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a b s t r a c t

We consider a class of time series specification tests based on quadratic forms of weighted sums of

residuals autocorrelations. Asymptotically distribution-free tests in the presence of estimated parameters

are obtained by suitably transforming the weights, which can be optimally chosen to maximize the

power function when testing in the direction of local alternatives. We discuss in detail an asymptotically

optimal distribution-free alternative to the popular Box–Pierce when testing in the direction of AR or

MA alternatives. The performance of the test with small samples is studied by means of a Monte Carlo

experiment.

©

1. Introduction

Let {Xt}∞t=−∞ be a covariance stationary time series with zero
mean such that the filtered series

εt = ϕ (B) Xt , t = 0, ±1, ±2, . . . ,

is a White Noise process, i.e. an uncorrelated process with zero
mean and variance σ 2, where the linear filter ϕ is a prescribed
function of the backshift operator B. We adopt the normalization
ϕ (0) = 1. The series Xt might not be observable, as it happens
when Xt are errors of a general regressionmodel. The discussion of
this case is postponed to Section 4.

Given a data set {Xt}nt=1, statistical inferences usually rely on
a parametric specification of ϕ, which is described by means of a
class of functions indexed by parameters taking values in a suitable
parameter spaceΘ ⊂ R

q, sayJ = {ϕθ : θ ∈ Θ}, so thatϕθ (0) = 1
for all θ ∈ Θ . The resulting statistical inferences are invalid when
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the putative specification is incorrect and, hence, testing the null
hypothesis

H0 : ϕ ∈ J

is sorely needed before performing any statistical inference.
The null hypothesis of the correct specification can be written

as

H0 : ρθ0 (j) = 0 for all j ≥ 1 and some θ0 ∈ Θ,

where ρθ (j) = (2π)−1
∫ π

−π
f (λ) f −1

θ (λ) cos (λj) dλ is the autoco-
rrelation function of the residuals εθ t = ϕθ (B) Xt , t = 0, ±1, . . . ,

f (λ) = ∣∣ϕ (eiλ)∣∣−2
and fθ (λ) = ∣∣ϕθ

(
eiλ
)∣∣−2

are the underlying
normalized spectral density of {Xt}∞t=−∞ and its parametric spe-
cification counterpart, respectively.

A vast majority of test statistics for time series model specifica-
tion are functions of someestimated residual autocorrelation (ERA)
function, i.e. suitable estimates of ρθ0 . Portmanteau test statistics
are quadratic forms of an ERA vector, e.g. Quenouille (1947), Box
and Pierce (1970), Ljung and Box (1978) or Hosking (1980). La-
grangeMultiplier (LM) test statistics, obtained after imposing para-
metric restrictions to a time series model, are quadratic forms of
weighted sums of ERA vectors, e.g. Durbin (1970), Hosking (1978),
or Robinson (1994) more recently.

Sometimes it is possible to compute the residuals {εθ t}nt=1, and
ρθ (j) can be estimated by the ERA, ρ̂nθ (j) = γ̂nθ (j) /γ̂nθ (0),
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where the sample autocovariance function of {εθ t}nt=1 is γ̂nθ (j) =
n−1

∑n
t=j+1 (εθ t − ε̄θ )

(
εθ t−j − ε̄θ

)
, j = 0, 1, . . ., and ε̄θ =

n−1
∑n

t=1 εθ t is the residual sample mean. The residuals are often
hard to compute, if not impossible, and itmay be advisable to apply
the computationally friendly autocorrelation estimates ρ̃nθ (j) =
γ̃nθ (j) /γ̃nθ (0), where

γ̃nθ (j) = 2π

ñ

ñ∑
k=1

IX (λk)

fθ (λk)
cos (jλk) , j = 0, 1, . . . , (1)

ñ = [n/2] , [a] being the integer part of a, and for generic se-
quences {Vt}nt=1 and {Ut}nt=1 , IV ,U

(
λj

) = (2πn)−1
∑n

t=1

∑n
�=1 Vt

U ′
� exp

{
iλj (t − �)

}
, j = 1, . . . , ñ, so IX

(
λj

) = IX,X

(
λj

)
denotes

the periodogram of {Xt}nt=1 evaluated at the Fourier frequency λj =
2π j/n for positive integers j. We omit the zero frequency for mean
correction.

Henceforth, for the sake of motivation and notational economy,
we shall not distinguish between the alternative autocorrelation
estimates, and we shall denote by ρnθ either ρ̂nθ or ρ̃nθ . However,
the different results presented in the paper will be formally justi-
fied in the Appendix for both estimators.

Let us assume first that the hypothesis to be tested is simple, i.e.
the values of the components of θ0 are known under H0. The most
popular test for testingH0 is the popular Box–Pierce’s portmanteau
test, which uses as test statistic BPθ0 (m) with

BPθ (m) = n

m∑
j=1

ρnθ (j)2 ,

where m must be chosen by the practitioner. This test is a com-
promise between the classical omnibus test based on Bartlett’s Tp
and Up processes and the parametric LM tests based on some re-
strictions on the parameters of amore or less flexible specification.
Among them, the ARFIMA (p, d, q) specification is the most popu-
lar, with

ϕθ (z) = (1 − z)d
Φδ (z)

Ξη (z)
, θ = (δ′, d, η′)′ ,

such that Φδ (z) = 1 − δ1z − · · · − δpz
p and Ξη (z) = 1 − η1z −

· · ·−ηqz
q are the autoregressive andmoving average polynomials,

respectively. In fact, BPθ0 (m) is the LM test statistic when testing
that m parameters of the autoregressive part (δ01, . . . , δ0m) or the
moving average part (η01, . . . , η0m) equal zero. This is also the LM
statistic for testing that all the components of the vector θ10 are 0 in
the Bloomfield’s (1973) exponential spectral density specification

fθ (λ) = gθ2 (λ) exp

(
m∑

k=1

θ1k cos λk

)
, θ = (θ ′

1,θ
′
2

)′
, (2)

for some θ0 = (
θ ′
10,θ

′
20

)′
and

∫ π

−π
log gθ2 (λ) dλ = 0 for all θ2 such

that θ = (θ ′
1,θ

′
2

)′ ∈ Θ.
The Box–Pierce’s test belongs to the class of test statistics de-

fined by quadratic forms of weighted sums of residual autocorre-
lations of the form,

Ψnθ (ω) = ψnθ (ω)′ ψnθ (ω)

with

ψnθ (ω) = n1/2

(
n−1∑
j=1

ω (j) ω (j)′
)−1/2

n−1∑
j=1

ω (j) ρnθ (j) ,

where ω is a m × 1 weight function such that
∑�

j=1 ω (j) ω (j)′ is
positive definite for each � ≥ m, and for some generic K > 0

‖ω (j)‖ ≤ Kj−1, j = 1, 2, . . . . (3)

Thus, BPnθ (m) = Ψnθ (ω) with ω (j) = (1{j=1}, . . . , 1{j=m}
)′
.

Whenω is scalar, Theorem 1 below provides a large sample jus-
tification for the class of tests described by means of the Bernoulli

random variable φα
nθ0

(ω) = 1{
ψnθ0

(ω)>zα

}, when testing at the α

significance level, where 1{·} is the indicator function and zα is the
(1 − α)th quantile of the standard normal distribution. When ω
is multivariate, tests are described by Φα

nθ0
(ω) = 1{

Ψnθ0
(ω)>χ2

mα

},
where χ2

mα is the (1 − α)th quantile of the chi-squared with m
degrees of freedom. The theorem refers to Class A of processes, de-
fined in the Appendix. Class A allows for a wide range of autocorre-
lation patterns in {Xt}∞t=−∞, including long memory, and imposes
a Martingale difference assumption on the powers of the white
noise process {εt}∞t=−∞ . This assumption is weaker than Gaussian-
ity, or independence, which are usually assumed in the time series
goodness-of-fit testing literature. See Robinson (1994) and Del-
gado et al. (2005) for discussion. Theorem 1 also allows to compute
the efficiency of the tests in this class under the sequence of local
alternatives of the form

H1n : ρθ0 (j) = r (j)√
n

+ an (j)

n
for some θ0 ∈ Θ, (4)

where θn →p θ0 and r and an can depend on θ0, and are subject to
conditions specified in Class L defined in the Appendix.We assume
implicitly that r and an are such that ρθ0 is a positive semi-definite
sequence for all n. These local alternatives appear in a natural way
by representing the autocorrelation structure of {εθ t}t∈Z according
to the linear process

εθ t = Φnθ (B) υθ t ,

where {υθ t}t∈Z are uncorrelated and

Φnθ (z) = 1 +
∞∑
j=1

αnθ (j)√
n

zj,

with
∑∞

j=1 αnθ (j)2 < ∞ and limn→∞ αnθ0 (j) = r (j) .
Let Nm and Im be the m-dimensional normal distribution and

identity matrix respectively.

Theorem 1. Assume that {Xt}∞t=−∞ ∈ A. Under H1n ∈ L,

ψnθ0 (ω) →d Nm

⎛
⎝( ∞∑

j=1

ω (j) ω (j)′
)−1/2 ∞∑

j=1

r (j) ω (j) , Im

⎞
⎠ .

Thus, the corollary below justifies inferences basedonΦα
nθ0

(ω) .

Corollary 1. Under conditions in Theorem 1 and H1n,

Ψnθn (ω) →d χ2
m (W (ω)) ,

where

W (ω) =
∞∑
j=1

r (j) ω (j)′
( ∞∑

j=1

ω (j) ω (j)′
)−1 ∞∑

j=1

ω (j) r (j) .

Thus the Pitman–Noether asymptotic relative efficiency of
Φα

nθ0
(ω) (Noether, 1955) is given by W (ω) /W (r), which is in

[0, 1] since W (r) = ∑∞
j=1 r (j)2 and W (ω) is the sum of squares

of the projection of r on ω. Thus, Φα
nθ0

(r) is the most efficient
test in its class. When ω is scalar, the asymptotic relative effi-
ciency ofφα

nθ0
(ω) reduces to the squared correlation coefficient be-

tween ω and r when
∑∞

j=1 ω (j) r (j) > 0, showing that φα
nθ0

(r)

is the most efficient test in its class. When
∑∞

j=1 ω (j) r (j) <

0, limn→∞ Pr

(
φα
nθ0

(ω) = 1

)
< α.

Parametric tests consist of assuming that ϕ = ϕθ0 and testing
the hypothesis,

Ḣ0 : θ10 = 0,
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where θ10 is a q1-valued subvector of θ0, q1 ≤ q, in the direction of
the parametric local alternative,

Ḣ1n : θ10 = γ /
√
n.

Testing such a hypothesis is equivalent, applying a standard mean
value theorem (MVT) argument to ρθ (j), to testH0 versusH1n with
r (j) = γ ′d1θ0 (j), where

d1θ (j) = 1

2π

∫ π

−π

cos (λj)
∂

∂θ1
log fθ (λ) dλ,

assuming suitable smoothness restrictions on fθ to be speci-
fied later. Henceforth, we always assume that it is possible to
interchange the integration and differentiation operators. Then,
if θ10 and γ are scalars, the one-sided test is φα

nθ0
(r) =

1{
ψnθ0

(
sign(γ )·d1θ0

)
>zα

}. However, in parametric testing, two sided

tests are requiredwhen testing that a vector of parameters is equal
to zero.

Parameters are unknown in practical situations and they must
be estimated. The corresponding ERA’s with estimated parame-
ters are neither asymptotically independent or distribution-free.
This is why the asymptotic distribution of classical Portmanteau
test statistics is not well approximated by the distribution of a chi-
squared random variable, except when a suitably large number of
sample autocorrelations is considered. In the next sections we de-
velop asymptotically pivotal tests under these circumstances.

In Section 2 we propose a transformation of the weights which
result in test statistics converging to a standard normal under the
null. We show that a new Box–Pierce-type test based on a linear
transformation of the ERA’s, belongs to this class and is asymptot-
ically distributed as a chi-squared using a fixed number of trans-
formed ERA’s. Section 3 discusses the implementation of the test
with regression residuals. In Section 4, we illustrate the finite sam-
ple properties of our test by means of a Monte Carlo experiment.
Conclusions and further comments on the extension of the propo-
sed tests to different models and alternative regularity conditions
are placed in a final section. Mathematical proofs are contained in
an Appendix at the end of the article.

2. Asymptotically distribution free testswith estimated param-
eters

In order to implement the test when θ0 is unknown under
the null, we need a

√
n-consistent estimator, θn say, see, for

instance, Velasco and Robinson (2000). Theorem 2 provides an
asymptotic expansion of the test statistics, which depends on the
‘‘score’’ function

dθ (j) = 1

2π

∫ π

−π

cos (λj)
∂

∂θ
log fθ (λ) dλ.

Notice that dθ0 (·) = −∂ρθ (·) /∂θ�θ=θ0
underH0. The statement of

Theorem 2 refers to Class B, which imposes some further mild re-
strictions on the class of functions J in order to avoid some patho-
logical behaviour of dθ , but allowing fairly flexible specifications,
including those exhibiting long-memory such as fractionally inte-
grated ARMA and exponential models. Similar assumptions were
also used by Delgado et al. (2005). Henceforth, it is assumed that
the parameter estimator θn is

√
n-consistent under the sequence

of local alternatives H1n.

Theorem 2. Assume that {Xt}∞t=−∞ ∈ A and J ∈ B. Under H1n ∈ L,

n−1∑
j=1

ω (j) ρnθn (j) =
n−1∑
j=1

ω (j) ρnθ0 (j)

−
n−1∑
j=1

ω (j) dθn (j)′ (θn − θ0) + op
(
n−1/2

)
.

Thus, asymptotically distribution-free tests can be obtained
for any vector of weight functions ω using a sample dependent
transformation ω̂n,θn such that

n−1∑
j=1

ω̂n,θn (j) dθn (j)′ = 0. (5)

Assuming that ω and dθn are not perfectly collinear, the least squa-
res residuals ω̂n,θn satisfy (5) non trivially, where for any generic
function g : Z → R

m,

ĝn,θ (j) = g (j) −
n−1∑
k=1

g (k) dθ (k)′
(

n−1∑
k=1

dθ (k) dθ (k)′
)−1

dθ (j) ,

j = 1, 2, . . . . (6)

Theorem 3. Under the conditions in Theorem 2 and H1n ∈ L,

ψn

(
ω̂n,θn

) →d Nm

⎛
⎝( ∞∑

j=1

ω̂∞,θ0 (j) ω̂∞,θ0 (j)′
)−1/2

×
∞∑
j=1

ω̂∞,θ0 (j) r (j) , Im

⎞
⎠ .

Here ω̂∞,θ0 = limn→∞ ω̂n,θ0 . Notice that supj∈N |ω̂n,θn(j) −
ω̂∞,θ0(j)| = op(1) straightforwardly using the fact that θn is

√
n −

consistent , weights ω satisfying (3) and dθ are smooth in θ , i.e.
satisfying (v) in Class B in the Appendix. We can justify inferences
based on Φα

nθn
(ω̂n,θn) with the next corollary.

Corollary 2. Under conditions in Theorem 2 and H1n ∈ L,

Ψnθn

(
ω̂n,θn

)→d χ2
m

(
W
(
ω̂∞,θ0

))
.

Let r̂n,θ be the residual function where g in (6) is replaced

by r . Now, the relative efficiency of Φα
nθ0

(
ω̂n,θn

)
is given by

W
(
ω̂∞,θ0

)
/W

(
r̂∞,θ0

)
, where W

(
r̂∞,θ0

) = ∑∞
j=1 r̂∞,θ0 (j)2 =∑∞

j=1 r (j) r̂∞,θ0 (j). Taking into account that
∑∞

j=1 r (j) ω̂∞,θ0 (j) =∑∞
j=1 r̂∞,θ0 (j) ω̂∞,θ0 (j), it is immediate that Ψnθn

(
r̂n,θn

)
is also

efficient relative to its class.
Testing the hypothesis Ḣ0 in the direction Ḣ1n is equivalent

to test H0 versus H1n with r (j) = γ ′d1θ0 (j), where dθ (j) =(
d1θ (j)′ , d2θ (j)′

)′
is conformable with respect to θ = (

θ ′
1, θ

′
2

)′
.

Then, using a restricted
√
n-consistent estimate θ̂n of θ0, so that(

θ̂n − θ0

)′
dθ (·) =

(
θ̂2,n − θ2,0

)′
d2θ (·) − n−1/2γ ′d1θ (·) under

Ḣ1n, the optimal weights are estimated by r̂n,θ̂n (j) = γ ′d̂n,1θ̂n (j) ,
where

d̂n,1θ (j) = d1θ (j) −
n−1∑
k=1

d1θ (k) d2θ (k)′
(

n−1∑
k=1

d2θ (k) d2θ (k)′
)−1

× d2θ (j) , (7)

i.e. d̂n,1θ are the least squares residualswhen projecting {d1θ (j)}n−1
j=1

on {d2θ (j)}n−1
j=1 .

Interestingly, Φα

nθ̂n

(
d̂n,1θ̂n

)
is asymptotically equivalent to gen-

eralized LM tests based on different objective functions consi-
dered in the literature, cf. Robinson (1994), such as LMn = n ·
S1,n

(
θ̃n

)′
H11

n

(
θ̃n

)
S1,n

(
θ̃n

)
, where θ̃n =

(
0′, θ̃ ′

2,n

)′
is the associa-

ted restricted (pseudo)maximum likelihood estimate (MLE) under

3



Ḣ0, S1,n

(
θ̃n

)
= −∑n−1

j=1 ρnθ̃n
(j) d1θ̃n (j) and H11

n (θ) =(∑n−1
j=1 d̂n,1θ (j) d̂n,1θ (j)′

)−1

. For example, when ρnθ (j) = ρ̃nθ (j) ,

LMn corresponds approximately to the LM test based on the Whit-
tle’s log-likelihood objective function, which is γ̃nθ (0) in (1),
whereas with ρnθ (j) = ρ̂nθ (j), it corresponds to its time domain
Gaussian likelihood counterpart. Applying arguments in Robinson
(1994), we conclude that LMn →d χ2

q1

(
γ ′H11∞ (θ0)

−1 γ
)
. The statis-

tics Ψnθ̂n
are asymptotically equivalent to LMn under H1n when us-

ing optimal weights, as stated in the following corollary, which is
a straightforward consequence of Theorem 2.

Corollary 3. Under conditions in Theorem 2 and Ḣ1n,

Ψnθ̂n

(
ω̂n,θ̂n

)→d χ2
q1

(
γ ′Ωθ0

(
ω̂∞,θ0

)
γ
)
,

where Ωθ (ω) = ∑∞
j=1 d1θ (j) ω (j)′

(∑∞
j=1 ω (j) ω (j)′

)−1∑∞
j=1 ω (j) d1θ (j)′ , and Ψnθ̂n

(
d̂n,1θ̂n

)
= LMn + op (1) .

The tests Φα

nθ̂n

(
ω̂n,θ̂n

)
are computed using any preliminary

restricted
√
n-consistent estimator θ̂n under the sequence of

alternatives {H1n}n≥1. Thus, Ψnθ̂n

(
d̂n,1θ̂n

)
is asymptotically locally

efficient in its class for testing Ḣ0 in the direction of Ḣ1n, as
well as asymptotically equivalent to the LM test, noticing that

Ωθ0

(
d̂∞,1θ0

)
= H11∞ (θ0)

−1 because
∑∞

j=1 d1θ0 (j) d̂∞,1θ0 (j)′ =∑∞
j=1 d̂∞,1θ0 (j) d̂∞,1θ0 (j)′ .
When testing in the direction of innovations autocorrelated ac-

cording to a MA (m) , AR (m) or the autocorrelation structure de-
scribed in (2),

d1θ (j) = (1{j=1}, . . . , 1{j=m}
)′

(8)

in (7), so that S1,n (θ) = − (ρn,θ (1) , . . . , ρn,θ (m)
)′
, and H11

n (θ)−1

equals

Im − (d2θ (1) , . . . , d2θ (m))′
(

n−1∑
j=1

d2θ (j) d2θ (j)′
)−1

× (d2θ (1) , . . . , d2θ (m)) .

The corresponding LM statistic has the form

LMn = n
(
ρn,θ̃n

(1) , . . . , ρn,θ̃n
(m)
)
H11

n

(
θ̃n

)
× (ρn,θ̃n

(1) , . . . , ρn,θ̃n
(m)
)′

and, by Corollary 3, is asymptotically equivalent to Ψn,θ̂n

(
d̂n,1θ̂n

)
for any

√
n-consistent estimator θ̂n restricted under the null.

However, in the presence of estimated parameters, tests based
on the sum of the squares of the firstm ERAs are not equivalent to
LM tests, even asymptotically.

3. Tests based on regression residuals

When {Xt}∞t=−∞ are the unobserved errors of a multiple
regression model, new difficulties arise because nonparametric
nuisance functions appear when computing the optimal weights.
Suppose that

Yt = Z ′
tβ0 + Xt , t = ±1, ±2, . . . ,

where we assume first that {Yt , Zt}∞t=−∞ is a 1 + p-valued vector
covariance stationary time series, and β0 ∈ R

p is a vector of
unknown parameters. We shall discuss the case when Zt admits
non-stochastic regressors later.

Let βn be a
√
n-consistent estimator of β0, e.g. the Gaussian

MLE. In order to test the specification of Xt in these circumstances,
consider residuals Xt (β) = Yt − β ′Zt , t = 0, ±1, . . ., i.e., Xt =
Xt (β0) and

εt (θ, β) = ϕθ (B) Xt (β) = ϕθ (B)

ϕ (B)

{
εt + ϕ (B) Z ′

t (β0 − β)
}
,

t = 0, ±1, . . . ,

i.e., εt = εt (θ0, β0). As before, the autocorrelation function of
{εt (θ, β)}∞t=−∞ can be estimated either by the sample autocor-
relation function ρ̂nθβ (j) = γ̂nθβ (j) /γ̂nθβ (0), with γ̂nθβ (j) =
n−1

∑n
t=j+1 εt (θn, βn) εt−j (θn, βn) , j = 0, 1, . . ., or by, ρ̃nθβ (j) =

γ̃nθβ (j) /γ̃nθβ (0), where γ̃nθβ (j) is defined as γ̃nθ (j) with IX being
replaced by IX(β). Also in this Section, ρnθβ refers to either ρ̃nθβ or
ρ̂nθβ .

In order to identify the parameters, assume that ϕθ (B) Zt , are
predetermined, i.e. E

(
ε0 (θ, β) Zj

) = 0, j ≤ 0, but not necessarily
strictly exogenous. Then, defining the cross-spectral density
function between Xt (β) and Zt , fX(β),Z say, by E

(
X0 (β) Zj

) =
(2π)−1

∫ π

−π
exp (iλj) fX(β),Z (λ) dλ, we note that

ηθβ (j) = E

(
ε0 (θ, β) · ϕθ (B) Zj

)
σ 2

= 1

2πσ 2

∫ π

−π

exp (iλj)
fX(β),Z (λ)

fθ (λ)
dλ,

is then zero for j ≤ 0, but allowed to be nonzero for j > 0. We also
extend Class B to Class C to incorporate equivalent conditions on
ηθβ as on dθ . Assuming that J ∈ C , the next theorem is a straight-
forward extension of Theorem 3. Hence, its proof is omitted.

Theorem 4. Assume that {Xt}∞t=−∞ ∈ A, J ∈ C and H1n ∈ L,

n−1∑
j=1

ω (j) ρnθnβn (j) =
n−1∑
j=1

ω (j) ρnθ0β0
(j) −

(
β0 − βn

θn − θ0

)′

×
n−1∑
j=1

ω (j)

(
ηθ0β0

(j)

dθ0 (j)

)
+ op (1) .

Thus, asymptotically distribution free test statistics are based
on weights orthogonal to both ηθ0β0

and dθ0 . To this end, we can
consider the semiparametric estimator

ηnθβ (j) = 1

γnθβ (0)
Re

{
2π

ñ

ñ∑
k=1

exp (iλkj)
IX(β),Z (λk)

′

fθ (λk)

}
,

or time domain versions. This avoids to parameterize fX(β),Z .
For any weight function ω and a smoothing numberm, define

ω̂mn,θβ (j) = ω (j) −
m∑

k=1

ω (k)

(
ηnθβ (k)

dθ (k)

)′

×
[

m∑
k=1

(
ηnθβ (k) ηnθβ (k)′ ηnθβ (k) dθ (k)′
dθ (k) ηnθβ (k)′ dθ (k) dθ (k)′

)]−1 (
ηnθβ (j)

dθ (j)

)
.

Thus, reasoning as before, Ψmn,θnβn

(
ω̂mn,θnβn

)
, with Ψmn,θβ (ω) =

ψmn,θβ (ω)′ ψmn,θβ (ω) and

ψmn,θβ (ω) = n1/2

(
m∑
j=1

ω (j) ω (j)′
)−1/2

m∑
j=1

ω (j) ρnθβ (j) ,

is expected to be asymptotically pivotal under the null and suitable
regularity conditions.

The convergence in distribution of ψmn,θβ

(
ω̂mn,θnβn

)
is proved,

assuming that
(
Xt , Z

′
t

)′
belong to Class D, a multivariate extension
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of Class A, but allowing fX,Z to be nonparametric. It is also assumed
that

1

m
+ m

n1/2
→ 0 as n → ∞ (9)

to control the estimation effect of ηθ0β0
(j) by ηnθ0β0

(j) , j =
1, . . . ,m. The trimming is needed because, unlike dθ0 , ηnθ0β0

depends on a sample average, but has no effect on the asymptotic
properties of the tests. Notice that the trimming can be avoided by
assuming a parametric function for fX,Z = fX(β0),Z , which is weaker
than assuming that Zt is strictly exogenous, i.e. ηnθ0β0

(j) = 0
all j ≥ 1. An study of optimal choices of m is obviously beyond
the scope of this article. However, this choice seems of secondary
importance in practical terms given the fast decay of the weights
ω. Finally, note that our distribution free tests can be computed
without resorting to smooth estimation of the cross-spectrum as
considered in Delgado et al. (2009), avoiding that finite sample
properties are affected by the choice of a bandwidth number.

Next theorem provides the limiting distribution of ψmn,θβ

(ω̂mn,θnβn) under local alternatives

H1n : ρθ0β0
(j) = r (j)√

n
+ an (j)

n
, j > 0 for some

(
θ ′
0, β

′
0

)′ ∈ Θ,

and shows that the test Φα
mnθnβn

(
r̂mn,θnβn

)
is locally efficient in its

class. We also omit the proof given the similarities with that of
Theorem 4.

Theorem 5. Assume that

{(
Xt , Z

′
t

)′}∞
t=−∞

∈ D, J ∈ C, and (9),

under H1n ∈ L,

ψm,n

(
ω̂mn,θnβn

) →d Nm

⎛
⎝( ∞∑

j=1

ω̂∞,θ0β0
(j) ω̂∞,θ0β0

(j)′
)−1/2

×
∞∑
j=1

ω̂∞,θ0β0
(j) r (j) , Im

⎞
⎠ .

If the elements of Zt , t = 1, 2, . . ., are nonstochastic, such as
polynomial trends in t , and under the identifiability conditions
stated in the Appendix as Class E, estimation of β does not affect
the asymptotic properties of ERA’s, and weights need not be
orthogonalized. The reason is that the Zt are strictly exogenous in
this case, and the corresponding function ηθ0β0

(j) is zero for all
leads and lags. This fact, together with the assumption that βn is
(at least)

√
n-consistent, renders Theorems 3 and 4 valid in this set

up.
We could consider general pseudo-residuals Uβ0

(Yt , Zt) =
Xt , t = 0, ±1, ±2, . . . . These pseudo-residuals could be the
parametrically scaled residuals Uβ (Yt , Zt) = Yt/σβ (Zt) , where
σβ is a known function indexed by the parameter β, e.g. a GARCH
specification. The results in this Section can be straightforwardly
applied towards testing the lack of autocorrelation of these
pseudo-residuals.

4. A Monte Carlo Experiment

This simulation study is based on 50,000 replications of
ARFIMA (p, d, q)models under alternative designs. The innovations
are independent standard normals. Parameters are estimated us-
ing the restricted Whittle estimator under the null hypothesis and
we use time domain ERA’s.

We have computed the percentage of rejections using five dis-
tribution free tests:

1. Delgado et al. (2005) omnibus test based on the transformed
Tp-process using the Cramer-von Mises criteria, CvM.

2. The efficient LM test against different residual autocorrelation

alternatives.

3. Our efficient test Ψ̂n = Ψnθn

(
d̂n,1θn

)
with d̂n,1θn corresponding

to different residual autocorrelation alternatives.

4. Our transformed portmanteau test (TPT) Ψ̂n, with d̂n,1θn
corresponding to the alternative of residuals autocorrelated

according to an AR (m), cf. (8).

5. Box Pierce test, computed as proposed by Ljung and Box (1978),

BPn (m).

Table 1 reports the percentage of rejections under the null of

AR(1), MA(1) and integrated of order d process (I (d)), with sample

sizes of 200 and 500.We have computed the BP test form = 10, 20
and 30. Choices ofm around

√
n are expected to yield test statistics

with a good size accuracy. We also provide results for m = 5 in

order to check size accuracy and power for a small m. We report

results for our TPT using small values ofm = 1, 2, 3, 5.
As it happens with the standard LMn test statistic considering

AR (m) (or MA (m), or Bloomfield (m)) departures from the inno-

vations white noise hypothesis, the weighting matrix of the test

statistic Ψnθn

(
d̂n,1θn

)
becomes near idempotent as m increases.

This fact prevents us from using our TPT or the LM test with large

values of m in this situation. The size accuracy of the TPT is excel-

lent for the small values reported in the three designs considered.

The CvM and BP tests also perform very well for a sample size of

500, but LMn and Ψ̂n suffer very serious size distortions for some

designs.

The proportion of rejections under alternative hypotheses are

reported in Table 2 for n = 200 and different designs. All the

tests detect departures from theAR(1) specification in the direction

of MA(1) innovations, as well as departures from the MA(1)

specification in the direction of AR(1) innovations. However, I(d)
departures from the white noise hypothesis are better detected

by the TPT than any other test. The classical BP test rejects less

than the other methods in this situation. It is worth mentioning

that departures from the AR(1) specification with parameter 0.5

in the direction of I(d) correlated innovations are not detected

by any test for the sample sizes considered. Departures from the

I(d) hypothesis are better detected. However, the TPT works much

better than the others in this case.

5. Further comments

This article discusses the construction of distribution free tests

for general time series model specification, which include models

exhibiting long memory. The resulting tests are asymptotically

equivalent to Gaussian LM tests, despite using any preliminary√
n-consistent estimator. This requires that

{√
nρnθ0 (j)

}
j>0

are

asymptotically independent standard normals under the null,

which is provided assuming in Class A that {εt}∞t=−∞ does not

exhibit some form of higher order serial dependence under the

null, e.g. conditional volatility.

The asymptotic distribution of
{√

nρnθ0 (j)
}
j>0

has been derived

under fairly general conditions on the higher order serial

dependence of {εt}∞t=−∞, e.g. Hannan and Heyde (1972) assume a

Martingale difference sequence and Romano and Thombs (1996)

assumes nonparametric strongmixing dependence. In this general

setting
{
ρnθ0 (j)

}
j>0

are still asymptotically normal but with

asymptotic covariance function

AsyVar
{√

nρnθ0 (j) ,
√
nρnθ0 (�)

} = aθ0 (j, �)

with aθ (j, �) := E

(
εtθ εt+jθ εt+�θ εt+j+�θ

)
. This expression is

simplified under particular circumstances. For instance, when
{εt}∞t=−∞ is a Martingale difference sequence, aθ0 (j, �) =

5



Table 1
Empirical size of LM and Portmanteau tests at 5% of significance.

CvM LM Ψ̂n Ψ̂n [d1θ : AR (m)] BPnθn (m)

m 1 2 3 5 5 10 20 30

n = 200

H0: AR(1)

δ10 [d1θ : I(d)]
−0.8 4.7 3.4 3.4 4.9 4.8 4.6 4.3 5.5 5.5 6.0 6.6

−0.5 4.4 3.2 3.3 4.8 4.7 4.5 4.2 5.1 5.2 5.7 6.3

0.0 4.1 2.5 2.5 5.0 4.6 4.4 4.2 4.9 5.0 5.7 6.3

0.5 3.6 1.1 0.7 4.9 4.7 4.5 4.2 4.8 5.1 5.6 6.3

0.8 3.1 4.9 3.0 4.8 4.6 4.6 4.4 5.0 5.2 5.8 6.3

H0: MA(1)

η10 [d1θ : I(d)]
−0.8 4.2 3.5 3.3 4.5 4.4 4.2 4.1 6.7 6.3 6.4 7.0

−0.5 4.2 3.0 3.1 4.5 4.5 4.4 4.1 5.1 5.1 5.7 6.3

0.0 4.1 2.3 2.3 4.7 4.4 4.4 4.1 4.8 5.0 5.6 6.2

0.5 3.6 3.3 0.6 4.6 4.4 4.2 4.1 4.8 5.0 5.5 6.2

0.8 3.1 24.5 3.6 4.6 4.4 4.3 4.3 6.3 5.9 6.1 6.6

H0: I(d)

d0 [d1θ : AR(1)]
0.0 3.5 4.9 4.3 4.3 3.8 3.5 3.4 5.0 5.2 5.7 6.4

0.2 3.5 4.9 4.3 4.3 3.8 3.4 3.3 5.0 5.2 5.7 6.3

0.4 3.6 5.1 4.2 4.2 3.7 3.4 3.2 5.0 5.1 5.6 6.2

n = 500

H0: AR(1)

δ10 [d1θ : I(d)]
−0.8 5.1 4.3 4.3 5.1 5.0 5.0 4.8 5.4 5.3 5.5 5.8

−0.5 5.0 4.1 4.1 5.0 5.0 4.9 4.7 5.1 4.9 5.4 5.7

0.0 4.6 3.6 3.6 5.0 5.1 4.8 4.8 5.1 4.9 5.4 5.6

0.5 4.5 2.0 2.1 5.0 5.0 4.9 4.8 5.1 5.0 5.3 5.7

0.8 4.3 4.2 3.8 5.1 4.8 5.0 4.9 5.3 5.1 5.4 5.7

H0: MA(1)

η10 [d1θ : I(d)]
−0.8 4.9 4.3 4.2 5.0 4.8 4.8 4.6 6.1 5.6 5.7 6.0

−0.5 4.9 4.0 4.1 4.9 5.0 4.8 4.7 5.2 5.0 5.4 5.7

0.0 4.6 3.5 3.5 4.8 5.0 4.8 4.6 5.0 4.9 5.3 5.7

0.5 4.5 3.2 1.8 4.9 4.8 4.8 4.7 5.0 5.0 5.3 5.6

0.8 4.3 17.4 3.8 4.9 4.7 4.8 4.7 5.8 5.4 5.5 5.8

H0: I(d)

d0 [d1θ : AR(1)]
0.0 4.5 5.0 4.7 4.7 4.4 4.3 4.1 5.3 5.1 5.4 5.7

0.2 4.5 4.9 4.6 4.6 4.4 4.3 4.1 5.2 5.1 5.4 5.7

0.4 4.6 5.3 4.5 4.5 4.3 4.2 4.0 5.3 5.1 5.4 5.7

E

(
ε2
tθ0

εt+jθ0εt+�θ0

)
(Hannan and Heyde, 1972) and when de serial

dependence of {εt}∞t=−∞ can be modeled according to a Gaussian

GARCH model, aθ0 (j, �) = 0 for j 
= � (Lobato, 2001; Lobato et al.,

2001).

Under general serial dependence, it is expected that under H0,

ψn (ω) →d Nm

(
0, Ωθ0

)
,

with

Ωθ0 =
( ∞∑

j=1

ω (j) ω (j)′
)−1/2 ( ∞∑

j=1

∞∑
�=1

ω (j) ω (�)′ aθ0 (j, �)

)

×
( ∞∑

j=1

ω (j) ω (j)′
)−1/2

,

which can be estimated truncating the summations in the middle

term and exploiting the decay of the function ω, as in a Newey

and West (1987) type estimator. We could obtain asymptotically

distribution-free tests, robust to unknown higher order serial

dependence of the innovations using the test statistic,

Ψnθn

(
ω̂nθn

) = ψn (ω)′ Ω−1
nθn

ψn (ω) ,

where Ωnθn is a suitable consistent estimator of Ωθ0 . Though the

resulting estimator is expected to be efficient within its class, it is

not possible to make comparisons with the corresponding optimal

LM test.

Assuming that the serial dependence of {εt}∞t=−∞ can be mod-

eled according to a GARCH specification, we could test that the

parametric scaled innovations are not autocorrelated using the test

proposed in this article by a fairly straightforward extension of the

results in Section 3 to parametric models nonlinear in variables.

However, justifying such procedures in the presence of long range

dependence is out of the scope of this paper.

Appendix A. Tests using frequency domain autocorrelation
estimates

Class A. The process {Xt}∞t=−∞ defined by ϕ (B) Xt = εt belongs
to Class A if:

(i) The process {εt}∞t=−∞ satisfies that E

(
εr
t

∣∣Ft−1

) = μr with μr

constant (μ1 = 0 and μ2 = σ 2) for r = 1, . . . , 4 and all

t = 0, ±1, . . ., where Ft is the sigma algebra generated by

{εs, s ≤ t}.
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Table 2
Empirical power of LM and Portmanteau tests at 5% of significance.

CvM LM Ψ̂n Ψ̂n [d1θ : AR(m)] BPnθn (m)

m 1 2 3 5 5 10 20 30

H0 : AR(1). H1 : MA(1). n = 200

η10 [d1θ : MA(1)]
−0.8 100. 99.8 99.8 99.8 100. 100. 100. 100. 99.6 94.9 89.1

−0.5 80.8 83.6 80.6 80.6 78.9 71.4 59.9 66.7 49.9 38.3 33.8

0.2 7.1 12.9 9.7 9.7 8.0 7.1 6.1 7.3 6.7 6.9 7.5

0.5 70.8 75.9 80.8 80.8 79.2 73.0 61.8 68.7 51.7 39.2 34.7

0.8 99.6 99.5 99.8 99.8 100. 100. 100. 100. 99.6 95.2 89.3

H0 : MA(1). H1 : AR(1). n = 200

δ10 [d1θ : AR(1)]
−0.8 100. 100. 100. 100. 100. 100. 100. 100. 100. 100. 100.

−0.5 84.4 78.1 81.2 81.2 82.3 77.3 69.7 74.2 61.9 50.4 44.9

0.2 7.2 25.0 6.9 6.9 6.1 5.6 4.9 5.9 5.6 6.1 6.7

0.5 77.1 86.9 81.5 81.5 80.4 75.1 66.9 72.1 59.3 48.2 43.0

0.8 100. 100. 100. 100. 100. 100. 100. 100. 100. 100. 100.

H0 : I(d). H1 : ARFIMA(1, d0, 0).n = 200

d0 = 0.0

δ10 [d1θ : AR(1)]
0.2 11.3 37.2 34.3 34.3 23.2 6.1 13.0 17.5 14.3 12.5 12.4

0.5 26.8 79.8 77.7 77.7 68.3 56.8 43.7 47.4 41.2 31.7 28.6

0.8 9.8 55.4 51.4 51.4 46.4 36.7 24.4 24.4 26.4 21.4 20.2

d0 = 0.2

0.2 11.1 36.7 34.2 34.2 23.1 17.1 13.0 17.4 14.3 12.5 12.4

0.5 26.7 79.1 77.7 77.7 68.2 56.8 43.6 47.3 41.2 31.6 28.4

0.8 9.6 61.1 53.7 53.7 49.4 40.6 28.3 24.8 26.6 21.5 19.9

H0 : AR(1). H1 : ARFIMA(1, d0, 0). n = 200

δ10 = 0.0

d0 [d1θ : I (d)]
0.1 8.2 10.2 8.7 8.4 8.1 7.8 7.1 8.0 7.5 7.5 7.8

0.2 19.9 29.9 26.5 22.4 21.8 21.1 19.3 20.4 18.4 15.8 15.0

0.3 36.0 47.5 42.5 42.5 42.3 40.6 37.8 37.2 35.0 30.0 26.8

0.4 48.8 46.1 38.8 60.5 60.0 57.6 53.7 49.1 48.4 41.8 37.3

δ10 = 0.5

0.1 3.6 2.7 1.0 5.0 4.8 4.6 4.3 5.0 5.1 5.8 6.4

0.2 3.3 4.7 1.5 5.5 5.3 5.2 5.3 5.5 5.7 6.2 6.7

0.3 3.6 8.3 2.6 7.8 6.9 6.8 6.5 7.0 6.8 7.1 7.5

0.4 5.7 16.2 7.1 14.8 11.6 10.9 9.9 11.7 9.6 8.9 9.1

(ii) f (λ) = |ϕ (eiλ) |−2 is positive and continuously differentiable

on (0, π ], and | (d/dλ) log f (λ) | = O
(|λ|−1

)
as |λ| → 0.

Class B. The parametric model J belongs to Class B if:

(i) fθ (λ) is continuously differentiable in θ ∈ Θ , λ ∈ (0, π ],
with derivative μθ (λ) := (∂/∂θ) log fθ (λ), so that μθ0 (λ) is
continuously differentiable on (0, π ].

(ii)
∥∥∂μθ0 (λ) /∂λ

∥∥ = O
(|λ|−1

)
as |λ| → 0.

(iii) supθ∈Θ ‖μθ (λ)‖ = O (log |λ|) as |λ| → 0.

(iv) For all λ ∈ (0, π ] and 0 < δ < 1 there exists some K < ∞
such that

sup
{θ :‖θ−θ0‖≤δ/2}

1

‖θ − θ0‖2

×
∣∣∣∣ fθ0 (λ)

fθ (λ)
− 1 + (θ − θ0)

′ μθ0 (λ)

∣∣∣∣ ≤ K

|λ|δ log2 |λ|.

(v) For dθ (j) = (2π)−1
∫ π

−π
μθ (λ) cos (jλ) dλ and ḋθ (j) =

∂dθ (j) /∂θ, j = 1, 2, . . . ,

∞∑
j=1

dθ0 (j) dθ0 (j)′ is finite and positive definite; (10)

sup
θ∈Θ

‖dθ (j)‖ + sup
θ∈Θ

∥∥ḋθ (j)
∥∥ ≤ Cj−1, j = 1, 2, . . . . (11)

Class C. The parametric model J described in Section 5 belongs to
Class C if:

(i) All conditions of Class B hold.
(ii) Conditions (ii)–(iii) of Class B hold replacing μθ (λ) by

fX(β)Z (λ) /fθ (λ) ,
(
θ ′, β ′)′ ∈ Θ.

(iii) Condition (v) of Class B holds with dθ replaced by

(
η′

θβ, d′
θ

)′
,(

θ ′, β ′)′ ∈ Θ.

Class D. The (1 + p)-process {Vt}∞t=−∞ , Ψ (B) Vt = Ut , belongs to
Class D if:

(i) The process {Ut}∞t=−∞ satisfies that E (Ut | Ft−1) = 0, E(Ut

U ′
t |Ft−1) = Σ, E

(
Ut,aUt,bUt,c

∣∣Ft−1

) = μabc, E(Ut,aUt,bUt,c

Ut,d|Ft−1) = μabcd with μabc and μabcd bounded, all
a, b, c, d = 1, . . . , 1 + p and all t = 0, ±1, . . ., where Ft

is the sigma algebra generated by {Us, s ≤ t}.
(ii) fV (λ) = |Ψ (eiλ) |−2 is continuously differentiable on

[−π, 0) ∪ (0, π ], and ‖(d/dλ) log fV (λ)‖ = O
(|λ|−1

)
as

|λ| → 0.
(iii) The elements of fV (λ) /f (λ) are bounded on [−π, π ], where

f = {fV }[1,1] ∈ A.

Class E. The nonstochastic regressors {Zt}∞t=−∞ belongs to Class E

if Dn = ∑n
t=1 WtW

′
t is positive definite for a large enough n,

Wt = ϕ (B) Zt , Zt = 0, t ≤ 0.
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Class L. The sequence of local alternatives {H1n}n≥1 in (4) satisfies

∞∑
j=1

r (j)2 < ∞ and

n∑
j=1

an (j)2 = O (1) as n → ∞. (12)

(i) The function l defined as l (λ) = (2π)−1
∑∞

j=1 r (j) cos (λj) ,

satisfies |l (λ)| ≤ K |log λ| and is differentiable in (0, π ] so that
|(∂/∂λ) l (λ)| ≤ K |λ|−1 , all λ > 0.

(ii) The absolute value of gn (λ) = (2π)−1
∑∞

j=1 an (j) cos (λj) is
dominated by an integrable function not depending on n for
all n > n0.

We consider now the frequency domain case, where ρnθ (j) =
ρ̃nθ (j), and ω scalar throughout the appendix, to simplify exposi-
tion, since asymptotic expansions have to be worked out element
by element and multivariate convergence in distribution results
would be followed by a routine application of the Cramer-Wold
device.

Proof of Theorem 1. Define

ψn,k (ω) = n1/2

(
k∑

j=1

ω (j)2

)−1/2
k∑

j=1

ρnθ0 (j) ω (j) .

By Lemma 1 in Appendix C,

ψn,k (ω) →d N

⎛
⎝( k∑

j=1

ω (j)2

)−1/2
k∑

j=1

r (j) ω (j) , 1

⎞
⎠ as n → ∞

for k fixed. Then, using Theorem 3.2 in Billingsley (1999) we only
need to show that

lim
k→∞ lim sup

n→∞
Pr
(∣∣ψn (ω) − ψn,k (ω)

∣∣ > ε
) = 0 (13)

for any ε > 0. We first note that the innovation variance estimate
is the same in both ψn,k (ω) and ψn (ω) so we concentrate on the
autocovariance estimates γ̃nθ0 (j) , j = 0, 1, . . .. Then we show

that, under H1n, En1/2 |δn (j)| = O
(
n−δ
)
for some δ > 0 and for

each j = 1, . . . , k, where δn (j) = γ̃nθ0 (j) − n−1/2σ 2r (j) − γ̃nε (j)

and γ̃nε (j) is defined as γ̃nθ0 (j) but replacing IX (·) f −1
θ0

(·) by Iε (·) .
Proceeding as in the proof of Lemma 1,

γ̃nθ0 (j) = 2π

ñ

ñ∑
k=1

IX (λk)

f (λk)
cos (jλk)

× {1 + n−1/2l (λk)
}+ n−1Vn (j) ,

where E |Vn (j)| = O (1) because gn is uniformly integrable. Then,
using Lemma4 in inDelgado et al. (2005), DHVhenceforth, for both
s = 1 and s = l,

E

∣∣∣∣∣n1/2 2π

ñ

ñ∑
k=1

(
IX (λk)

f (λk)
− Iε (λk)

)
s (λk) cos (jλk)

∣∣∣∣∣ = O
(
n−δ
)

for some δ > 0, uniformly in j, while E|(2π/ñ)
∑ñ

k=1 Iε(λk)l(λk)

cos(jλk) − σ 2r(j)| = O
(
n−1 log n

)
using Lemma 2 and Lemma 1 in

DHV with r and l satisfying conditions of H1n ∈ L. Next, this shows
that

sup
k

∣∣∣∣∣n1/2
n−1∑

j=k+1

δn (j) ω (j)

∣∣∣∣∣ ≤ n1/2
n−1∑
j=1

|δn (j)| |ω (j)|

is op (1) as n → ∞, uniformly in k, using (3). Finally, using again
(3) and Lemma 2,

E

∣∣∣∣∣n1/2
n−1∑

j=k+1

γ̃nε (j) ω (j)

∣∣∣∣∣
2

= O

(
n−1∑

j=k+1

ω2 (j) + n−1
n−1∑

j=k+1

n−1∑
j′=k+1

|ω (j)| ∣∣ω (j′)∣∣
)

and

∣∣∣∑n−1
j=k+1 r (j) ω (j)

∣∣∣ are both o (1) as k → ∞, so (13) holds by

Markov’s inequality. �

Proof of Theorem 2. Write

n−1∑
j=1

ω (j) ρn,θn (j) =
n−1∑
j=1

ω (j) ρnθ0 (j) − (θn − θ0)
′

×
n−1∑
j=1

ω (j) dθn (j) +
5∑

j=1

Rnj,

where Rn1 = (θn − θ0)
′∑n−1

j=1 ω (j)
{
dθn (j) − dθ0 (j)

}
, Rn2 =

(θn − θ0)
′∑n−1

j=1 ω (j)×{dθ0 (j) − dnθ0 (j)
}
, Rn3 =∑n−1

j=1 ω (j) ḋnθn (j),

and

Rn4 =
[

1

σ 2
− 1

γ̃nθ0 (0)

] n−1∑
j=1

ω (j) γ̃nθ0 (j) ,

Rn5 =
[

1

γ̃nθn (0)
− 1

σ 2

] n−1∑
j=1

ω (j) γ̃nθn (j) ,

with dnθ (j) = (
2π/ñ

)
σ−2

∑ñ
i=1 IX (λi) f

−1
θ (λi) μθ (λi) cos (λij),

and

ḋnθ (j) = 2π

ñσ 2

ñ∑
i=1

IX (λi)

fθ0 (λi){
fθ0 (λi)

fθ (λi)
− 1 + (θn − θ0)

′ μθ0 (λi)

}
cos (λij) .

Thus, it suffices to prove that Rnj = op
(
n−1/2

)
, j = 1, . . . , 5.

Applying (12), (3), and taking into account that θn is
√
n-consistent,

Rn1 = op
(
n−1/2

)
. Write

Rn2 = (θn − θ0)
′
n−1∑
j=1

ω (j)

{
dθ0 (j) − 2π

ñ

ñ∑
i=1

μθ0 (λi) cos (jλi)

}

+ (θn − θ0)
′
n−1∑
j=1

ω (j)

{
2π

ñσ 2

ñ∑
i=1[

σ 2

2π
− IX (λi)

fθ0 (λi)

]
μθ0 (λi) cos (jλi)

}
.

The first term on the left hand side is O
(
n−1 log n2

)
applying

Lemma 1 in DHV and (2), and the second term can be written as

(θn − θ0)
′ 2π

ñσ 2

ñ∑
i=1

(
σ 2

2π
− Iε (λi)

)
μθ0 (λi)

n−1∑
j=1

ω (j) cos (jλi) (14)

+ (θn − θ0)
′ 2π

ñσ 2

ñ∑
i=1

(
Iε (λi) − IX (λi)

fθ0 (λi)

)
μθ0 (λi) cos (jλi) . (15)

Applying (3),

∣∣∣∑n−1
j=1 ω (j) cos (jλi)

∣∣∣ = O (log n) uniformly in i.

Thus, after applying Markov’s inequality, θn − θ0 = Op

(
n−1/2

)
and

(iii) of Class B, (14) is an op
(
n−1/2

)
, whereas (15) = op

(
n−1
)
by

DHV’s Lemma 4. Hence, Rn2 = op
(
n−1/2

)
. Applying condition (iv)

in Class B,

∥∥ḋnθn (j)
∥∥ ≤ ‖θ − θ0‖2 C

ñ

ñ∑
i=1

|log λi|2 IX (λi)

fθ0 (λi)

8



because θn is
√
n-consistent, andwe can take δ = Kn−1/2 in, so that

|λi| ≤ K when i ≥ 1, reasoning as in the proof of Lemma 8 of DHV.
Therefore,

‖Rn3‖ ≤ ‖θn − θ0‖2
n−1∑
j=1

|ω (j)| C
ñ

×
ñ∑

i=1

|log λi|2 IX (λi)

fθ0 (λi)
= op

(
n−1/2

)
on taking expectations and using ‖θn − θ0‖ = Op

(
n−1/2

)
. Finally

note that replacing γ̃nθn (0) by γ̃nθ0 (0), and this by σ 2, makes no

difference by (50) in DHV, which proves that Rn4 = op
(
n−1/2

)
and

Rn5 = op
(
n−1/2

)
. �

Proof of Theorem 3. We note that by Theorem 2 and because of

the exact orthogonality of ω̂n,θn and dθn , ψn

(
ω̂n,θn

) = ψ̄n

(
ω̂n,θn

)+
op (1) ,with ψ̄n

(
ω̂n,θn

) = n1/2
(∑n−1

j=1 ω̂n,θn (j)2
)−1/2∑n−1

j=1 ρnθ0 (j)

ω̂n,θn (j). So, we can apply Theorem 2, with ω substituted by ω̂n,θn ,

after noticing that
∑∞

j=1 ω̂n,θn (j)2 < ∞, because of (3), (v) in the

definition of Class B, and using ω̂n,θn (j) = ω (j) − dθn (j)′ βnθn ,

with βnθ =
(∑n−1

j=1 dθ (j) dθ (j)′
)−1∑n−1

j=1 dθ (j) ωθ (j), and where

βn,θn = Op (1), cf. Lemma 3.

By Lemma 1,

ψ̄n

(
ω∞,θ0

)→d N

⎛
⎝( ∞∑

j=1

ω∞,θ0 (j)2

)−1/2 ∞∑
j=1

ω∞,θ0 (j) r (j) , 1

⎞
⎠ ,

because 0 <
∑∞

j=1 ω∞,θ0 (j)2 < ∞ since ω and dθ0 are not

perfectly collinear, (3) and (v) of Class B. Then the theorem

follows if we show that ψ̄n

(
ω̂n,θn

) − ψ̄n

(
ω∞,θ0

) = ψ̄n

(
ω̂n,θn

) −
ψ̄n

(
ω̂n,θ0

)+ ψ̄n

(
ω̂n,θ0

)− ψ̄n

(
ω∞,θ0

)
is op (1). First,

ψ̄n

(
ω̂n,θn

)− ψ̄n

(
ω̂n,θ0

)

= n1/2

n−1∑
j=1

ρnθ0 (j)
{
ω̂n,θn − ω̂n,θ0 (j)

}
(

n−1∑
j=1

ω̂n,θn (j)2

)1/2

+ n1/2
n−1∑
j=1

ρnθ0 (j) ω̂n,θ0 (j)

⎧⎨
⎩
(

n−1∑
j=1

ω̂n,θn (j)2

)−1/2

−
(

n−1∑
j=1

ω̂n,θ0 (j)2

)−1/2
⎫⎬
⎭ ,

where ω̂n,θn (j) − ω̂n,θ0 (j) = dθ0 (j)′
{
βnθ0 − βnθn

} + {dθ0 (j) −
dθn (j)}′βnθn . Using a MVT argument and (11),

∥∥dθ0 (j) − dθn (j)
∥∥ ≤

C ‖θn − θ0‖ j−1, and
∥∥βnθ0 − βnθn

∥∥ = Op (‖θn − θ0‖) using the

rates of decay of ω, d and ḋ. Then

n1/2
n−1∑
j=1

ρnθ0 (j)
{
ω̂n,θn − ω̂n,θ0 (j)

}

= n1/2
n−1∑
j=1

ρnθ0 (j) dθ0 (j)′
{
βnθ0 − βnθn

}

+ n1/2
n−1∑
j=1

ρnθ0 (j)
{
dθ0 (j) − dθn (j)

}′
βnθn

is op (1), using the MVT, that n1/2
∑n−1

j=1 ρnθ0 (j) dθ0 (j) = Op (1) ,∥∥βnθ0 − βnθn

∥∥ = Op (‖θn − θ0‖), and∥∥∥∥∥n1/2
n−1∑
j=1

ρnθ0 (j)
{
dθ0 (j) − dθn (j)

}∥∥∥∥∥
≤ C ‖θn − θ0‖ n1/2

n−1∑
j=1

|ρnθ0 (j) |j−1,

which is Op

(
n−1/2 log n

) = op (1), proceeding as in the proof of

Theorem 1.

Next, ψ̄n

(
ω̂n,θ0

)− ψ̄n

(
ω∞,θ0

)
is

n1/2

n−1∑
j=1

ρnθ0 (j)
{
ω̂n,θ0 (j) − ω∞,θ0 (j)

}
(

n−1∑
j=1

ω̂n,θ0 (j)2

)1/2
(16)

+
⎧⎨
⎩
(

n−1∑
j=1

ω̂n,θ0 (j)2

)−1/2

−
(

n−1∑
j=1

ω∞,θ0 (j)2

)−1/2
⎫⎬
⎭

× n1/2
n−1∑
j=1

ρnθ0 (j) ω∞,θ0 (j) (17)

and we find that, cf. Lemma 3,

E

(
n1/2

n−1∑
j=1

γ̃nθ0 (j)
{
ω̂n,θ0 (j) − ω∞,θ0 (j)

})2

≤
n−1∑
j=1

{
ω̂n,θ0 (j) − ω∞,θ0 (j)

}2

+C

n

n−1∑
j=1

n−1∑
j′=1

∣∣ω̂n,θ0 (j) − ω∞,θ0 (j)
∣∣ ∣∣ω̂n,θ0

(
j′
)− ω∞,θ0

(
j′
)∣∣

which is o

(∑n−1
j=1

∥∥dθ0 (j)
∥∥2)+n−1o

(∑n−1
j=1

∥∥dθ0 (j)
∥∥)2 = o (1) as

n → ∞, so that (16) is op (1) .
On the other hand, using Lemma 3, the term in braces in (17) is

o (1) as n → ∞, so (17) is also op (1) and the theorem follows. �

Proof of Corollary 3. The first part follows as Theorem 3 whereas

the second one, follows noticing that n1/2
∑n−1

j=1 ρnθ̂n
(j) d̂n,1θ̂n (j) =

n1/2
∑n−1

j=1 ρnθ0 (j) d̂n,1θ̂n (j) + op (1) using Theorem 2 and that

d̂n,1θ̂n (j) and dn,2θ̂n (j) are orthogonal. �

Appendix B. Tests using time domain autocorrelation esti-
mates

For time domain analysiswe only describe themain differences.

We use the simplifying assumption that Xt = εt = 0 for t ≤ 0, cf.

(2) in Robinson (1994), so that Lemmas 1 and 2 follow at once for
γ̂nθ under H0 using the Martingale property of εt . Then assuming

that the sequence of alternatives {H1n}n≥1 belongs to Class L∗, we

can show Lemma 1 and then Theorem 1 under H1n:

Class L∗. H1n ∈ L and ζ (z) = ∑∞
j=0 ζjz

j := ϕθ0 (z) ϕ−1 (z) satisfies

ζ (0) = 1 and ζj = n−1/2r (j) + n−1an (j) , j = 1, 2, . . . , where

|r (j)| ≤ Kj−1, j = 1, 2, . . ., and for all n sufficiently large |an (j)| ≤
Kjε−1, j = 1, 2, . . ., for all ε > 0.

Regularity conditions onJ for the analysis of tests based on time

domain autocorrelations ρ̂nθn are similar to those for frequency

9



domain, since, assuming that ϕθ

(
eiλ
)

is differentiable so that
ξθ (z) = (∂/∂θ) logϕθ (z), ξθ (0) = 0 all θ , and expanding ξθ (z) =∑∞

j=1 ξθ,jz
j, we find that

dθ (j) = − 1

π

∫ π

−π

Re
{
ξθ

(
eiλ
)}

cos (jλ) dλ = −ξθ,j.

Theorems 2 and 3 for ρ̂nθn follow replacing condition (iv) in Class B
by (iv∗):
(iv∗) For all 0 < δ < 1 there exists some K < ∞ such that
ψθ (z) = ∑∞

j=0 ψθ,jz
j := ϕθ (z) /ϕθ0 (z) − 1 − (θ − θ0)

′ ξθ0 (z)

satisfies that sup{θ :‖θ−θ0‖≤δ/2} ‖θ − θ0‖−2
∣∣ϕθ,j

∣∣ ≤ Kjδ−1 log2 j, j =
1, 2, . . . .

Appendix C. Lemmata

Lemma 1. n1/2(ρ̃n,θ0(1), . . . , ρ̃n,θ0(k))
′ →d N((r(1), . . . , r(k))′, Ik),

under H1n ∈ L, for k fixed and {Xt}∞t=−∞ ∈ A.

Proof. We only consider the asymptotic distribution of n1/2(
γ̃nθ0 (1) , . . . , γ̃nθ0 (k)

)′
, since γ̃nθ0 (0) →p σ 2 under H1n, see e.g.

(51) in the proof of Theorem 2 of DHV. First, we write fθ0 (λ)−1 =
f (λ)−1

{
1 + n−1/2hn (λ)

}
, where hn (λ) = l (λ) + n−1/2gn (λ)

satisfies that
∫ π

0
hn (λ) cos (λj) dλ = r (j)+n−1/2an (j). Then, under

H1n,

γ̃nθ0 (j) = 2π

ñ

ñ∑
k=1

IX (λk)

f (λk)
cos (λkj)

{
1 + l (λk)

n1/2
+ gn (λk)

n

}

Now, reasoning as in the proof of Theorem 5 of DHV and using that
gn is integrable, γ̃nθ0 (j) = γ̃nε (j) + n−1/2σ 2r (j) + op

(
n−1/2

)
, cf.

Also the proof of Theorem 1. The convergence then follows as in
Lemma 7(b) of DHV using Lemma 2. �

Lemma 2. Assume that {εt}∞t=−∞ is as in Class A. Then nE

[
γ̃ 2
nε (j)

] =
σ 4 + O

(
n−1
)
, j = 1, 2, . . . , and nE

[
γ̃nε (j) γ̃nε

(
j′
)] = O

(
n−1
)
,

j 
= j′, as n → ∞.

Proof. It follows by direct calculation of the moments of Iε
(
λj

)
,

cf. Brillinger (1980, Theorem 4.3.1) and approximation of sums by
integrals. �

Lemma 3. Under (3), (10) and (11), uniformly in j = 1, 2, . . . , |
ω̂n,θ0 (j)−ω∞,θ0 (j) | = o

(∥∥dθ0 (j)
∥∥) and ∣∣ω̂n,θ0 (j)2 − ω∞,θ0 (j)2

∣∣ =
o

(∥∥dθ0 (j)
∥∥2 + ∥∥dθ0 (j)

∥∥ |ω (j)|
)
, as n → ∞.

Proof. Follows using standard ordinary least squares algebra. �
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