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We consider a class of time series specification tests based on quadratic forms of weighted sums of
residuals autocorrelations. Asymptotically distribution-free tests in the presence of estimated parameters
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MA alternatives. The performance of the test with small samples is studied by means of a Monte Carlo
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1. Introduction
Let {X;};2_., be a covariance stationary time series with zero
mean such that the filtered series

ea=¢B)X, t=0,%1,%£2,...,

is a White Noise process, i.e. an uncorrelated process with zero
mean and variance o2, where the linear filter ¢ is a prescribed
function of the backshift operator B. We adopt the normalization
¢ (0) = 1. The series X; might not be observable, as it happens
when X; are errors of a general regression model. The discussion of
this case is postponed to Section 4.

Given a data set {X;};_,, statistical inferences usually rely on
a parametric specification of ¢, which is described by means of a
class of functions indexed by parameters taking values in a suitable
parameter space ® C RY,say g = {¢y : 0 € O}, sothatey (0) =1
for all & € ©. The resulting statistical inferences are invalid when
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the putative specification is incorrect and, hence, testing the null
hypothesis

Ho:p€d

is sorely needed before performing any statistical inference.
The null hypothesis of the correct specification can be written
as

Ho : pg, ) =0 forallj > 1andsomefy € O,

where pg () = 2m)™" [7_f (W) f; ' () cos (Aj) d is the autoco-
rrelation function of the residuals g9y = ¢y (B) X;, t =0, £1, ...,
fo =l (e“)|_2 and fy (1) = |@p (e”){_2 are the underlying
normalized spectral density of {X;}2__ and its parametric spe-
cification counterpart, respectively.

A vast majority of test statistics for time series model specifica-
tion are functions of some estimated residual autocorrelation (ERA)
function, i.e. suitable estimates of pg,. Portmanteau test statistics
are quadratic forms of an ERA vector, e.g. Quenouille (1947), Box
and Pierce (1970), Ljung and Box (1978) or Hosking (1980). La-
grange Multiplier (LM) test statistics, obtained after imposing para-
metric restrictions to a time series model, are quadratic forms of
weighted sums of ERA vectors, e.g. Durbin (1970), Hosking (1978),
or Robinson (1994) more recently.

Sometimes it is possible to compute the residuals {g4};_;, and
e (j) can be estimated by the ERA, png (j) Yo () / Ve (0),
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where the sample autocovariance function of {eg¢}}_; is Png () =
n! Z?:j+1 (eor — &p) (Sgt_j - 59) ,J = 0,1,.., and & =
n~!' Y"1, &g is the residual sample mean. The residuals are often
hard to compute, if not impossible, and it may be advisable to apply
the computationally friendly autocorrelation estimates pny (j) =
7no () /7no (0), where

_ 27 s Iy (M)

Yoo () = — cos(jA), j=0,1,..., (1)
" n kZ:; fo ()

n = [n/2], [a] being the integer part of a, and for generic se-

quences {V;}i_; and {Us)}_; . vy (&) = @rn) ™' 30, Y0, Ve
Uyexp{irj(t —0)},j = 1,...,0,s0Ix () = Ixx (%) denotes
the periodogram of {X;}{_, evaluated at the Fourier frequency A; =
2mj/n for positive integers j. We omit the zero frequency for mean
correction.

Henceforth, for the sake of motivation and notational economy,
we shall not distinguish between the alternative autocorrelation
estimates, and we shall denote by p,g either p,g or p,g. However,
the different results presented in the paper will be formally justi-
fied in the Appendix for both estimators.

Let us assume first that the hypothesis to be tested is simple, i.e.
the values of the components of 6y are known under Hy. The most
popular test for testing Hy is the popular Box-Pierce’s portmanteau
test, which uses as test statistic BPy, (m) with

m

BPy (m) = 1) puo ()7

j=1
where m must be chosen by the practitioner. This test is a com-
promise between the classical omnibus test based on Bartlett's T,
and U, processes and the parametric LM tests based on some re-
strictions on the parameters of a more or less flexible specification.
Among them, the ARFIMA (p, d, q) specification is the most popu-
lar, with

(pﬁ(z) / n’
pw@=0-2"——=. 0=(8dn).
’ g, 2) ( )
suchthat @5 (z) =1—381z—--- —pzPand &, (z2) = 1 — iz —

-+ - —1ngz4 are the autoregressive and moving average polynomials,
respectively. In fact, BPg, (m) is the LM test statistic when testing
that m parameters of the autoregressive part (o1, . . ., Som) Or the
moving average part (o1, - . . , Jom) €qual zero. This is also the LM
statistic for testing that all the components of the vector 6, are 0 in
the Bloomfield’s (1973) exponential spectral density specification

m
fo ) = gs, (1) exp (Z O cos xk) . 0=(0,65), )
k=1
for some 6y = (6}, 63,) and [ loggs, (1) di = 0 for all ¢, such
that 0 = (6] 6;) € ©.

The Box-Pierce’s test belongs to the class of test statistics de-
fined by quadratic forms of weighted sums of residual autocorre-
lations of the form,

Wng () = Yrug (@) Yo (@)
with

n—1 12 4
Yng (@) =n'"? (Zw (e (i)/) D @) pw (),
j=1 j=1

where w is am x 1 weight function such that Zj;l o () w () is
positive definite for each £ > m, and for some generic K > 0
loGIl <K', j=1.2,.... (3)

Thus, BPug (M) = g (@) With ® () = (=1, - .., Tgem) -
When w is scalar, Theorem 1 below provides a large sample jus-
tification for the class of tests described by means of the Bernoulli

random variable ¢,‘j‘90 (w) =1 , when testing at the o

{wneo (@)>2q }
significance level, where 1, is the indicator function and z, is the
(1 — )th quantile of the standard normal distribution. When w

is multivariate, tests are described by cb,‘f(,o (w) = 1{w o (@)1 }
n 0 mo

where X,fm is the (1 — «)th quantile of the chi-squared with m
degrees of freedom. The theorem refers to Class A of processes, de-
fined in the Appendix. Class A allows for a wide range of autocorre-
lation patterns in {X;};°_, including long memory, and imposes
a Martingale difference assumption on the powers of the white
noise process {&;};> _, . This assumption is weaker than Gaussian-
ity, or independence, which are usually assumed in the time series
goodness-of-fit testing literature. See Robinson (1994) and Del-
gado et al. (2005) for discussion. Theorem 1 also allows to compute
the efficiency of the tests in this class under the sequence of local
alternatives of the form

), @0
Jn n

where 6, —p, 6y and r and a, can depend on 6, and are subject to
conditions specified in Class L defined in the Appendix. We assume
implicitly that r and a,, are such that py, is a positive semi-definite
sequence for all n. These local alternatives appear in a natural way

by representing the autocorrelation structure of {€y; };.; according
to the linear process

Hin : pgy () = for some 9y € O, (4)

got = Py (B) vyt
where {vp; };c; are uncorrelated and
ang (J) i
z,
Jn
with Y-, ang (j)° < 00 and limy o0 gy () =1 () -

Let N, and I, be the m-dimensional normal distribution and
identity matrix respectively.

o0
By @) =1+
=1

Theorem 1. Assume that {X;};°__, € A Under Hy, € L,

00 172
Vngp (@) —a N (Zw(j)w(i)’) D rol),In
= =1

Thus, the corollary below justifies inferences based on (Dr‘,’go (w) .

Corollary 1. Under conditions in Theorem 1 and Hy,,
W, (@) = a X W (@),

where
00 00 1 %

W) =) r{oj) (Zwo’)wo’)/) D w(ri).
j=1 j=1 j=1

Thus the Pitman-Noether asymptotic relative efficiency of
<1>,‘1"90 (w) (Noether, 1955) is given by W (w) /W (r), which is in
[0, 1] since W (r) = Z}"L r (j)?> and W (w) is the sum of squares
of the projection of r on w. Thus, ®f, (1) is the most efficient
test in its class. When w is scalar, the asymptotic relative effi-
ciency of ¢, (@) reduces to the squared correlation coefficient be-

tween w and r when Zjil w (j)r (j) > 0, showing that d),‘;‘@o (r)
is the most efficient test in its class. When Zfil ow()rg <
0, lim, .., Pr (¢g90 () = 1) <a.

Parametric tests consist of assuming that ¢ = ¢y, and testing
the hypothesis,

HO . 910 =0,



where 0y is a q;-valued subvector of 6y, g < g, in the direction of
the parametric local alternative,

H]n (b0 = V/\/ﬁ

Testing such a hypothesis is equivalent, applying a standard mean
value theorem (MVT) argument to py (j), to test Hy versus Hq, with
r () = y'dig, (j), where

. 1 [~ )
dig (i)=§ / cos(kj)a—e]logfe () da,
-7

assuming suitable smoothness restrictions on f; to be speci-
fied later. Henceforth, we always assume that it is possible to
interchange the integration and differentiation operators. Then,
if 61p and y are scalars, the one-sided test is ¢,‘§‘90 ry =

1 ) . However, in parametric testing, two sided
{‘/fngo (ﬂgn<y)<dwo)>za } p g

tests are required when testing that a vector of parameters is equal
to zero.

Parameters are unknown in practical situations and they must
be estimated. The corresponding ERA’s with estimated parame-
ters are neither asymptotically independent or distribution-free.
This is why the asymptotic distribution of classical Portmanteau
test statistics is not well approximated by the distribution of a chi-
squared random variable, except when a suitably large number of
sample autocorrelations is considered. In the next sections we de-
velop asymptotically pivotal tests under these circumstances.

In Section 2 we propose a transformation of the weights which
result in test statistics converging to a standard normal under the
null. We show that a new Box-Pierce-type test based on a linear
transformation of the ERA’s, belongs to this class and is asymptot-
ically distributed as a chi-squared using a fixed number of trans-
formed ERA’s. Section 3 discusses the implementation of the test
with regression residuals. In Section 4, we illustrate the finite sam-
ple properties of our test by means of a Monte Carlo experiment.
Conclusions and further comments on the extension of the propo-
sed tests to different models and alternative regularity conditions
are placed in a final section. Mathematical proofs are contained in
an Appendix at the end of the article.

2. Asymptotically distribution free tests with estimated param-
eters

In order to implement the test when 6, is unknown under
the null, we need a /n-consistent estimator, 6, say, see, for
instance, Velasco and Robinson (2000). Theorem 2 provides an
asymptotic expansion of the test statistics, which depends on the
“score” function

1 (7 a
dy () = ﬂ/ cos (A)) 3 log fy (&) dA.

Notice thatdg, (-) = —dg () /30]9—g, under Ho. The statement of
Theorem 2 refers to Class B, which imposes some further mild re-
strictions on the class of functions ¢ in order to avoid some patho-
logical behaviour of dy, but allowing fairly flexible specifications,
including those exhibiting long-memory such as fractionally inte-
grated ARMA and exponential models. Similar assumptions were
also used by Delgado et al. (2005). Henceforth, it is assumed that
the parameter estimator 6, is /n-consistent under the sequence
of local alternatives Hy,.

Theorem 2. Assume that {X;}°_., € Aand § € B. Under Hy, € L,
n—1 n—1

D0 puy ) =Y () pusy ()

j=1 j=1

n—1
_ Z @ (j) dg, G)' (6n — 60) + 0, (712 .

j=1

Thus, asymptotically distribution-free tests can be obtained
for any vector of weight functions w using a sample dependent
transformation @, g, such that

n—1
D dnan () di, () = 0. )

=1

Assuming that w and dg, are not perfectly collinear, the least squa-
res residuals @y g, satisfy (5) non trivially, where for any generic
functiong : Z — R™,

k=1

n—1 n—1 -1
Go (=20~ gdy (k' (Z d (k) dy <k)/> dy G,
k=1

i=12,.... (6)

Theorem 3. Under the conditions in Theorem 2 and Hy,, € L,

o -1/2
Wn (&)n.én) —>d Nm (Z &)00,90 (’) éboo.@g 0),)

j=1
XD oy ()T () I
j=1

Here &g, = lim, oo @ng,. Notice that supjcy |@ng, () —
oo, ()| = 0p(1) straightforwardly using the fact that 6, is Jn—
consistent, weights o satisfying (3) and dy are smooth in 6, i.e.
satisfying (v) in Class B in the Appendix. We can justify inferences

based on &g (&n,6,) With the next corollary.

Corollary 2. Under conditions in Theorem 2 and Hy, € L,

‘11”911 (&)”-gn) —d an‘l (W (&)m,ﬂg)) °

Let 7,4 be the residual function where g in (6) is replaced
by r. Now, the relative efficiency of @y, (&ng,) is given by
w (C"\)ooﬁg) /W (1/:00,90)1 where W (?00.90) = Zji] fooﬂo (])2 =
>4 7 () Foo.g (7). Taking into account that Y=, 1 (j) @oc.g, () =
> Fooity () @oorgy (), it is immediate that W, (Fag,) is also
efécient relative to its class. .

Testing the hypothesis Hy in the direction Hy, is equivalent
to test Ho versus Hy, with r () = y’dg, (j), where dy () =
(dio (), d26 (j)')" is conformable with respect to 6 = (6},6;) .
Then, using a restricted ,/n-consistent estimate én of 0y, so that

N / ~ !
(9 —60) do ) = (Bon—620) das () — n™"2y'diy () under

Hip, the optimal weights are estimated by fn,é,. () = y’an,lén @,
where

k=1 1

n—1 n—1 -1
do 1o () = dig () — Y _ dig (k) dg (k)' ( dyg (k) dag (k)’)
k=

X dag () (7
ie. Elmw are the least squares residuals when projecting {d14 (j) }}‘:_11
on {dy ()} -

Interestingly, (D:én (am 1;)”) is asymptotically equivalent to gen-

eralized LM tests based on different objective functions consi-
dered in the literature, cf. Robinson (1994), such as LM, = n -

~\/ ~ - - - ’
Stn (Gn) HI (Gn) Stn <0n>, where 6, = (0’, 92",]) is the associa-
ted restricted (pseudo) maximum likelihood estimate (MLE) under

3



Ho Sin(B) =~ X0 o, O g, O) and H}' @)

(S0 o oo )
LM, corresponds approximately to the LM test based on the Whit-
tle’s log-likelihood objective function, which is y,9 (0) in (1),
whereas with p9 (j) = pne (j), it corresponds to its time domain
Gaussian likelihood counterpart. Applying arguments in Robinson
(1994), we conclude that LM, —4 x;, (v'HA! (60)""y). The statis-
tics W, are asymptotically equlvalent to LMn under Hy, when us-
ing optlmal weights, as stated in the following corollary, which is
a straightforward consequence of Theorem 2.

. For example, when pn (j) = pug () ,

Corollary 3. Under conditions in Theorem 2 and Hip,
A 2 A~
wnén (wn,én) —d qu (V/990 (woo,é)o) V) s

Y2 e (o G) (T2 (o))
Wi, (A, ) = Mo+ 0, (1)

where $29 (w) =
Zjo; o () dyg (j)', and

The tests ¢ (&,4,) are computed using any preliminary

0 \on,
restricted ./n-consistent estimator 6, under the sequence of
alternatives {Hy,},>4. Thus, Yt (&n_1@"> is asymptotically locally

efficient in its class for testing HO in the direction of Hln, as
well as asymptotically equivalent to the LM test, noticing that

2uy (Aocstng) = HIL (60)" because 372, digy () doc,1tp () =
Z}i] aoo.wo (l) aoo,leo (I)/ .

When testing in the direction of innovations autocorrelated ac-
cording to a MA (m) , AR (m) or the autocorrelation structure de-
scribed in (2),

dio () = (g=1ys -- - l(j:m))/ (8)
in(7),so that Sy, (0) = — (pns (1), ..., pro (M), and H}' ()"
equals

-1
— (dag (1), ..., dzg (m))’ (Z dz9 () dao () )

]_
X (dg (1), ..., dog (M)).
The corresponding LM statistic has the form

IMy = (pg, (1), Pz, () H' (én)
X (e (Do g, (M)

and, by Corollary 3, is asymptotically equivalent to o <an,1§n>

for any /n-consistent estimator 0, restricted under the null.

However, in the presence of estimated parameters, tests based
on the sum of the squares of the first m ERAs are not equivalent to
LM tests, even asymptotically.

3. Tests based on regression residuals

When {X;}2__, are the unobserved errors of a multiple
regression model, new difficulties arise because nonparametric
nuisance functions appear when computing the optimal weights.
Suppose that

Ye = Z/Bo + X,

where we assume first that {Y;, Z;};2_ is a 1 + p-valued vector
covariance stationary time series, and By € RP is a vector of
unknown parameters. We shall discuss the case when Z, admits
non-stochastic regressors later.

t==+1,+£2,...,

Let B, be a /n-consistent estimator of By, e.g. the Gaussian
MLE. In order to test the specification of X; in these circumstances,
consider residuals X; (B) = Y; — B'Z;,t = 0,*1,..,ie,X; =
Xt (Bo) and

@o (B)
& (0, B) =gy B)X: (B) = o ® lec+o®BZ (Bo— B} .
t=0,=%1,...,
ie, & = & (0o, Po). As before, the autocorrelation function of

{ec (0, B)}2_., can be estimated either by the sample autocor-
relation function pngg () = Pnop () /Pnop (0), With Prgp () =
n! Z?=j+1 &t (On, Bn) Et—j (Ons Bn),j =0,1,..., 0rby, :5119;6 0 =
Vnog (7) /vnop (0), where yygp (j) is defined as yne (j) with Iy being
replaced by Ix(g). Also in this Section, ppgp refers to either pnep or
Pnop-

isn order to identify the parameters, assume that ¢y (B) Z, are
predetermined, i.e. E (so @, B Zj) = 0,j < 0, but not necessarily
strictly exogenous. Then, defining the cross-spectral density
function between X, (B) and Z, fx(s).z say, by E (Xo (B)Z) =

@m)~" [ exp (iAf) fx(p).z (1) dA, we note that
E (g0 (0, B) - g (B) Z;
o ) = (€0 ( ﬂa)z @0 (B) Z;)
1 T o Sxeyz (B
= 9mo? /_” exp (iAj) 7)(9 ) dx,

is then zero forj < 0, but allowed to be nonzero forj > 0. We also
extend Class B to Class C to incorporate equivalent conditions on
ngp as on dy. Assuming that ¢ € C, the next theorem is a straight-
forward extension of Theorem 3. Hence, its proof is omitted.

Theorem 4. Assume that {X;}°_ €A § € CandHy, € L,

n—1 ) o n—1 ) ) BO _,Bn /
D () putun () = Y @ () Prsos G) — 0 _a
=1 =1 n— v
n—1 ,
 ( Neopo (I)) ’
X;‘”U)(%@ o

Thus, asymptotically distribution free test statistics are based
on weights orthogonal to both 7,4, and dg,. To this end, we can
consider the semiparametric estimator

X(,s)z()»k)
{ ZEXP(MJ) X }

or time domain versions. This avoids to parameterize fxg).z.
For any weight function w and a smoothing number m, define

N . . i Nnog (K) /
Omnop () = o () — Zw ) ( dy (k) )

k=1
-1 .
% i Mnog (k) mnop () Mngp (k) dg (k) Nnog ()
e\ dy (k) muop (k) dy () dy (K)' do G) )~
Thus, reasoning as before, W g, 5, (@mn,6,p,)» With Yo ep (@) =
wmn.ﬁﬁ (w)/ 1//’mn,&ﬁ (w) and

m -2y
Ymnop (©) =n'"? <Z o (o (i)’) > @ () prop ()
j=1

=1

Nnop (J)

is expected to be asymptotically pivotal under the null and suitable
regularity conditions.
The convergence in distribution of Y¥mngs (@mn,g,p, ) is Proved,

assuming that (Xt, Zt’)/ belong to Class D, a multivariate extension
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of Class A, but allowing fx z to be nonparametric. It is also assumed
that

1 m
—+1——>O asn — oo (9)
m  n'/2
to control the estimation effect of ng,g, () by Mugep, G).J =
1,...,m. The trimming is needed because, unlike dg,, 74,p,

depends on a sample average, but has no effect on the asymptotic
properties of the tests. Notice that the trimming can be avoided by
assuming a parametric function for fx z = fx(g,).z» which is weaker
than assuming that Z; is strictly exogenous, i.e. nugp, ) = 0
allj > 1. An study of optimal choices of m is obviously beyond
the scope of this article. However, this choice seems of secondary
importance in practical terms given the fast decay of the weights
w. Finally, note that our distribution free tests can be computed
without resorting to smooth estimation of the cross-spectrum as
considered in Delgado et al. (2009), avoiding that finite sample
properties are affected by the choice of a bandwidth number.

Next theorem provides the limiting distribution of i 6p
(&mn,0,p,) under local alternatives

L T() | an (l)
Hin t pogpo () = T +
and shows that the test &, (Pmn,0up,) s locally efficient in its
class. We also omit the proofBglven the similarities with that of
Theorem 4.

. j> 0forsome (65, By) € O,

oo
Theorem 5. Assume that {(X ,Z[)/} € D, g € C and (9)

under Hy, € L,

I//m n (wrrm 9,1/3,1 —4 Npy

-~ ~1/2
(Z oo.6060 () @060 (l')/)

=1

/

Mg

X

00,00 Bo (]) r (’) I

1

J

If the elements of Z;, t = 1, 2, ..., are nonstochastic, such as
polynomial trends in t, and under the identifiability conditions
stated in the Appendix as Class E, estimation of § does not affect
the asymptotic properties of ERA’s, and weights need not be
orthogonalized. The reason is that the Z; are strictly exogenous in
this case, and the corresponding function 74,4, (j) is zero for all
leads and lags. This fact, together with the assumption that 8, is
(at least) 4/n-consistent, renders Theorems 3 and 4 valid in this set
up.

We could consider general pseudo-residuals Ug, (Y;,Z;) =
X, t = 0,%1,+£2,.... These pseudo-residuals could be the
parametrically scaled residuals Ug (Y;,Z;) = Y;/op (Z;), where
og is a known function indexed by the parameter $, e.g. a GARCH
specification. The results in this Section can be straightforwardly
applied towards testing the lack of autocorrelation of these
pseudo-residuals.

4. A Monte Carlo Experiment

This simulation study is based on 50,000 replications of
ARFIMA (p, d, q) models under alternative designs. The innovations
are independent standard normals. Parameters are estimated us-
ing the restricted Whittle estimator under the null hypothesis and
we use time domain ERA’s.

We have computed the percentage of rejections using five dis-
tribution free tests:

1. Delgado et al. (2005) omnibus test based on the transformed
T,-process using the Cramer-von Mises criteria, CvM.

2. The efficient LM test against different residual autocorrelation
alternatives.

3. Our efficient test an = Yy, (Eln mn) with an 16, corresponding

to different residual autocorrelation alternatives.

4, Our transformed portmanteau test (TPT) lI/n, with dn 10,
corresponding to the alternative of residuals autocorrelated
according to an AR (m), cf. (8).

5. Box Pierce test, computed as proposed by Ljung and Box (1978),
BP,, (m).

Table 1 reports the percentage of rejections under the null of
AR(1), MA(1) and integrated of order d process (I (d)), with sample
sizes of 200 and 500. We have computed the BP test form = 10, 20
and 30. Choices of m around /n are expected to yield test statistics
with a good size accuracy. We also provide results for m = 5 in
order to check size accuracy and power for a small m. We report
results for our TPT using small values of m = 1, 2, 3, 5.

As it happens with the standard LM, test statistic considering
AR (m) (or MA (m), or Bloomfield (m)) departures from the inno-
vations white noise hypothesis, the weighting matrix of the test

statistic Wg, (dn,mn) becomes near idempotent as m increases.

This fact prevents us from using our TPT or the LM test with large
values of m in this situation. The size accuracy of the TPT is excel-
lent for the small values reported in the three designs considered.
The CvM and BP tests also perform very well for a sample size of
500, but LM,, and lf/,, suffer very serious size distortions for some
designs.

The proportion of rejections under alternative hypotheses are
reported in Table 2 for n = 200 and different designs. All the
tests detect departures from the AR(1) specification in the direction
of MA(1) innovations, as well as departures from the MA(1)
specification in the direction of AR(1) innovations. However, I(d)
departures from the white noise hypothesis are better detected
by the TPT than any other test. The classical BP test rejects less
than the other methods in this situation. It is worth mentioning
that departures from the AR(1) specification with parameter 0.5
in the direction of I(d) correlated innovations are not detected
by any test for the sample sizes considered. Departures from the
1(d) hypothesis are better detected. However, the TPT works much
better than the others in this case.

5. Further comments

This article discusses the construction of distribution free tests
for general time series model specification, which include models
exhibiting long memory. The resulting tests are asymptotically
equivalent to Gaussian LM tests, despite using any preliminary
/n-consistent estimator. This requires that {/npng, (i)}j>0 are
asymptotically independent standard normals under the null,
which is provided assuming in Class A that {&:}°__ does not
exhibit some form of higher order serial dependence under the
null, e.g. conditional volatility.

The asymptotic distribution of { /1oy, () }j>0 has been derived
under fairly general conditions on the higher order serial
dependence of {¢;};°__, e.g. Hannan and Heyde (1972) assume a
Martingale difference sequence and Romano and Thombs (1996)
assumes nonparametric strong mixing dependence. In this general
setting {,0,190 (i)}. are still asymptotically normal but with

j=0
asymptotic covariance function

AsyVar {/npugy () » V/pnsy ()} = ag, (i, £)

with a9 (,€) = E (s&r+jocese08c4j+40)- This expression is
simplified under particular circumstances. For instance, when
{er}i2_o is a Martingale difference sequence, aq, (j,£) =

5



Table 1
Empirical size of LM and Portmanteau tests at 5% of significance.

M M &, B, [dyo : AR (m)] B, (m)

m 1 2 3 5 5 10 20 30

n = 200

Ho: AR(1)

810 [dig : 1(d)]

—0.8 47 34 34 49 4.8 4.6 43 5.5 5.5 6.0 6.6

—0.5 44 3.2 33 4.8 4.7 45 4.2 5.1 5.2 5.7 6.3
0.0 41 25 25 5.0 4.6 44 4.2 49 5.0 5.7 6.3
0.5 3.6 1.1 0.7 49 4.7 45 4.2 4.8 5.1 5.6 6.3
0.8 3.1 49 3.0 4.8 4.6 4.6 44 5.0 5.2 5.8 6.3

Ho: MA(1)

10 [dig : 1(d)]

—0.8 42 35 33 45 44 4.2 4.1 6.7 6.3 6.4 7.0

—0.5 42 3.0 3.1 45 45 44 4.1 5.1 5.1 5.7 6.3
0.0 41 23 23 4.7 44 44 4.1 4.8 5.0 5.6 6.2
0.5 3.6 33 0.6 4.6 44 4.2 4.1 4.8 5.0 5.5 6.2
0.8 31 245 3.6 4.6 44 43 4.3 6.3 5.9 6.1 6.6

Ho: I(d)

do [d1g : AR(1)]

0.0 35 49 43 43 3.8 3.5 34 5.0 5.2 5.7 6.4

0.2 3.5 49 43 43 3.8 34 33 5.0 5.2 5.7 6.3

0.4 3.6 5.1 4.2 4.2 3.7 34 3.2 5.0 5.1 5.6 6.2

n =500

Ho: AR(1)

310 [dig : 1(d)]

—0.8 5.1 43 43 5.1 5.0 5.0 4.8 54 5.3 5.5 5.8

—0.5 5.0 41 41 5.0 5.0 49 4.7 5.1 49 54 5.7
0.0 4.6 3.6 3.6 5.0 5.1 4.8 4.8 5.1 49 54 5.6
0.5 45 2.0 2.1 5.0 5.0 49 4.8 5.1 5.0 5.3 5.7
0.8 43 4.2 3.8 5.1 4.8 5.0 49 5.3 5.1 5.4 5.7

Ho: MA(1)

10 [dig : 1(d)]

—0.8 49 43 4.2 5.0 4.8 4.8 4.6 6.1 5.6 5.7 6.0

—0.5 49 4.0 4.1 49 5.0 4.8 4.7 5.2 5.0 54 5.7
0.0 4.6 35 35 4.8 5.0 4.8 4.6 5.0 49 5.3 5.7
0.5 45 3.2 1.8 49 4.8 4.8 4.7 5.0 5.0 5.3 5.6
0.8 43 17.4 3.8 49 4.7 4.8 4.7 5.8 5.4 5.5 5.8

Ho: I(d)

do [d1g : AR(D)]

0.0 45 5.0 4.7 4.7 44 43 4.1 5.3 5.1 54 5.7

0.2 45 49 4.6 4.6 44 43 4.1 5.2 5.1 54 5.7

0.4 4.6 53 45 45 43 4.2 4.0 5.3 5.1 54 5.7

E <8t2908[+j908[+390) (Hannan and Heyde, 1972) and when de serial

dependence of {&:};°__ can be modeled according to a Gaussian
GARCH model, ag, (j, £) = 0 for j # ¢ (Lobato, 2001; Lobato et al.,
2001).

Under general serial dependence, it is expected that under Hy,

Vn (@) = N (0, 24)) ,
with

12/ o

D w@( o) a0
j=1 £=1
—1/2

(Do) .
j=1

2 =Y 0ol
j=1

which can be estimated truncating the summations in the middle
term and exploiting the decay of the function w, as in a Newey
and West (1987) type estimator. We could obtain asymptotically
distribution-free tests, robust to unknown higher order serial
dependence of the innovations using the test statistic,

Wnﬁn (&)nﬂn) = 1,[/n (C())/ 9;91 ’ﬁn (CU) s

where 2,5, is a suitable consistent estimator of £24,. Though the
resulting estimator is expected to be efficient within its class, it is
not possible to make comparisons with the corresponding optimal
LM test.

Assuming that the serial dependence of {¢;};°__ can be mod-
eled according to a GARCH specification, we could test that the
parametric scaled innovations are not autocorrelated using the test
proposed in this article by a fairly straightforward extension of the
results in Section 3 to parametric models nonlinear in variables.
However, justifying such procedures in the presence of long range
dependence is out of the scope of this paper.

Appendix A. Tests using frequency domain autocorrelation
estimates

Class A. The process {X;}7°_ . defined by ¢ (B) X; = &, belongs
to Class A if:

(i) The process {g;}{° _ satisfies that E (& | Fi—1) = wu, with p,

constant (u; = Oand u, = o?)forr = 1,...,4 and all
t = 0,41,..., where #; is the sigma algebra generated by
{es,s <t}



Table 2
Empirical power of LM and Portmanteau tests at 5% of significance.

cvM LM &, &, [dyg : AR(m)] BP g, (m)

m 1 2 3 5 5 10 20 30

Ho : AR(1). Hy : MA(1). n = 200

N0 [dip : MA(1)]

—0.8 100. 99.8 99.8 99.8 100. 100. 100. 100. 996 949 89.1

—0.5 80.8 83.6 80.6 80.6 78.9 714 59.9 66.7 49.9 383 338
0.2 7.1 12.9 97 9.7 8.0 7.1 6.1 7.3 6.7 6.9 75
0.5 70.8 75.9 80.8 80.8 79.2 73.0 61.8 68.7 51.7 39.2 347
0.8 99.6 99,5 99.8 99.8 100. 100. 100. 100. 996 95.2 89.3

Ho : MA(1). Hy : AR(1). n = 200

310 [dis : AR(1)]

—0.8 100. 100. 100. 100. 100. 100. 100. 100. 100. 100. 100.

—0.5 844 78.1 81.2 81.2 82.3 77.3 69.7 742 61.9 50.4 449
0.2 7.2 25.0 6.9 6.9 6.1 56 49 59 56 6.1 6.7
0.5 77.1 86.9 815 81.5 80.4 75.1 66.9 72.1 59.3 482 430
0.8 100. 100. 100. 100. 100. 100. 100. 100. 100. 100. 100.

Ho : I(d). H; : ARFIMA(1, do, 0).n = 200

dy = 0.0

810 [dig : AR(D)]

0.2 113 372 343 343 232 6.1 13.0 175 143 125 12.4

0.5 26.8 79.8 777 777 68.3 56.8 437 474 412 317 28.6

0.8 9.8 55.4 51.4 51.4 46.4 36.7 244 244 26.4 214 202

dy=0.2

0.2 11.1 36.7 342 342 23.1 17.1 13.0 174 143 125 124

0.5 26.7 79.1 77.7 77.7 68.2 56.8 436 473 412 316 28.4

08 96 61.1 537 537 494 40.6 28.3 248 26.6 215 19.9

Ho : AR(1). Hy : ARFIMA(1, do, 0). n = 200

810 =0.0

do [dig : 1 ()]

0.1 8.2 10.2 8.7 8.4 8.1 7.8 7.1 8.0 75 75 7.8

0.2 19.9 29.9 26.5 224 218 21.1 193 20.4 18.4 15.8 15.0

03 36.0 475 425 425 423 40.6 37.8 372 35.0 30.0 26.8

0.4 488 46.1 388 60.5 60.0 57.6 53.7 49.1 48.4 418 37.3

810 =05

0.1 36 27 1.0 5.0 48 46 43 50 5.1 58 6.4

0.2 33 47 15 55 5.3 52 5.3 55 5.7 6.2 6.7

03 36 8.3 26 7.8 6.9 6.8 6.5 7.0 6.8 7.1 75

0.4 5.7 16.2 7.1 14.8 116 10.9 9.9 11.7 96 8.9 9.1

(i) f (») = ¢ (e*) |72 is positive and continuously differentiable
on (0, 7], and | (d/dr) logf (1) | = O (|A|~") as |x| — O.

Class B. The parametric model g belongs to Class B if:

(i) fo (1) is continuously differentiable in 6 € ®, » € (0, ],
with derivative pg (1) := (0/00)logfy (1), so that pg, (1) is
continuously differentiable on (0, 7 ].

(ii) [9pg, W) /01| = O (IAI7") as [A] — O.

(iil) suppee Il (M1l = O (log|A]) as|r] — 0.
(iv) Forall A € (0, 7] and 0 < § < 1 there exists some K < oo

such that
1
sup B —
B:16=6l1<5/2) 10 — Ooll>
Jag (A) , K )
X — 140 —6) g, (M) < — log” |A].
fo ) 07 o e

(v) For dy ) = (m)"' /" ue (M) cos () dir and dy () =
ady (j) /90,j=1,2,...,

o0

Z dg, () dg, (j)’ is finite and positive definite; (10)
j=1

sup ldg )l +sup |do ()| <G~ j=1,2,.... (1)
0e® 6eO

Class C. The parametric model g described in Section 5 belongs to
Class C if:

(i) All conditions of Class B hold.
(ii) Conditions (ii)-(iii) of Class B hold replacing us (A) by
Sepz Q) [fg ), (0, B) € 0.
(iii)) Condition (v) of Class B holds with d, replaced by (ng 5 dg) ,
(0.8) €o.
Class D. The (1 + p)-process {V;};2_. . ¥ (B) V; = U, belongs to
Class D if:
(i) The process {U¢};o ., satisfies that E (U] F—1) = 0, E(U;
Ul|Fi-1) = 2, E (UraUepUrc| Fio1) = iaves EUraUepUr,c
UralFi—1) = Habea With g and pgpeq bounded, all

a,b,c,d = 1,...,14+pandallt = 0,41,..., where %
is the sigma algebra generated by {Us, s < t}.

(i) fr &) = | (e*)|7? is continuously differentiable on
[~7,0) U (0, 7], and [[(d/dM)logfy (Il = O(IAI7") as
IA| — 0.

(iii) The elements of fy (1) /f (A) are bounded on [—r, 7 |, where
=1l €A

Class E. The nonstochastic regressors {Z;};° __ belongs to Class E

if D, = ZL] W W, is positive definite for a large enough n,

Wi=¢B)Z,Z =0,t <0.



Class L. The sequence of local alternatives {H1,},-1 in (4) satisfies

Zr(j)2<oo and Zan(j)2:O(1) asn — oo. (12)

=1 =1

(i) The function I defined as [ (1) = (27)~" Zf; r (j) cos (A)) ,
satisfies || (A)| < K \logkl and is differentiable in (0, 77 ] so that
[(@/0x) (M) <K [A7T, all A > 0.

(ii) The absolute value of gn ) = o)t w () cos (A)) is
dominated by an integrable function not dependmg on n for
alln > nyg.

We consider now the frequency domain case, where ppy (j) =
Pno (), and w scalar throughout the appendix, to simplify exposi-
tion, since asymptotic expansions have to be worked out element
by element and multivariate convergence in distribution results
would be followed by a routine application of the Cramer-Wold
device.

Proof of Theorem 1. Define

k 172y
Yni (@) =n'/? <Z ® o'>2> D ouy D ()
=1 =1
By Lemma 1 in Appendix C,
k 12y
Yk (@) =g N <Zw(j)2) Zr(j)w(i),l asn — oo
=1 =1

for k fixed. Then, using Theorem 3.2 in Billingsley (1999) we only
need to show that

lim lim sup Pr (| (@) — ¥k (@)| > €) =0 (13)
k=00 pn—soo

for any € > 0. We first note that the innovation variance estimate
is the same in both v, \ (w) and ¥, () so we concentrate on the
autocovariance estimates yng, (j),j = 0, 1,.... Then we show
that, under Hin, En'/? (8, (j)] = 0 (n™®) for some § > 0 and for
eachj = 1,...,k where 8, () = Pug, () — n~"20%r () = e ()

and yp. (j) is defmed as Yng, () but replacing Ix (- )f90 () byl (-).
Proceeding as in the proof of Lemma 1,

2 Ix (A
Voo (1) = i Z ;(&:) cos (jrx)

X {1 +n 2L} + 0V G,

where E |V;, (j)] = O (1) because g, is uniformly integrable. Then,
using Lemma4 in in Delgado et al. (2005), DHV henceforth, for both
s=1lands =1,

n”z%r Z (?((}:k)) —1, (Ak)) s (h) cos (jAr) | = 0 (n™°)
=1 k

for some § > 0, uniformly in j, while E|(27 /1) Zgzl I (M)l (k)
cos(jrr) — o?r(j)| = O (n~" log n) using Lemma 2 and Lemma 1 in
DHV with r and [ satisfying conditions of Hy,, € L. Next, this shows
that

E

sup

n'? Z 8n () @ ()

Jj=k+1

<n”22|8 (e ()]

is 0, (1) asn — oo, uniformly in k, using (3). Finally, using again
(3) and Lemma 2,

2

n—1
23" e () ()

Jj=k+1

= (le (B +n" Z Z lo ()l | (7 )

=k+1 J=k41j'=k+1
and ‘Z}:,lr] r(jo (j)’ are both o (1) as k — 00, so (13) holds by
Markov’s inequality. O

Proof of Theorem 2. Write

n—1 n—1
D00 pus () = D@ () ousy () — (60 — 60)’
j=1 j=1

n—1 5

XY @) dg, () + Y Ruj.

j=1 j=1
where Ry = (6 —60)' 2 () {doy () — dy (D} . Rz =
(9 —90) S @ ) x {dsy () — dugy (D} Rus = Y, @ () dug, (),

: .
Ruy=|—— nbp
y [Uz o (0)] ;w(i) Pt ()

1 n—1
Rns:[m (,]Zw(z)m,,g)

wi;h du G) = (27/R) o2 X0, Iy () ;™" () 1o (h) cos (g,
an

Ix (M)
0 () =
fn "02 — foo (M)
fao (x) , .
=1+ (0 — 60)" gy (M) ¢ cos (Ay) .
fo (M) no e
Thus, it suffices to prove that Ry = o, (n7?),j = 1,...,5.

Applying (12),(3), and taking into account that 6, is ,/n-consistent,
Rn1 = 0, (n7"/2). Write

n—1 2 n
Ry = (60— 60) Y_ () {deo O 7” > e () cos m,«)}
j=1 i=1
, n—1 ) 27 n
+ =60 Y 0=
Jj=1 no i=1

|:€LZ )
2 fay (M)

:| ey (Ai) cos (jAy) ] .

The first term on the left hand side is O (n~'logn?) applying
Lemma 1in DHV and (2), and the second term can be written as

Gty 253 (0—2—1 (x-)) (x)f ) cos (jAi) (14)
n 0 o2 — o e M Mo, i F w(] COS(] i

Ix (A1)

+ (6n —90) Fa ( ) - (M)Meo()»)COS(M) (15)

Applying (3 ‘ =1 a)(]) cos (jA; )’ = O (logn) uniformly in i.
Thus, after applying Markov's inequality, 6, — 6 = 0, (n~/?) and
(iii) of Class B, (14) is an o, (n"'/2), whereas (15) = o, (n~") by
DHV's Lemma 4. Hence, Ry, = 0, (n~"/2). Applying condition (iv)
in Class B,

Ix (A1)

Joo (h)

) cd
ldwan ] <16 = Gol> = 3 llog af?
i=1



because 6, is 4/n-consistent, and we can take § = Kn~'/2in, so that

|Lil < K wheni > 1, reasoning as in the proof of Lemma 8 of DHV.
Therefore,

IRasll < 116n — 6ol Z Iw(i)l

j=1
) “1/2
x Y llog a2 22 x n~Y/
Z Foo Gy (")
on taking expectations and using [|6;, — 6]| = 0, (n~'/2). Finally

note that replacing yyg, (0) by Vg, (0), and this by o2, makes no
difference by (50) in DHV, which proves that R.4 = 0, (n~/?) and
Ris =0, (n72). O

Proof of Theorem 3. We note that by Theorem 2 and because of
the exact orthogonality of &n g, and dg,, Y (@n.6,) = ¥n (&ne,) +

1/2
0y (1) with T (@00,) = 12 (S35 Guay ) 051 oy O
@n,g, (j). So, we can apply Theorem 2, with w substituted by @y g,,
after noticing that Zj‘fl @ng, () < 00, because of (3), (v) in the
definition of Class B, and using c?)n o) = o0 — dg, G) Buoy
with frg = (S50 dy Gy ) X0 do ) g G, and where
Bn.o, = 0p (1), cf. Lemma 3.

By Lemma 1,
-1/2
IZ/. (a)DOGO _)dN (Zwoogo (’) ) Zwooﬂo (])r(’)vl B
j=1

because 0 < Zf;’l Woo, 0, ()> < oo since w and dg, are not
perfectly collinear, (3) and (v) of Class B. Then the theorem
follows if we show that ¥, (&n,6,) — Vn (000.85) = ¥ (@ne) —

Y (@n.05) + ¥n (Ongy) — ¥n (@0, ) is 0p (1). First,
@n (&)n,f)n) - I_ﬁn ((z)n,@o)

n—1

Z Pnsy () {&\)nﬂn - C/(\)11,60 (])}

1/2=1
n . 12
( Z &)n,()n (])2>
=1

n—1
+0"2 " pugy () Dngy ()

=
n—1 —1/2

: (z onin 0)2) |
=

where &ng, () — @noy G) = doy () {Brey
da, ()} Bng,- Using a MVT argument and (11), ||dg, () — dg, ()| <
Cli6n —6olli™", and | Buay — Bus, | = Oy (I6n — boll) using the
rates of decay of w, d and d. Then

n—1 —1/2
<Z C"\)nﬁn 0)2)
j=1

— Buen ) + {dey () —

n—1
n1/2 Z pn00 (]) {&)n,en - &)”,90 (])}

=

n—1
=S 1 O (i, P

=1

n—1
+1"23" pugy () {dsy O) — da, )} B

=1

is 0, (1), using the MVT, that n'/? Z}:]l Poneo () oy G) = 0, (1),
||,3n90 — Buon ” = 0y (162 — 6ol), and

n—1
"> pugy () {ds () — ds, o')}’

=1

n—1
< Cl6a— 60l "> 1owsy (D i7"
=1
which is 0, (n7?logn) = o, (1), proceeding as in the proof of
Theorem 1.

NEXt‘ &n ((I)n,&g) - Wn (wooﬂo) is
n—1
Z pn00 (]) {&)nﬁo (]) - woo,@o (])}
12221 (16)

1 1/2
(Z &)n.eo (])2)
j=1
n—1 —1/2 n—1 —1/2
(Z n.p (1')2) - (Z Dot (1)2>
j=1 j=1

n—1
x 1'% pugy () @oc.6 () (17)

=1

and we find that, cf. Lemma 3,

n—1 ’
E (W D Tty G) {onay G) — @soity 0')})
j=1

n—1

<> {ona () — 0nse )}
j=1
C n—1 n—1
+— |wl1 6o (’) a)OCﬂO (])’ |&)11,90 (l,) - (Uoo,@() (]/)|
= =
2
whichiso (Y75 [day 0)]) +n0 (55 doy G)]) =0 (D as

n — 00, so that (16)is o, (1) .
On the other hand, using Lemma 3, the term in braces in (17) is
o(1)asn — o0,s0(17)isalso 0, (1) and the theorem follows. O

Proof of Corollary 3. The first part follows as Theorem 3 whereas
the second one, follows noticing that n'/? Z]r'_]] Png, () Ay 16, () =

n'/? Z, 1 Proo () d,1 19, ) + 0p (1) using Theorem 2 and that
n’lén () and d, ,; (j) are orthogonal. O

Appendix B. Tests using time domain autocorrelation esti-
mates

For time domain analysis we only describe the main differences.
We use the simplifying assumption that X; = &, = 0fort < 0, cf.
(2) in Robinson (1994), so that Lemmas 1 and 2 follow at once for
70 under Hg using the Martingale property of &;. Then assuming
that the sequence of alternatives {Hq,},~ belongs to Class L*, we
can show Lemma 1 and then Theorem 1 under Hqp:

Class L*. Hyy € Land ¢ (z) = 3%, 47 == @y, (2) ¢~ ' (2) satisfies

;(0) = 1and;j =n"2r(G) +nla,(G),j = 1,2,..., where
Ir ()| <Ki~',j=1,2,... and for all n sufficiently large Ian Ml <
K j=1,2,. foralle>0

Regularity condltlons on ¢ for the analysis of tests based ontime
domain autocorrelations pyg, are similar to those for frequency



domain, since, assuming that ¢y (e”‘) is differentiable so that
o (2) = (0/00) log @s (2),66 (0) = 0all 8, and expanding &y (z) =
> iy &7, we find that

1 (7 ,
dy (j) = - Re {& (e)} cos (jr) dA = —& ;.

-7
Theorems 2 and 3 for pyg, follow replacing condition (iv) in Class B
by (iv*):
(iv*) Forall 0 < & < 1 there exists some K < oo such that
Yo (2) = XS0 Ve7 = ¢ (2) /s, (2) — 1 — (6 —60) &, (2)
satisfies that supy.1o-go13721 10— Ooll ™ | o | = K*~Mlog’j.j =

Appendix C. Lemmata

Lemma 1. 1n'2(Dng,(1), ..., Pngy(K)) —a N((r(1), ..., T(K), L),
under Hy, € L, for k fixed and {X;}2 _ € A

—00

Proof. We only consider the asymptotic distribution of n'/?
(Pnoo (1) - Ve (k))', since g, (0) —p 02 under Hy,, see e.g.
(51) in the proof of Theorem 2 of DHV. First, we write fy, W=
FOOT 140720, (1)}, where by ) = 1) + n g, ()
satisfies that ;" h, (1) cos (Aj) dA = r (j)+n~"/2a, (j). Then, under
H]ny

o2 Gk w) . L) | & O)
Voo U) = F ;f(kk) COS()\.IJ){]"F 72 + . }

Now, reasoning as in the proof of Theorem 5 of DHV and using that
gn is integrable, 7ug, () = ne () + n~ 20?1 (j) + 0p (n71/2), cf.
Also the proof of Theorem 1. The convergence then follows as in
Lemma 7(b) of DHV using Lemma 2. O

Lemma 2. Assume that {¢,};°___isasin ClassA. ThennE [y2 ()] =

ot +0(n"),j=1,2,...,and nE 7 () 7e ()] = 0(n77),
j#j,asn— oo.

Proof. It follows by direct calculation of the moments of I, (1;),
cf. Brillinger (1980, Theorem 4.3.1) and approximation of sums by
integrals. 0O

Lemma 3. Under (3), (10) and (11), uniformly inj = 1,2,...
&)n,@o (i)_wOO,QO (’) | =0 (”d@o (J) ||) and |&)ﬂ,90 (J)Z - a)OO,QO 0)2|

o (ldso DI+ ldsy ] 10 G)1). asn — cc.

Proof. Follows using standard ordinary least squares algebra. O
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