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Abstract Nowadays, mobile communications are ex-
periencing a strong growth, being more and more indis-
pensable. One of the key issues in the design of mobile
networks is the Frequency Assignment Problem (FAP).
This problem is crucial at present and will remain im-
portant in the foreseeable future. Real world instances
of FAP typically involve very large networks, which can
only be handled by heuristic methods. In the present
work, we are interested in optimizing frequency assign-
ments for problems described in a mathematical formal-
ism that incorporates actual interference information,
measured directly on the field, as is done in current
GSM networks. To achieve this goal, a range of meta-
heuristics have been designed, adapted, and rigourously
compared on two actual GSM networks modeled ac-
cording to the latter formalism. In order to generate
quickly and reliably high quality solutions, all meta-
heuristics combine their global search capabilities with
a local-search method specially tailored for this domain.
The experiments and statistical tests show that in gen-
eral, all metaheuristics are able to improve upon re-
sults published in previous studies, but two of the meta-
heuristics emerge as the best performers: a population-
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based algorithm (Scatter Search) and a trajectory based
(1+1) Evolutionary Algorithm. Finally, the analysis of
the frequency plans obtained offers insight about how
the interference cost is reduced in the optimal plans.
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1 Introduction

The Frequency Assignment Problem (FAP) is a well-
known combinatorial optimization problem that arises
as one of the main issues in the design of GSM1 net-
works [1]. In the FAP, a small set of frequencies has
to be allocated to the elementary transceivers (TRXs)
installed in the base stations of the cellular network.

Solving the FAP is crucial for today’s GSM opera-
tors both at the stage of the initial design and in sub-
sequent modifications of the network. Indeed, by mid
2006 GSM services were used by more than 1.8 billion
subscribers2 across 210 countries, representing approx-
imately 77% of the world’s cellular market. It is widely
accepted that the third generation mobile telecommu-
nication system (Universal Mobile Telecommunication
System or UMTS) [2], will coexist with the enhanced re-
leases of the GSM standard (GPRS [3] and EDGE [4])
at least in the first phases. GSM is then expected to
play an important role as a dominating technology for
many years. Therefore, the FAP will remain an impor-
tant issue in the near future.

The FAP is a difficult optimal design task because
the usable radio spectrum is very scarce and frequencies

1 Global System for Mobile Communications.
2 http://www.wirelessintelligence.com/
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have to be reused throughout the network, and conse-
quently, some inevitable degree of interference will oc-
cur. From a mathematical point of view, the FAP is a
generalization of the graph coloring problem, and there-
fore is NP-hard [5]. However, from an engineering point
of view, the basic FAP formulation must be extended
in order to address real world issues.

Initial formulations in the 70’s were very similar to
the classic graph coloring problem, and assumed that
adjacent frequencies do not interfere (only co-channel
interferences were considered) [6]. However, real-world
models must take into account all possible sources of
interference, as well as regulatory concerns, and tech-
nological limitations [7].

Nowadays, the large traffic demand and the re-
duced frequency spectrum make impossible to find
interference-free frequency assignments. Therefore,
most efforts in the current literature are intended to
obtain frequency plans that minimize the overall in-
terference of the network (i.e., maximizing the quality
of service). However, most of the research deals with
problems generated in a computer by sampling random
variables. In the present work, we use a formulation
([8]) aimed at taking full advantage of realistic and ac-
curate interference information, directly measured on
the field, obtained from real-world GSM networks.

Even though several exact algorithms have been
proposed [9,10], they are not feasible when dealing with
large instances of the problem [6] and therefore heuristic
methods are mandatory. Among these heuristic meth-
ods, metaheuristics [11] have been shown to perform
specially well when addressing FAP-like problems [12]
and therefore they have been used in the present work.

According to the number of candidate solutions that
any given technique manipulates at each iteration of the
search, metaheuristics fall into two main categories [13]:
trajectory-based and population-based methods. This
work, which aims at covering these two types of tech-
niques, is a significant extension of the preliminary re-
sults of [8,14], obtained within the OPLINK coordi-
nated research project (http://oplink.lcc.uma.es)
that involves teams of four Spanish universities. New
experiments have been carried out, a new real-world
instance has been tested, and the resulting frequency
plans have been analyzed.

The present work is experimental in nature and has
two main goals. First of all, to compute high quality
(low interfering) frequency plans for two real-world FAP
instances. These two instances correspond to real-world
data from GSM networks in two large cities: Denver and
Seattle. Four selected metaheuristics have been care-
fully adapted to deal with our FAP formulation [8]. Our

second goal is to carry out a rigorous testing and sta-
tistical comparison among the four metaheuristics.

In order to cover a wide range of algorithms, both
population and trajectory-based metaheuristics have
been considered. We have also taken into account the
degree of novelty involved: commonly used algorithms
have been included, but we also wanted to test the ef-
fectivity of less common algorithms on the FAP. On the
one hand, the literature research (Section 2) shows that
Evolutionary Algorithms (EAs) have been frequently
and successfully applied to the FAP and therefore, a
steady-state Genetic Algorithm or SSGA (population-
based) and a (1+1) EA (trajectory-based) have been in-
cluded in the set of metaheuristics. On the other hand,
Scatter Search (SS) and estimation of distributions al-
gorithms (like PBIL [15]) have proven very effective on
combinatorial problems, but have been seldom used on
the FAP. Thus, SS (population-based) and a newly de-
veloped trajectory-based version of PBIL, called Lo-
cal Search with Heuristic Restarts (LSHR) have been
added to the set of algorithms to be tested.

Companies in the telecommunication industry re-
quire that appropriate solutions are reached within
short times (the GSM operator cannot wait for long
times to get a frequency plan). Therefore, all these algo-
rithms have been hybridized with a local search method
specially tailored to this problem.

In order to ensure that all the algorithms were pro-
grammed in the most efficient way and following com-
mon guidelines, the coordinated work of the four teams
has also included the supervision of the design and
development of techniques by the other groups. Each
group has been assigned the metaheuristic they had
most expertise on.

All the metaheuristics described in this paper will
be rigourously compared. Great care has been put into
this issue by using the same programming language,
compiler options, and running all the algorithms under
the same experimental conditions. Additionally, in or-
der to improve the fairness of the comparison, the four
algorithms tested in this paper use the same local search
algorithm. The results show that all metaheuristics can
handle large real-world FAP instances very efficiently
and obtain very low interfering frequency plans. In par-
ticular, one of the instances used in this paper (Denver)
had been tested in previous research [8,14], and the re-
sults have improved significantly for that instance.

The organization of the paper is as follows. Section
2 elaborates on the work carried out on the FAP, and
specifically, on the metaheuristic techniques related to
the ones used in our work. In Section 3, we present
the background of our frequency assignment problem
and the mathematical formulation used for its solution.
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In Section 4, the proposed metaheuristics are outlined.
Finally, the experimental evaluation of the algorithms is
statistically analyzed in Section 5, and then the relevant
conclusions are drawn in Section 6.

2 Related Work

The FAP was firstly introduced in the early seventies
by Metzger [16], and since then, it has probably be-
come one of the most studied problems in the Opera-
tion Research field because of its relation to both classic
combinatorial optimization and real-world engineering
problems. This large production has been analyzed and
organized in several surveys and books [6,17–19].

Depending on the spectrum size, the objectives,
and the specific technological constraints, the FAP
may assume very different forms. In [6], three main
FAP models are described: MO-FAP (Minimum Order
Frequency Assignment Problem), MS-FAP (Minimum
Span Frequency Assignment Problem), and MI-FAP
(Minimum Interference Frequency Assignment Prob-
lem). They have been chronologically appearing in the
literature as technology, national regulators, and mar-
kets have been determining the working conditions.

MO-FAP is aimed at reducing the number of fre-
quencies in a given cellular network (assuming that
different frequencies do not interfere with each other),
MS-FAP is targeted to find an assignment that mini-
mizes the difference between the largest and the small-
est frequency, i.e., the span (the regulators started li-
censing blocks of frequencies), and MI-FAP tries to min-
imize (a measure of) the overall interference of the net-
work, because the increasingly demand made the avail-
able frequency spectrum to be insufficient for obtain-
ing interference-free frequency plans. MI-FAP is cer-
tainly the model of FAP mostly addressed in the recent
literature mainly because of its direct applicability to
the solution of large instances of real-world GSM fre-
quency planning (actually, the scope of this work). Be-
sides these three main models of FAP, other variants
exist in the literature. Interested readers are referred
to [6] for further details on this topic.

As stated before, all FAP models are NP-hard
problems [5]. Even though several exact algorithms
have been proposed [20,9,10], heuristic approaches are
mandatory when tackling large instances of the prob-
lem [6]. Specifically, metaheuristics [11] have shown
to provide the FAP problem with very accurate solu-
tions [12]. It is well known that the efficacy of many of
these algorithms is mostly based on the usage of local
search methods specially tailored to the version of the
problem being addressed, i.e., they are hybrid meta-
heuristics [21,22]. All the algorithms considered in this

work fall into this class (they all are hybridized with
a greedy algorithm). Because of the large number of
contributions in the literature, we have been forced to
restrict ourselves to review in this section only those
works that propose solution approaches similar to our
algorithms: EAs, SS, and greedy local search endowed
with restarting mechanisms.

Let us start analyzing the works using EAs. Since
the number of contributions here is rather large, we
have included a summary of their main features in Ta-
ble 1. For each work, the table shows, respectively, the
bibliographic reference, the publication year, the local
search method (LS) used with the EA, the FAP model
addressed, and the instances used together with its size
(when this information is available).

The first issue we want to discuss has to do with
the column LS. All the analyzed works but [27] (row 4,
COSEARCH) incorporate a local search method within
the evolutionary cycle of the EA (either together with
the recombination and mutation operators or replac-
ing any of them). By using the taxonomy and grammar
proposed by Talbi [21] to define hybrid metaheuristics,
they are LTH(EA(LS)) or Low-level Teamwork Hybrids,
in which the EA is usually devoted to search diversifi-
cation and the LS mainly promotes search intensifica-
tion of promising areas. As shown in Table 1, the LS
methods used range from specific greedy algorithms en-
gineered for the addressed problem to advanced search
(meta)heuristics such a CAP3, Markov Decision Pro-
cesses (MDP), GLS (Guided Local Search) [38], TS
(Tabu Search) [39], and a Neural Network. The gram-
mar defined in [21] also allows three additional descrip-
tors to be defined. Here, these descriptors are (heteroge-
neous, global, general) (interested readers are referred
to [21] for their definition). The LTH(EA(LS)) scheme
is specially effective for EAs solving the FAP prob-
lem since the search operators of this kind of meta-
heuristics are usually stochastic and they seldom gen-
erate highly accurate solutions (due to the high number
of constraint violations). Without doubt, the usage of
greedy algorithms (or hill climbers) as LS method is
the most widely used strategy (included in nine out
of the seventeen analyzed works) because of its ability
of easily adding specific problem domain knowledge.
COSEARCH [27] is the only metaheuristic that does
not follow this approach. Indeed, it uses a parallel het-
erogeneous search model [40] in which a local search
method and two metaheuristics (EA and TS) cooper-
ate via an adaptive memory mechanism.

It can also be seen that the three main versions
of the FAP problem have been successfully addressed
(MO-FAP, MS-FAP, and MI-FAP), thus showing the
suitability of hybrid EAs to solve this kind of problems.
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Table 1 Hybrid EAs (in the context of this work) used to solve the frequency assignment problem

Ref. Year LS FAP Instances

[23,24] 2001 Greedy, TS MI-FAP Owner (5700 TRXs)
[25] 2001 GLS MO-FAP CALMA
[26] 2001 Greedy MS-FAP Philadelphia
[27] 2001 COSEARCH MS-FAP Owner
[28] 2002 TS MI-FAP Owner (639 TRXs)
[29] 2003 Greedy MI-FAP Owner
[30] 2003 GLS MS-FAP Philadelphia

[31,32] 2004 MDP MI-FAP Owner (5700 TRXs)
[33] 2005 Greedy MS-FAP Philadelphia
[34] 2005 Neural Network MI-FAP Philadelphia
[35] 2006 Greedy MI-FAP Generated (1667 TRXs)
[36] 2007 CAP3 MS-FAP Philadelphia
[37] 2007 Greedy MI-FAP Owner (2612 TRXs)
[8] 2007 Greedy MI-FAP Owner (2612 TRXs)
[14] 2008 Greedy MI-FAP Owner (2612 TRXs)

As to the instances tested (last column in Table 1),
the Philadelphia benchmark [41] is also widely adopted.
However, it is composed of a very small sized instance
set using very abstract models of the real problem (e.g.,
hexagonal cell shapes). Other sets of not publicly avail-
able instances have been addressed.

With respect to the SS literature, the utilization
of this technique for solving the FAP problem is rather
marginal. Indeed, the orthodox technique has been used
only for the particularization of FAP, the graph color-
ing problem in [42]. There are two works applying this
SS technique, but they have to be considered as hybrid
algorithms because they use typical evolutionary oper-
ators within the scatter search template [14,43]. In all
these two hybrid approaches, the problem version is the
same as that used here.

The related works that hybridize greedy local search
algorithms with restarting mechanisms to explore the
search space of FAP are analyzed next. In general, lo-
cal search has been widely used for solving this kind of
problems [44] because of their ability to both quickly
provide FAP instances with acceptable solutions and
to easily incorporate specific problem knowledge in the
search. To avoid these algorithms to get stuck in lo-
cal optima, multi-start or restarting strategies [45] have
been used in the literature. The algorithms that bet-
ter fit to this scheme are the GRASP metaheuristic
(Greedy Randomized Adaptive Search Procedure) [46].
In the context of the FAP problem, GRASP has been
used in [47] and [48]. We are using here LSRH [14] (Lo-
cal Search with Heuristic Restarts) that uses a greedy
algorithm based on PBIL [15] with a population size
of 1. The solutions found by the greedy method are
used to update the probability matrix of PBIL which is
used in turn to restart the greedy search. PBIL has also
been used to address the FAP problem in [43] and [49].

[43] showed very bad results for PBIL (using the same
problem version that has been used here), while [49]
was targeted to parallelize the technique rather than
solving the problem actually.

Finally, this work is an extension of [14]. We have
performed additional experiments and included a new
real-world instance. The analysis of the results has also
been substantially improved by deeply evaluating the
resulting frequency plans reached by all the proposed
algorithms.

3 Problem Statement

This section is devoted to presenting relevant concepts
to the frequency planning in GSM networks that will
be used along this paper, as well as a detailed mathe-
matical formulation of the problem addressed.

3.1 The GSM System

An outline of the GSM network architecture is shown
in Fig. 1. As it can be seen, GSM networks are built out
of many different components. The most relevant ones
to frequency planning are the Base Transceiver Station
(BTS) and the transceivers (TRXs). Essentially, a BTS
is a set of TRXs. In GSM, one TRX is shared by up to
eight users in TDMA mode. The main role of a TRX is
to provide conversion between the digital traffic data on
the network side and the radio signals, thus supplying
communication between the mobile terminals and the
GSM network. The site at which a BTS is installed is
usually organized in sectors: one to three sectors are
typical. Each sector defines a cell.

The solid lines connecting components in Fig. 1
carry both traffic information (voice or data) as well as
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Fig. 1 Outline of the GSM network architecture

the “in-band” signaling information. The dashed lines
are signaling lines. The information exchanged over
these lines is necessary for supporting user mobility,
network features, operation and maintenance, authen-
tication, encryption, and many other functions neces-
sary for the network’s proper operation. Fig. 1 shows
the different network components and interfaces within
a GSM network.

3.2 Frequency Planning in GSM

The frequency planning is the last step in the layout of
a GSM network. Prior to tackling this problem, the net-
work designer has to address some other issues: where to
install the BTSs or how to set configuration parameters
of the antennae (tilt, azimuth, etc.), among others [50].
Once the sites for the BTSs are selected and the sector
layout is decided, the number of TRXs to be installed
per sector has to be fixed. This number depends on
the traffic demand that the corresponding sector has to
support. Frequency planning lies on the assignment of a
channel (a frequency) to every TRX [7]. The optimiza-
tion problem arises because the usable radio spectrum
is generally very scarce and, consequently, frequencies
have to be reused by many TRXs in the network.

However, the multiple use of the same frequency
may cause interferences that may reduce the quality
of service down to unsatisfactory levels. Indeed, signif-
icant interference may occur if the same or adjacent-
channels are used in neighboring, overlapping cells. The
point here is that computing this level of interference
is a difficult task which depends not only on the chan-
nels, but also on the radio signals and the properties
of the environment. The more accurate the measure of
the interference in a given GSM network, the higher the
quality of the frequency plan that can be computed for
this network. Several ways of quantifying this interfer-

ence exist, ranging from theoretical methods to exten-
sive measurements [51]. They all result in a so-called in-
terference matrix, denoted by M . Each element M(i, j)
of M indicates the degradation of the network quality
if cells i and j operate on the same frequency. This is
called co-channel interference. Apart from co-channel
interference it may exist a so-called adjacent-channel
interference, which occurs when two TRXs operate on
adjacent channels (i.e., one TRX operates on channel f

and the other on channel f + 1 or f − 1). An accurate
interference matrix is therefore an essential requirement
for frequency planning because the ultimate goal of any
frequency assignment algorithm will be to minimize the
sum of the interferences.

In real-life situations, additional complicating fac-
tors such as separation constraints among cells, or ad-
vanced interference reduction techniques such as fre-
quency hopping or dynamic power control, etc., may
be considered. The interested reader is referred to [7]
for a more detailed description of frequency planning in
actual GSM networks.

3.3 Mathematical Formulation

Let T = {t1, t2, . . . , tn} be a set of n transceivers, and
let Fi = {fi1, . . . , fik} ⊂ N be the set of valid fre-
quencies that can be assigned to a transceiver ti ∈ T ,
i = 1, . . . , n. Note that k —the cardinality of Fi— is not
necessarily the same for all the transceivers. Further-
more, let S = {s1, s2, . . . , sm} be a set of given sectors
(or cells) of cardinality m. Each transceiver ti ∈ T is
installed in exactly one of the m sectors. Henceforth we
denote the sector in which a transceiver ti is installed by
s(ti) ∈ S. Finally, given a matrix M = {(µij , σij)}m×m,
called the interference matrix. The two elements µij and
σij of a matrix entry M (i, j) = (µij , σij) are numerical
values greater or equal than zero. In fact, µij represents
the mean and σij the standard deviation of a Gaus-
sian probability distribution describing the carrier-to-
interference ratio (C/I) [52] when sectors i and j oper-
ate on a same frequency. The higher the mean value,
the lower the interference and thus the better the com-
munication quality. Note that the interference matrix
is defined at sector (cell) level, because the transceivers
installed in each sector all serve the same area.

A solution to the problem is obtained by assigning
to each transceiver ti ∈ T one of the frequencies from
Fi. A solution (or frequency plan) is henceforth denoted
by p ∈ F1 × F2 × · · · × Fn, where p(ti) ∈ Fi is the
frequency assigned to transceiver ti. The objective is
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to find a solution p that minimizes the following cost
function:

C(p) =
∑

t∈T

∑

u∈T,u 6=t

Csig(p, t, u) . (1)

In order to define the function Csig(p, t, u), let st and
su be the sectors in which the transceivers t and u are
installed, that is, st = s(t) and su = s(u), respectively.
Moreover, let µstsu

and σstsu
be the two elements of

the corresponding matrix entry M(st, su) of the inter-
ference matrix with respect to sectors st and su. Then,
Csig (p, t, u) =




K if st = su, |p(t)− p(u)| < 2
Cco(µstsu , σstsu ) if st 6= su, µstsu > 0, |p(t)− p(u)| = 0
Cadj(µstsu , σstsu ) if st 6= su, µstsu > 0, |p(t)− p(u)| = 1
0 otherwise.

(2)

K is a very large constant (K >> 0) defined by the
network designer so as to make it undesirable allocating
the same or adjacent frequencies to transceivers serv-
ing the same area. Furthermore, function Cco(µ, σ) is
defined as follows:

Cco(µ, σ) = 100
(

1.0−Q

(
cSH − µ

σ

))
(3)

where

Q(z) =
∫ ∞

z

1√
2π

e
−x2

2 dx (4)

is the tail integral of a Gaussian probability distribu-
tion function with zero mean and unit variance, and
cSH is a minimum quality signaling threshold. Function
Q is widely used in digital communication systems be-
cause it characterizes the error probability performance
of digital signals [53]. This means that Q

(
cSH−µ

σ

)
is the

probability of the C/I ratio being greater than cSH and,
therefore, Cco(µstsu , σstsu) computes the probability of
the C/I ratio in the serving area of sector st being below
the quality threshold due to the interferences provoked
by sector su. That is, if this probability is low, the C/I
value in the sector st is not likely to be degraded by the
interfering signal coming from sector su and thus the
communication quality yielded is high. (Note that this
is compliant as to defining a minimization problem.) On
the contrary, a high probability —and consequently a
high cost— causes the C/I mostly to be below the min-
imum threshold cSH and thus incurring in low quality
communications.

As function Q has no closed form for the integral,
it has to be evaluated numerically. For this purpose we
use the complementary error function E:

Q(z) =
1
2
E

(
z√
2

)
(5)

In [54], a numerical method is presented that allows
the value of E to be computed with a fractional error
smaller than 1.2 · 10−7.

Analogously, function Cadj(µ, σ) is defined as

Cadj(µ, σ) = 100
(
1.0−Q

(
cSH−cACR−µ

σ

))

= 100
(
1.0− 1

2E
(

cSH−cACR−µ

σ
√

2

))
.

(6)

The only difference between functions Cco and Cadj

is the additional constant cACR > 0 (adjacent channel
rejection) in the definition of function Cadj. This hard-
ware specific constant measures the receiver’s ability
to receive the wanted signal in the presence of an un-
wanted signal at an adjacent channel. Note that the ef-
fect of constant cACR is that Cadj(µ, σ) < Cco(µ, σ). This
makes sense, since using adjacent frequencies (channels)
does not provoke such a strong interference as using the
same frequencies.

The mathematical model is aimed at incorporat-
ing interference information directly imported from real
world GSM frequency planning as currently conducted
in the industry (and not generated in a computer by
sampling random variables). Indeed, the computations
carried out to obtain the cost values are motivated by
real-world GSM networks since they are related to the
computation of the BER (Bit Error Rate) performance
of Gaussian Minimum Shift Keying (GMSK), the mod-
ulation scheme used for GSM [53].

4 Proposed Metaheuristics

The aim of this section is to present the algorithms
used in this work for solving the proposed FAP. Both
population-based and trajectory-based metaheuristics
have been evaluated. All of them use the same lo-
cal search algorithm, which will be described in this
section as well. The Ant Colony Optimization algo-
rithm (ACO) [55] will also be briefly described, in order
to compare the four new metaheuristics with previous
work in the literature [8].

4.1 Local Search

The application of local search methods allows admis-
sible solutions to be achieved in relatively short times.
This is a typical requirement within commercial tools,
the context in which the FAP resides. In order to per-
form a fair comparison of the implemented approaches,
the local search strategy (see Algorithm 1) has been de-
fined as a common element for all the proposed meta-
heuristics. The local search strategy has been specifi-
cally designed to deal with our version of FAP.
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The operation of the designed local search is based
on optimizing the assignment of frequencies to TRXs
in a given sector, without changing the remaining net-
work assignments. In [56] a local search method which
also tries to substitute the frequencies assigned to a set
of transceivers, leaving intact the remaining network is
proposed. However, in such a case, the set of considered
transceivers are not those inside a sector but the ones
satisfying a set of specific properties. In [8,57] the lo-
cal search methods are simpler. In both cases, the new
neighbors are generated by changing the assignment to
a only one TRX.

Candidate solutions (or plans) are encoded as arrays
of integer values p, where p(t) is the frequency assigned
to TRX t. The neighbors of a candidate solution are ob-
tained by replacing the frequencies in the TRXs of each
sector. The reassignment of frequencies within a sector
is performed in the following way: first, the available
frequencies for the sector are sorted by their involved
cost. Then, two possibilities are considered, either as-
sign the frequency with lowest associated cost to a TRX
that is allowed to use that frequency, or assign its two
adjacent frequencies to two different TRXs (if they are
allowed to use these frequencies). For each of the newly
generated partial solutions the same process is repeated
until all TRXs in the sector have been assigned a fre-
quency. The complete solution with lowest associated
cost is considered as the new neighbor, while the other
ones are discarded. Since the new plan is constituted
by just replacing a small set of frequency assignments,
a complete evaluation of the individual is not neces-
sary. Thus, only interferences produced by the replaced
TRXs need to be recalculated.

The order in which neighbors are analyzed is ran-
domly determined (line 7 of Algorithm 1), but trying
to avoid the generation of neighbors that do not im-
prove the current solution. For such purpose a set called
currentSectors containing the sectors that might im-
prove the current solution is maintained. Initially, all
sectors are introduced in currentSector (lines 2,4). For
the generation of a new neighbor, a sector sec is ran-
domly extracted from currentSector (line 7) and its
frequencies reassigned (line 8). The local search moves
to the first new generated neighbor that improves the
current solution (lines 9-10), adding all the sectors that
interfere or are interfered by sec to the set of the
next sectors (nextSectors) to consider (lines 11-12).
When currentSectors set gets empty (line 6), sectors in
nextSectors are transferred to the current set (line 4)
and nextSectors set is cleared (line 5). The local search
stops when none of the neighbors improves the current
solution (line 3).

In the cases where the network satisfies a set of
properties, the neighbor generation process ensures the
achievement of the optimal frequency assignment inside
the analyzed sector, considering the remaining network
fixed. Such properties are (i) all TRXs in a given sec-
tor are allowed to use the same frequency ranges, (ii)
it is possible to make assignments which do not use
the same frequency or adjacent frequencies in any two
TRXs serving the same area, and (iii) the best assign-
ment does not use the same frequency or adjacent fre-
quencies in any two TRXs withing the same sector. A
sketch of the proof is here presented. Let be Cost(f)
the cost associated to the assignment of the frequency
f to any of the TRXs in the considered sector. Being
f1 the frequency with minimum associated cost, the
best assignment must use f1, or must simultaneously
use f1 − 1 and f1 + 1. In fact, considering an assign-
ment in which f1 + 1 is used, but f1 − 1 is not used,
we can substitute the assignment of f1 + 1 by f1, thus
obtaining an assignment with lower cost.

In the case of using f1−1, but not f1+1, the same
property holds. In the cases where f1 − 1 and f1 + 1
are not used, since f1 is the best possible assignment it
must be used. Finally, the simultaneous assignment of
both f1+1 and f1−1, could lead to a better assignment
than the ones using f1 and other frequency f2. For
this reason, in order to ensure that the best assignment
is achieved, individuals which use f1, and individuals
which use simultaneously f1− 1 and f1 + 1 should be
analyzed. The way in which neighbors are generated
ensure that both possibilities are explored, so the best
assignment is achieved under such conditions.

Algorithm 1 Pseudocode for Local Search
1: Input: current solution S
2: nextSectors ← {1, ..., numberOfSectors}
3: while (nextSectors ! = ∅) do
4: currentSectors ← nextSectors
5: nextSectors ← ∅
6: while (currentSectors != ∅) do
7: sec ← extract a random sector from currentSectors
8: neighbour ← reassign frequencies of S in sector sec
9: if (neighbour improves S) then

10: S ← neighbour
11: nextSectors + = sectors interfered by sec
12: nextSectors + = sectors that interfere sec
13: end if
14: end while
15: end while
16: return S
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4.2 Ant Colony Optimization (ACO)

Since we want to compare with previously published
results on the problem using the same instances, we
have included the algorithm which reported the best
results for these instances so far, the ACO presented
in [8]. To summarize this approach, it works as any
other ACO algorithm: at each iteration candidate solu-
tions are constructed in a probabilistic way. The prob-
abilistic solution construction is based on a so-called
pheromone model (denoted by T ), which is a set of nu-
merical values that encode the algorithms’ search expe-
rience. After the construction phase, some of the gen-
erated solutions are used to update the pheromone val-
ues in a way that aims at biasing the future solution
construction towards good solutions found during the
search process. The particular approach implemented
is known as MMAS (Max-Min Ant System) algorithm
in the so-called hyper-cube framework (HCF); see [58].

4.3 Steady-State Genetic Algorithm (SSGA)

This algorithm is a standard steady state GA (SSGA).
The tentative solutions managed by SSGA are encoded
as arrays of integer values, p, where p(ti) ∈ Fi is the
frequency assigned to transceiver ti. That is, the solu-
tions manipulated are tentative frequency plans of the
given FAP problem instance.

Algorithm 2 Pseudocode for SSGA
1: population ← ∅
2: initialize(population)
3: while not time-limit do
4: parents ← binaryTournament(population)
5: offspring ← UX(parents,pc)
6: offspring ← randomMutation(offspring,pm)
7: offspring ← localSearch(offspring,localSearchSteps)
8: population ← insert(population,offspring)
9: end while

An outline of the algorithm is shown in Algorithm 2.
The algorithm starts by creating a population of ran-
dom individuals, so that all the TRXs of each individual
are randomly assigned with one of their valid frequen-
cies. As to the genetic operators, SSGA uses binary
tournament as selection scheme (line 4). This opera-
tor works by randomly choosing two individuals from
the population and the one having the best (lowest)
fitness (equation 1) is selected. The algorithm applies
then uniform crossover (UX) in which every allele of
the offspring (i.e., the frequency of each TRX) is chosen
randomly from one of the two parents (line 5). The mu-
tation operator used is the random mutation in which

the frequencies of a set of randomly chosen TRXs of
the solution are reassigned with a random valid fre-
quency. Next, the offspring undergoes a local search
phase (line 7) which finally replaces the worst individual
in the population, if the newly generated one is better
(lower FAP cost).

4.4 Scatter Search (SS)

Scatter Search (SS ) [59] [60] works with a quite small
set of solutions called RefSet (solutions are encoded by
using the same representation as SSGA, that is, arrays
of integer values). This set is composed of the most
representative solutions from the population. The in-
dividuals in the initial population are randomly gener-
ated. RefSet is divided into quality solutions (the best
frequency plans for the FAP problem) and diverse so-
lutions (the most different ones). The number of indi-
viduals for each subset has been specially configured to
solve the FAP problem.

Algorithm 3 Pseudocode for Scatter Search
1: initialize(population)
2: population ← localSearch(population)
3: RefSet ← generateFrom(population)
4: while not time-limit do
5: SubSet ← subSetGenerator(RefSet)
6: SubSet ← combinationMethod(SubSet)
7: RefSet ← localSearch(SubSet)
8: RefSet ← generateFrom(RefSet, population)
9: end while

A brief description of the algorithm can be seen in
Algorithm 3. As we can observe, we have followed the
typical scheme of SS. The algorithm starts with the ran-
dom generation of the population through the assign-
ment of a valid frequency to each single TRX in each
solution (line 1). Then, an Improvement Method fixed
to the FAP problem is applied to each population indi-
vidual to try to improve it (line 2). This method is the
local search we have explained previously (Section 4.1).
After generating RefSet (line 3) we use a Subset Gen-
eration Method (line 5) to create all possible subsets
from the RefSet. The next step is to apply the Solution
Combination Method (line 6) to the solutions in each
subset. The solutions are combined in a pair-wise way.
The pairs of solutions are chosen at random from the
current RefSet. After that, we combine the solutions by
using a uniform crossover at TRX level. Finally, the lo-
cal search will be applied again (line 7) to try to improve
a frequency planning obtained as a result of the com-
bination method. Frequency plannings are replaced in
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the RefSet so that the best solutions to the FAP prob-
lem keep in there. In our case, we use a subset of quality
solutions with only 1 individual, and a subset of diverse
solutions formed by the rest of individuals in the RefSet.
Therefore, when all combinations have been evaluated
(we have to generate a new RefSet), the best solution
is saved in the RefSet and a new random population
is generated to select the (RefSetSize-1) most diverse
solutions from that one (line 8). The distance used to
measure the diversity between two frequency plans is
the total amount of different frequencies assigned to
every sector in both plans. With this new RefSet the
algorithm restarts a new iteration until the time limit
for the experiment is expired (line 4).

4.5 (1 + 1) Evolutionary Algorithm (EA)

The proposed approach is a modified version of a (1+1)-
EA which uses a mutation operator specifically de-
signed to face the FAP problem. The main modification
lies in allowing the growth of the population to improve
the behaviour when dealing with strong local optima.
Individuals, which are encoded as in SSGA (see Section
4.3), are randomly generated as well.

Algorithm 4 Pseudocode for the (1+1) Evolutionary
Algorithm
1: initialize(population)
2: population ← localSearch(population)
3: while not time-limit do
4: offspring ← mutation(population)
5: offspring ← localSearch(offspring)
6: for i = 0 to populationSize do
7: if population(i) is blocked for softBloq generations

then
8: population(i) ← offspring(i)
9: else

10: population(i) ← best(population(i), offSpring(i))
11: end if
12: end for
13: if population is blocked for hardBloq generations then
14: if |population| < maxPopSize then
15: increase population size attaching a new individual
16: end if
17: end if
18: end while

An outline of the approach is shown in Algorithm 4.
The EA approach has been combined with the local
search method to improve the algorithm convergence.
After every creation of an individual, the local search is
applied (lines 2, 5). A mutation operator is applied over
each individual at each generation (line 4) in order to
produce a new offspring. The (1, 1) selection operator is
deterministic and selects the individual with best fitness

value (line 10). In order to improve the behaviour of the
approach when dealing with local optima, two improve-
ments were considered. First, if after SoftBloq genera-
tions the fitness of the current individual has not been
improved, the offspring is selected independently of its
fitness value (lines 6-12). Moreover, if after hardBloq

generations the fitness value of none of the individuals
has been improved, an extra new individual is intro-
duced in the population (lines 13-17). In order to avoid
an excessive growth of the population, the maximum
size of the population is limited to maxPopSize (line
14). During the following generations, each individual
included in the population is evolved applying the afore-
mentioned rules.

The variation of individuals in the population is
based on a single mutation operator. First, the opera-
tor randomly selects one sector (secMut). Then, TRXs
in secMut are randomly reassigned whereas the ones
in the interferer or victim sectors of secMut are ran-
domly reassigned with a probability pmut. The previ-
ous process is repeated mutSelected times, but select-
ing as secMut a random sector among the previously
interferer or victim sectors.

4.6 Local Search with Heuristic Restarts (LSHR)

This algorithm extends the local search algorithm de-
scribed in Section 4.1, by adding periodically guided
perturbations to avoid local minima. In short, it peri-
odically restarts local search by means of a probability
distribution F learned during the search process. F is a
matrix with dimension Msectors×Nfrequencies and
it is updated in a similar fashion as PBIL [15].

Algorithm 5 Pseudocode for Local Search with
Heuristic Restarts
1: initialize(probability matrix F )
2: S∗ ← S ← generateFrom(F )
3: while not time-limit do
4: S ← localSearch(S)
5: S∗ ← best(S,S∗)
6: F ← update(F ,S∗)
7: S ← generateFrom(F )
8: end while

The algorithm is summarized in Algorithm 5. Ma-
trix F is a probability distribution representing a mem-
ory of the search process so far. Fij is the probability
that frequency j is assigned to sector i. According to
Algorithm 5, the probability distribution F is initialized
in line 1 with uniform probabilities (Fij = 1/(M ×N)).
An initial solution S is generated from F by means of a
roulette-wheel based procedure (line 2). This procedure
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is described later. The best-so-far solution S∗ is also ini-
tialized. Then, a loop is entered where local search is
applied on current solution S (line 4). S is considered
for replacing S∗ in line 5. Finally, F is updated with the
improved solution S∗ (line 6). In order to update F , Fij

is reinforced if the frequency j is assigned to sector i in
solution S. More specifically, F ′ij = Fij +fr ∗Pij , where
Pij = 1 if frequency j is assigned to sector i in the best
solution, and Pij = 0 otherwise. The loop is repeated
until time is elapsed.

The GenerateFrom procedure in line 7 represents
the heuristic restart step required so that the local
search jumps out of local minima. LSHR returns the
best plan S∗ found during the search. This procedure
is detailed next: in order to generate a solution, we use
an auxiliary heuristics matrix, H, which is initialized
as a copy of the probability matrix F . By means of
roulette-wheel, a cell Hij is chosen. This means that
frequency j is assigned to sector i in the solution that
is being generated. This partial solution involves the
following modifications in matrix H: in order to dis-
card new assignments of frequency j to sector i, cell
Hij is set to 0. Adjacent cells Hij−1 and Hij+1 are set
to 0 too, to avoid adjacent channel frequencies in the
same sector. If the number of assigned frequencies in
sector i equals its number of TRXs, the whole row Hi

corresponding to that sector is set to 0. Once matrix H

has been updated, a new cell Hij is chosen by roulette-
wheel (meaning that frequency j is assigned to sector i),
followed by the corresponding updating of H. This pro-
cess is repeated until every sector is assigned as many
frequencies as TRXs.

5 Experimental Evaluation

This section describes the two problem instances used
in this paper, and presents the empirical results of the
four algorithms tested.

5.1 Problem Instances

Here, we want to provide the reader with details on the
two FAP instances which are being tackled. They cor-
respond to two US cities: Seattle and Denver. Whereas
the former has 970 TRXs and 15 different frequencies to
be assigned, the latter has 2612 TRXs and 18 frequen-
cies. In addition to size and number of frequencies to be
assigned, Denver also has a larger TRX density: every
TRX has 107.84 neighbor TRXs on average, whereas
this amount is only 59.65 for Seattle. This makes Den-
ver the most difficult of the two instances.

Fig. 2 Topology of the Seattle instance.

Fig. 3 Topology of the Denver instance.

The constants used in the mathematical formula-
tion [8] were set to K = 100 000, cSH = 6 dB, and
cACR = 18 dB, respectively. Figures 2 and 3 display
the network topology, every triangle representing a sec-
torized antenna in which several TRXs operate. These
GSM networks are currently operating so finding their
optimal plannings is of great practical interest.

We also want to remark that the data source to
build the interference matrix based on the C/I probabil-
ity distribution uses thousands of Mobile Measurement
Reports (MMRs) [51] rather than propagation predic-
tion models. MMRs are a more accurate data source,
as they capture the cell location pattern in the network
and do not rely on predictions. These properties make
our GSM problem more realistic than standard avail-
able benchmarks [41]. Indeed, the most similar avail-
able instances are the COST 259 benchmark, but the
basic traffic load is drawn at random according to an
empirically observed distribution, and signals are pre-
dicted with several propagation models. The Philadel-
phia, CELAR and GRAPH instances [41] are even sim-
pler.
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5.2 Parametrization

This section summarizes the parameter settings for each
of the algorithms. Preliminary experiments were carried
out to find the best set of parameter values for each
algorithm. These parameter settings are:

– SSGA: Population size = 10, uniform crossover
with pc = 1.0, random mutation with pm = 0.2,
selection with binary tournament, replacement =
worst individual

– SS: Population size = 40, RefSet size = 9, Solution
combination method = uniform crossover

– EA: softBloq = 50, hardBloq = 300, maxPopSize
= 5, pmut = 0.9, mutSelected = 7

– LSHR: Learning rate fr = 0.001
– ACO: 5 ants, the heuristic information used avoids

using similar frequencies (Option 2 in [8]), rdet is
started with rdet = 0.7 and then gradually decreased
until rdet = 0.3 in each restart phase.

5.3 Empirical Results

Experiments for all the algorithms have been carried
out under exactly the same conditions: an Intel Xeon
3GHz processor and 2GB RAM has been used for this
purpose. On the software side, we have used gcc ver-
sion 3.2.3 on a Red Hat Linux 2.4.21-4. Previous re-
search [8] reported results on applying ACO on the
Denver instance, but a different machine was used. Al-
though ACO is not one of the metaheuristics developed
for this paper, we have carried out experiments with
this metaheuristic in order to compare with these pre-
vious results [8].

Since we are dealing with stochastic algorithms, we
have carried out 30 independent runs for each meta-
heuristic. In order to provide the results with statisti-
cal confidence and detect differences between the algo-
rithms within short and long time ranges, we have con-
sidered four different time limits (120, 600, 1800, and
3600 seconds) and performed statistical comparisons on
them. These limits have been chosen by bearing in mind
the practical interest of telecommunication companies,
for which the time requirements are usually very hard.
Average cost values, x̄, and standard deviations, σn, of
the 30 executions for every algorithm are summarized
in Tables 3 and 4, for the Seattle and Denver instances,
respectively (a gray background has been used to show
the best (lowest) value).

Let us start by analyzing the resulting frequency
plans computed by the considered algorithms. To prop-
erly put in context the quality of these plans, Table 2
displays the average, x̄, and the standard deviation, σn,

Table 2 Average and standard deviation of 30 random solutions
and 30 executions of local search for the Denver and Seattle net-
works.

Random Local Search
x̄±σn x̄±σn

Seattle 55 204.11±1815.99 3 692.66±405.19

Denver 115 577 436.48±3 902 668.53 105 155.60±2 077.20

of the cost of randomly generated solutions, on the one
hand, and randomly generated solutions that undergo
the local search method used by the metaheuristic al-
gorithms, on the other hand. The goal is to highlight
two different facts. First, the high accuracy of this lo-
cal search algorithm, which is able to reduce the cost
of random frequency plans several orders of magnitude
(specially in the Denver instance, the larger one). And,
second, we want to show that the metaheuristics can
profit from the hybridization with this local search by
reaching frequency plans provoking weaker interference
than those obtained by the standalone local search. In-
deed, if we consider the results included in Tables 3
and 4, it can be easily seen that the FAP costs of the
plans are lower for all the algorithms, time limits, and
instances undertaken.

Taking into account these two tables (Tables 3 and
4), it is remarkable that all the proposed algorithms are
able to keep improving the solution quality in the two
problem instances. These numerical values also show
that the behavior of the different algorithms depends
on the real world instance addressed, even though the
problem class is the same. However, several interesting
conclusions can be drawn. For the Seattle instance, all
trajectory-based metaheuristics give lower interfering
plans than population-based ones for all time ranges,
(1+1)-EA being the best performer. For the Denver in-
stance, the situation seems to be reversed, although it is
not so clear cut. In this case, the best plans are given by
a population-based metaheuristic (SS), while one of the
trajectory-based algorithms (LSHR) performs compar-
atively worse than the rest. As mentioned in Section
5.1, Denver is more difficult than Seattle, and there-
fore it requires a more thorough search in order to find
good quality solutions. So, it is understandable that
SS diversity maintenance techniques perform very well
on the Denver instance. For the same reason, a pure
trajectory-based technique as LSHR underperforms on
Denver.

We also want to note that previous research has
already used the Denver instance in [8], where an ACO
algorithm was used. The same ACO metaheuristic has
been tested on the new computer environment and the
new instance. In the Denver instance, all metaheuristics
perform better than ACO, and in the Seattle one, all
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Table 3 Empirical results of the metaheuristics for 4 different time limits on the Seattle instance. The mean and the standard
deviation are presented.

Seattle 120 s 600 s 1800 s 3600 s

ACO 1889.64±118.97 1578.65±148.06 1380.33±128.33 1330.49±116.79

SSGA 1894.67±79.83 1757.60±87.49 1676.12±63.02 1628.05±51.17

SS 2115.56±191.43 1606.85±183.21 1348.74±145.95 1238.68±141.55

(1+1) EA 1417.28±141.94 1142.65±108.47 989.30±73.07 917.43±51.92

LSHR 1677.73±208.45 1341.40±123.48 1194.13±105.85 1102.13±115.49

Table 4 Empirical results of the metaheuristics for 4 different time limits on the Denver instance. The mean and the standard
deviation are presented.

Denver 120 s 600 s 1800 s 3600 s

ACO 93439.46±1341.54 92325.42±1111.56 90649.93±740.02 89875.66±699.49

SSGA 89540.41±1008.14 87850.79±583.45 86908.94±386.37 86870.40±320.02

SS 89401.36±1091.63 87233.42±874.73 86122.66±666.58 85525.17±494.54

(1+1) EA 89798.47±1305.70 87859.68±1038.68 86835.99±1016.04 86363.98±790.68

LSHR 92946.57±1519.37 89680.33±902.81 88646.53±526.92 88367.90±406.18
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Fig. 4 Average interference of the four metaheuristics every 120
seconds in the Seattle network.

of them but one (SSGA) also give lower interference
plans, so we have been able to improve upon previous
results in the literature.

Overall, a trajectory-based algorithm ((1+1)-EA)
and a population-based one (SS) point out a good be-
havior in both instances. Not only they offer the lowest
interferer plans for one of the instances, but obtain rea-
sonable results in the other. To graphically display all
our claims, Figs. 4 and 5 show the evolution of the best
(lowest) costs of the frequency plans every 120 seconds,
from 2 to 60 minutes. These conclusions will now be
qualified by statistical tests. The following statistical
analysis has been performed for every time limit [61,
62]. First a Kolmogorov-Smirnov test is performed in
order to check whether the values of the results follow
a normal (gaussian) distribution or not. Since this test
is positive in all the samples, we have used means and
standard deviations in the result tables. Then, a Lev-
ene test checks for the homogeneity of the variances.
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Fig. 5 Average interference of the four metaheuristics every 120
seconds in the Denver network.

If samples have equal variance (positive Levene test),
an ANOVA test is done; otherwise we perform a Welch
test. We consider here a confidence level of 95% (i.e.,
significance level of 5% or p-value under 0.05), which
means that the differences are unlikely to have occurred
by chance with a probability of 95%. To further ana-
lyze the results statistically, we have then included a
post-hoc testing phase in Tables 5 and 6 which allows
for a multiple comparison of samples. We have used
the multcompare function provided by Matlab c©. It
chooses the most appropriate type of critical value to be
used in the multiple comparison, which ranges from the
more conservative HSD or Tukey-Kramer method to
less conservative Scheffe’s S procedure [63]. The same
confidence level has been kept for this testing phase
(α = 0.05).

The way to interpret the pairwise comparisons of
Tables 5 (Seattle) and 6 (Denver) is as follows. For every
pair of algorithms, the tables display those time ranges
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Table 5 Post-hoc tests of the results for the Seattle instance.
Time limits for which the pairwise comparison is not significant.

SSGA 120
SS 600, 1800 −
(1+1)-EA − − −
LSHR − − − −

ACO SSGA SS (1+1)-EA

Table 6 Post-hoc tests of the results for the Denver instance.
Time limits for which the pairwise comparison is not significant.

SSGA −
SS − 120, 600
(1+1)-EA − 120, 600, 1800 120, 600
LSHR 120 − − −

ACO SSGA SS (1+1)-EA

where differences are not significant. The “−” symbol
means that the differences all are statistically signifi-
cant. First, it must be noticed that for both problem
instances, differences for the 3600 second time range are
always significant. Second, it was noticed before that in
the Seattle instance, trajectory-based algorithms per-
formed better than population-based ones. Table 5
shows that in fact: all differences between population-
based and trajectory-based metaheuristics are signifi-
cant. Moreover, differences among the population-based
algorithms (ACO, SS, and SSGA) are in some cases not
significant. With respect to the trajectory-based ones,
(1+1)-EA outperforms significantly LSHR for all time
ranges, so this is clearly the best algorithm in this do-
main (Fig. 4). In the Denver instance (see Table 6), SS
is the best algorithm for the 3600 second range, while
it behaves similarly to other algorithms for short time
spans (120 and 600 seconds). It seems that the diversity
maintenance techniques of SS allow this metaheuristic
to avoid stagnation for the longer time periods (1800
and 3600 seconds, as it can be seen in (Fig. 5)). It
can also be seen that a population-based (SSGA) and
a trajectory-based ((1+1)-EA) have a similar behavior
for most time ranges.

Summarizing all the above, we can conclude that
(1+1)-EA and SS are particularly accurate algorithms
for this domain. (1+1)-EA is a very effective algorithm
for both problem instances. It is significantly the best
for Seattle and the runner up in Denver, and in this
latter case, differences with the best performer (SS) are
not statistically significant for time ranges smaller than
600 seconds. SS is the statistically significant winner
for time ranges over 600 seconds in the Denver domain,
and the third performer in Seattle, not far away for the
two best algorithms. The remaining algorithms behave
well in one of the domains (LSHR in Seattle and SSGA
in Denver) but badly in the other (LSHR in Denver and
SSGA in Seattle).

Table 7 Collisions and distribution of the signaling cost Csig of
(1+1)-EA for the Seattle instance.

Time Limit (secs)
(1+1)-EA 120 600 1800 3600

Collisions 6379.53 6375.40 6372.57 6368.87

Csig ≥ 10 30.27 22.27 17.00 14.43
Csig ≥ 20 19.03 13.10 9.77 8.83
Csig ≥ 30 10.93 7.47 5.17 4.70
Csig ≥ 40 5.40 3.57 3.07 2.63
Csig ≥ 50 0.27 0.07 0.07 0.07
Csig ≥ 60 0.00 0.00 0.00 0.00
Csig ≥ 70 0.00 0.00 0.00 0.00
Csig ≥ 80 0.00 0.00 0.00 0.00
Csig ≥ 90 0.00 0.00 0.00 0.00
Csig ≥ 100 0.00 0.00 0.00 0.00

Total cost
(from Table 3) 1417.28 1142.65 989.30 917.43

To further analyze the results obtained, we have
considered the resulting frequency plans reached by the
two best overall metaheuristics for the Seattle and Den-
ver instances, (1+1)-EA and SS, respectively. In these
plans, we have counted not only the total number of
collisions, i.e., the number of co-channel and adjacent-
channel interferences, but also the amount of collisions
whose Csig (as given by Eq. 2) is equal or greater than
T , being T = 10, 20, . . . , 100. (Note that 100 is the
higher value that Eq. 2 can take if no collisions appear
between TRXs within the same sector.) These results
for Seattle and Denver are averaged over the 30 fre-
quency plans and for the four time limits considered.
They all are respectively included in Tables 7 and 8.
The goal here is to show how the two best algorithms
work and to give some hints on the complexity of the
instances tested.

In the case of the Seattle instance with (1+1)-EA, it
can be seen that the improved frequency plans reached
by the algorithm are based on decreasing the total num-
ber of collisions (row “Collisions” in Table 7) all over
the network. Even though this is an expected behav-
ior, the reduction in the number of collisions is rather
small (from 6379.53 to 6368.87) if we consider the total
amount of planning cost achieved (from 1417.28 in 120
seconds to 917.43 in 3600 seconds). The interesting fact
is that the resulting improvements of the (1+1)-EA are
based on reducing the collisions that most contribute to
the planning cost, e.g., the frequency plans reached by
(1+1)-EA in 120 seconds have, on average, 10.93 colli-
sions with Csig ≥ 30, but only 4.70 in 3600 seconds. No
collisions with Csig ≥ 60 appear in any of the computed
plans.

If we consider now the collision information of the
SS algorithm when solving the Denver instance (Ta-
ble 8), the scenario is actually different. Indeed, as it can
be seen in the first (number of collisions) and last rows
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Table 8 Collisions and distribution of the signaling cost Csig of
SS for the Denver instance.

Time Limit (secs)
SS 120 600 1800 3600

Collisions 38779.23 38787.33 38860.77 38911.93

Csig ≥ 10 2447.93 2374.40 2344.30 2325.63
Csig ≥ 20 1995.47 1938.63 1906.37 1890.60
Csig ≥ 30 1090.00 1074.80 1056.97 1057.50
Csig ≥ 40 848.90 846.13 836.07 836.37
Csig ≥ 50 46.90 44.10 41.77 41.30
Csig ≥ 60 21.73 18.17 17.20 16.17
Csig ≥ 70 19.37 15.57 14.80 13.90
Csig ≥ 80 14.20 11.13 10.80 10.47
Csig ≥ 90 14.20 11.13 10.80 10.47
Csig ≥ 100 14.20 11.13 10.80 10.47

Total cost
(from Table 4) 89401.36 87233.42 86122.66 85525.17

(cost of the frequency plans), the higher the quality of
the plan (lower interference), the greater the number of
collisions. Although this may be thought as contradic-
tory, the distribution of the signaling costs helps to bet-
ter understand this behavior. This distribution points
out that the frequency plans reached in the longer runs
have more co-channel and adjacent-channel interfer-
ences but all of them provoking the smaller signaling
cost, i.e., Csig ≤ 10. The interferences with higher sig-
naling costs tend to be reduced. The rest of algorithms
follow the same pattern, but the results are not dis-
played here in order to minimize the number of tables.
As a main conclusion, we want to remark here the im-
portance of having real-world interference information
as we do in this work, since better frequency plans do
not necessarily mean a smaller number of collisions on
real GSM networks.

6 Conclusions and Future Work

In this paper, a real-world Frequency Assignment Prob-
lem (FAP) for GSM mobile networks has been ad-
dressed. A mathematical formalism that incorporates
actual interference information is used [8]. Four re-
search groups have collaborated in the design and adap-
tation of different metaheuristics, both trajectory and
population-based, for our version of FAP. The advice
provided in previous research has been acknowledged
[21,8], and all of the algorithms have been hybridized
with an efficient local search method, specially adapted
to our version of FAP. It has to be remarked that all the
metaheuristics use the same local search method, to im-
prove the fairness of the comparison. The local search
was able to reduce the cost of random frequency plans
several orders of magnitude. The hybrid metaheuristics
based on this local search improved the frequency plans
even more. All of the metaheuristics have been care-

fully evaluated and compared on two large real-world
instances of FAP: Denver and Seattle.

The current work is an extension of [14], where
four metaheuristics were applied to the Denver FAP
instance. In this paper, these metaheuristics have been
improved and tested on two real-world instances. Two
of the metaheuristics emerged as the best performers
overall, for both real-world instances. These best per-
formers are SS and (1+1)-EA, SS due to its diversity
maintenance techniques that allow this metaheuristic
to avoid stagnation for the longer time periods in large
real-world instances (as Denver) and (1+1)-EA due to
its ability to perform as a completely trajectory-based
algorithm when no stagnation is detected, and increase
the population size in order to avoid strong local op-
tima when necessary. Denver is the hardest instance,
both in terms of size and TRX density, and therefore it
is very important to maintain more diversity. This ex-
plains that SS is the most adequate algorithm for this
instance. In the case of Seattle, it was easier to avoid
local optima, so maintaining a very diverse population
is not so important, and (1+1)-EA was able to beat SS.

Another important conclusion of this work is that
better frequency plans do not necessarily mean a
smaller number of collisions on real GSM networks, be-
cause each collision has an associated signaling cost,
and the collisions are more or less important depend-
ing on their respective signaling costs. On real GSM
networks the most important objective is to maximize
the quality of service, that is, to reduce the really sig-
nificant interferences. We take into account this as-
pect, being an important distinction between this work
and many other FAP researches that only deals with
benchmarking-like problems.

So the most important contributions of the coordi-
nation of our four research groups are: the use of a FAP
formulation that uses real-world interference data; the
design and adaptation of four different metaheuristics
to this FAP, all of them using the same local search
algorithm; the detailed statistical comparison of all our
results in two real-world large problem instances; and
the generation of a new best result, better than the ones
published in the literature [8,14].

The formulation of FAP as a multiobjective opti-
mization problem will be investigated as future work.
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