any cytotoxic effect against breast cancer cell line MCF-7 at concentration range of 3.13 – 100 mg/mL for 24 hours as the range of viability cells percentage calculated is from 60.7% to 82.0% which is not considerably cytotoxic enough to inhibit MCF-7 breast cancer cell growth. Thus, it can be concluded that *S. parviflora* did exhibit antimicrobial activities against gram-positive bacteria which are *S. aureus* and *B. cereus* while unable to possess cytotoxic activities against MCF-7 cell line.

REFERENCES

- World Health Organization. (2013, May). Retrieved October 18, 2013, from Antimicrobial Resistance: http://www.who.int/mediacentre/factsheets/fs194/en/
 Ibrahim, N., Dahlui, M., Aina, E., & Al-Sadat, N. (2012). Who are the breast cancer survivors in Malaysia. Asian Pacific Journal Cancer Prev, 13(5), 2213-2218.
- Amirah, T., Othman, A., Taher, M., Deny, S., & Haitham, Q. (2011). Antimicrobial activity and essential oils of Curcuma aeruginosa, Curcuma mangga and Zingiber cassumunar from Malaysia. Asian Pacific Journal of Tropical Medicine, 202-209.
- Burkill, I., Birtwistle, W., Foxworthy, F., Scrivenor, J., & Watson, J. (1966). A Dictionary of the Economic Products of the Malay Peninsula (Vol. 1). Governments of Malaysia and Singapore by the Ministry of Agriculture and Co-operatives.

ACKNOWLEDGEMENT

The authors acknowledge a profound gratitude to:

- Biomedical Science Dept., Kulliyyah of Allied Health Sciences (IIUM)
- Kulliyyah of Pharmacy (IIUM) and
- Those who directly or indirectly involved in this research work

Contact info

Author 1: Muhammad Syamil Rozmi E-mail: *syamil.rozmi@gmail.com*

Author 2: Muhammad Taher **Ba**khtiar E-mail: *tahermuhammad@gmail.com*