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Abstract: Boudry and Gray (2003) have documented that the optimal buy and hold
demand for Australian stocks is not necessarily increasing in the investment horizon when
returns are predictable. Such finding is in contrast with Barberis (2000) who shows that
positive monotonic horizon effects predominate for US stocks. Using a closed form approx
imation to the asset allocation problem, this paper relates the return dynamics to the
investor’s portfolio choice for different investment horizons. In the special case of a single
risky asset, it is shown that return predictability under stationarity may induce both positive
and negative horizon effects in the optimal allocation to the risky asset. The paper extends
previous empirical results by solving for the optimal portfolio when two risky assets with
predictable returns are available for investment.
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1. INTRODUCTION

Time diversification is based on the idea that above average risky asset returns tend to be
offset by below average returns over long horizons if returns are not perfectly serially
correlated. As a consequence, the variance of the annualized return diminishes with the
number of years. Advocates of time diversification conclude that investors with longer
horizons should hold a higher proportion of their portfolio in the risky asset. Such
conclusion, however, has been subject to two main criticisms.1 First, classic results by
Samuelson (1969) and Merton (1969 and 1971) demonstrate that if the investor is free to
rebalance his portfolio each period, he will choose a constant allocation to the risky asset
regardless of the investment horizon, provided that he either has log utility preferences,
or he has constant relative risk aversion and returns are independently and identically
distributed (i.i.d.). Second, the variance of total return on the risky asset not only does not
decrease, but actually increases with the investor’s horizon for i.i.d. single period returns.
This is because although the probability of loss decreases with the investment horizon,
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the magnitude of the potential loss increases with time.2 Long term investments in stocks
are therefore not safer than short term investments for i.i.d. returns.

If returns are mean reverting, however, then the variance of total return increases,
but it does so at a lower rate than in the i.i.d. case. This implies that stocks can be relatively
less risky in the long run, which may lead investors to favor risky assets over long
horizons. Kritzman and Rich (1998) address this issue in a simple and clarifying context.
In particular, they study the problem of an investor who must choose between investing
all his wealth in a safe asset and investing it in a risky asset. Under the assumption that
the stock price process can be represented by a binomial tree with mean reverting
returns, they show numerically that a power utility investor with a constant relative
risk aversion coefficient of two, will be indifferent between the risky asset and the safe
asset in the short run, but will prefer the risky asset for a long term investment. On the
other hand, a longer investment horizon will lead the investor to choose the safe asset if
the return distribution is mean averting, even if he was indifferent over a short horizon.
Finally, for i.i.d. returns, the investor obtains the same expected utility from investing in
the risky asset and the safe asset regardless of the investment horizon.

Barberis (2000) extends the analysis to a more complex setting. More specifically,
he studies the effect of the investment horizon on the optimal portfolio choice of a
power utility investor assuming a lognormal return generating model with a first
order autoregressive predictive variable3 driving the time varying conditional mean
of log excess returns. Barberis (2000) also allows for a continuum of portfolio alloca
tions between the risk free and the risky asset. Using a numerical technique, Barberis
(2000) shows that the optimal buy and hold investment in stocks is increasing in the
investment horizon, independently of the initial value of the predictor. Barberis
(2000) argues that predictability induces mean reversion in stock expected returns,
which in turn makes the variance of cumulative returns grow less than linearly as the
horizon increases. As a result, a risk averse long term investor should allocate more to
stocks than a short term investor, consistently with Kritzman and Rich (1998).

The expected utility analysis of long term portfolio choice under mean reversion,
therefore, seems to have resurrected the idea of time diversification. This view, however,
has been challenged by the empirical findings of Boudry and Gray (2003). Extending
Barberis’s (2000) approach to multiple predictors and Australian data, they find that
some initial values of the predictors can cause the investor to allocate less to the risky
asset as the investment horizon increases. Another source of discrepancy is the fact that
optimal allocations are insensitive to the investment horizon in the long term. Finally, the
effect of the investment horizon is not necessarily monotonic, as opposed to the US case.

Our limited understanding of investment horizon effects is perhaps explained by
the lack of a closed form solution to the static portfolio choice problem in the power
utility case. In this paper, we shed light on the issue by using an analytical approxi
mation to the investor’s objective function that permits us to relate the return
dynamics to the investor’s optimal asset allocation for different horizons. The
approximation has the traditional mean variance form, except that risky asset returns

2 Time diversification is just an example of Samuelson’s (1963) fallacy of large numbers, which he
summarized with the following sentence (p. 54): ‘it is not so much by adding new risks as by subdividing
risks among more people that insurance companies reduce the risk of each.’
3 For evidence on return predictability, see, for instance, Campbell (1987), Campbell and Shiller (1988a
and 1988b), Fama (1984 and 1990), or Fama and French (1988 and 1989).
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are replaced by log returns and expected returns must be appropriately adjusted. In a
portfolio choice model with two risky assets and multiple predictors, we then investigate
how model parameters influence the evolution of the risk return trade off with the
investment horizon. Interestingly, under the stationarity assumption, all investment
horizon effects disappear in the long horizon limit. In the special case of a single risky
asset, we show that under return predictability and negative serial correlation in asset
returns, the horizon effect on the optimal demand for the risky asset can be either
positive or negative. Two reasons explain this conclusion. First, changes in the condi
tional variance of cumulative log returns are not necessarily monotonic in the invest
ment horizon: even if returns are negatively serially correlated, the asset’s riskiness may
grow less than linearly at short horizons and more than linearly at long horizons.
Second, predictability implies that conditional expected cumulative returns may also
grow less than linearly as the investment horizon grows to infinity. Intuitively, when the
predictive variable is stationary, it tends to revert to its mean, so if it has a positive
(negative) effect on expected returns and the initial value is above (below) its long run
mean, then future expected returns will tend to decrease. This decay in the mean may
offset the positive horizon effect induced by lower relative risk. Empirical results for the
US are therefore explained by a very low speed of mean reversion.

We illustrate the analysis empirically by computing the optimal demand of a buy
and hold investor for long term US Government bonds and stocks. While investment
horizon effects are always positive when a stock portfolio is the only risky investable
asset, the optimal demand for long term bonds displays both positive and negative
horizon effects depending on the initial value of the predictive variable and, in any
case, disappear as the investment horizon grows to infinity. When both risky assets are
simultaneously available for investment, we find that the investment horizon affects not
only the optimal investment in the risky asset portfolio, but also the composition of the
risky portfolio itself. Moreover, investment horizon effects have different signs for
different initial values of the predictors. Finally, the paper shows how these results are
changed when estimation risk is incorporated explicitly in the investor’s problem.

To summarize, the paper’s contribution to the literature is two fold. First, it provides a
theoretical analysis that relates the evolution of the risky asset return distribution over
time to the optimal portfolio of a utility maximizing investor. This analysis enables us to
reconcile the empirical evidence on investment horizon effects under return predictability
previously documented in the literature. Second, it extends Barberis’s (2000) and Boudry
and Gray’s (2003) approach to the case when two risky assets are available for investment.

The rest of the paper is divided into the following sections: Section 2 presents the
theoretical framework of the paper; Section 3 documents the empirical results; and
finally, Section 4 concludes.

2. PORTFOLIO CHOICE UNDER RETURN PREDICTABILITY

In this section, we start by presenting the multiperiod portfolio problem of an
investor with power utility who does not rebalance his portfolio. Throughout the
paper, we follow Barberis (2000), but we consider two natural extensions of the
original setting. First, we allow for multiple regressors in the predictive equation as
in Boudry and Gray (2003), and, second, we include the possibility to invest in
multiple risky assets. In the second part of the section, we investigate investment
horizon effects for the special cases of two and one risky assets.
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(i) The Investor’s Problem

Consider the problem at time T of an investor who derives utility from his wealth at
time T þ T̂. The investor does not rebalance his portfolio and can invest in N þ 1
different assets: the one month Treasury Bill with constant interest rate, rf; and N
risky assets. The continuously compounded return in excess of the riskless interest
rate on the ith risky asset between periods t 1 and t is denoted by rit.

If initial wealth equals one and w0 ¼ [!1 !2 . . . !N] contains the fraction of the
investor’s initial wealth allocated to each risky asset, then the investor’s terminal
wealth is given by:

WTþT̂ ¼ ð1 w0iÞ expðrf T̂Þ þ
XN

i 1

!i expðrf T̂ þ Ri;TþT̂Þ; ð1Þ

where Ri,TþT̂ denotes the cumulative excess log return between T and T þ T̂, i.e.,
Ri, TþT̂¼ ri,Tþ1 þ ri,Tþ2 þ . . . þ ri,TþT̂, and i is a vector of ones.

We assume that investor preferences can be represented by a utility function with
constant relative risk aversion: uðWÞ ¼ W1 A

1 A , with A > 1. The problem can then be
formally stated as follows:

max ET

ð1 w0�Þ expðrf T̂Þ þ
XN

i 1
!i expðrf T̂ þ Ri;TþT̂Þ

h i1 A

1 A

8><
>:

9>=
>;

f!igN
i 1:

ð2Þ

We also assume the presence of short sale and borrowing restrictions, so portfolio
weights are constrained between zero and one.

Finally, excess returns are generated by the VAR model:

zt ¼ aþ Bxt 1 þ �t; ð3Þ

where z0t ¼ r1t;…; rNt;x0t
� �

, xt ¼ (x1t, . . ., xMt)
0 and �t is identically and independently

distributed according to N(0, �). Vector xt is the vector of M variables that predict
expected returns. It is useful to rewrite the model as:

zt ¼ aþ B0zt 1 þ �t;

where:

B0 ¼ ½0ðNþMÞ�N B�:

The sum ZTþT̂¼ zTþ1 þ zTþ2 þ . . . þ zTþT̂ is distributed as a multivariate normal
with mean �sum and variance �sum given by:

�sum ¼T̂aþ ðT̂ 1ÞB0aþ ðT̂ 2ÞB2
0aþ � � � þ BT̂ 1

0 a

þ ðB0 þ B2
0 þ � � � þ BT̂

0 ÞzT;
ð4Þ
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X
sum
¼
X
þ ðI þ B0Þ�ðI þ B0Þ0

þ I þ B0 þ B2
0

� �X
I þ B0 þ B2

0

� �0
..
.

þ I þ B0 þ � � � þ BT̂ 1
0

� �
� I þ B0 þ � � � þ BT̂ 1

0

� �0
;

ð5Þ

Since a solution to (2) is not known in closed form, Barberis (2000) proposes to
evaluate the objective function numerically by computing the integral:

Z
uðWTþT̂ÞpðRTþT̂j�TÞdRTþT̂;

where RTþT̂ is the column vector of cumulative excess log returns, p (RTþT̂/�T) is the
probability density function of the predictive distribution, and �T is the investor’s
information set at T. The approach therefore involves estimating the parameters in
(3) and then drawing realizations of ZTþT̂ from the multivariate normal distribution
with mean and variance �̂sum and �̂sum. Next, for every simulated realization, the
value of the integral’s argument is calculated, and finally the arithmetic mean of all
values is obtained. The numerical solution to the optimization problem is the
portfolio choice that maximizes the integral’s numerical value.

Barberis (2000) also considers the possibility that the investor decides to take
estimation risk into account. The predictive distribution then results from integrating
the joint distribution of future returns and the parameter vector in (3), denoted by
�. Namely, the investor will obtain the probability density function for returns as:

pðRTþT̂j�TÞ � pðRTþT̂jzÞ ¼
ð

pðRTþT̂; �jzÞd�

¼
ð

pðRTþT̂j�; zÞpð�jzÞd�;

where z ¼ z1, z2, . . ., zT. The probability density p(RTþT̂j�, z) corresponds to a multi
variate normal distribution with mean and variance equal to �sum and �sum. An investor
who takes parameter uncertainty into account therefore evaluates the following integral:

Z
uðWTþT̂ÞpðRTþT̂j�; zÞpð�jzÞd�dRTþT̂:

In practical terms, a realization of the vector � is first drawn from the posterior distribu
tion,4 p(�jz), and then a possible realization of RTþT̂ is simulated using the distribution
of future returns conditional on those parameter values. In the empirical application
of Section 3, our choices for the size of the simulated sample are 100,000 in the case of
no parameter uncertainty and 10,000 when estimation risk is taken into account.

4 See Barberis (2000) for details on the posterior distribution.
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If parameter uncertainty is ignored, it is possible to obtain an analytical approxi
mation to the investor’s objective function. Such closed form solution, albeit inexact,
enables us to investigate the investment horizon effects documented by Barberis
(2000) and Boudry and Gray (2003).

Since A > 1, we can restate (2) as:

min ET ð1 w0iÞ expðrf T̂Þ þ
XN

i 1
!i expðrf T̂ þ Ri;TþT̂Þ

h i1 A
� �

f!igN
i 1:

and, since wealth is always positive due to portfolio constraints, we can also write:

min log ET ð1 w0iÞ expðrf T̂Þ þ
XN

i 1
!i expðrf T̂ þ Ri;TþT̂Þ

h i1 A
� �

f!igN
i 1:

Consider the following second order Taylor approximation for log of wealth
adapted from Campbell and Viceira (2002):

log ð1 w0iÞ expðrf T̂Þ þ
XN

i 1

!i expðrf T̂ þ Ri;TþT̂Þ
" #

� rf T̂ þ w0RTþT̂ þ
1

2
w0n2

T̂

1

2
w0VT̂w0;

where n2
T̂

is a vector containing the variances of the elements in RTþT̂, and VT̂ is the
variance covariance matrix of RTþT̂.

The approximation makes wealth lognormal and therefore enables us to write the
objective function in mean variance terms:

log ETW1 A
TþT̂
� ð1 AÞET log WTþT̂ þ

1

2
ð1 AÞ2varT log WTþT̂:

Dividing by (1 A) the objective function becomes:

rf T̂ þ w0 ETRTþT̂ þ
1

2
n2

T̂

� 	
A

2
w0VT̂w0: ð6Þ

This expression has the traditional mean variance form except that: (i) excess
returns are replaced by log excess returns when computing both the mean and the
variance covariance terms, and (ii) mean log excess return of the i th asset must be
corrected by adding the term 1

2 �
2
iT̂
¼ 1

2 varTðRi;TþT̂Þ. For example, in the case of two
risky assets, the investor maximizes:

rf T̂ þ !1 ETR1;TþT̂ þ
1

2
varT ðR1;TþT̂Þ

� 	
þ !2 ETR2;TþT̂ þ

1

2
varT ðR2;TþT̂Þ

� 	
A

2
!2

1varT ðR1;TþT̂Þ þ !2
2varT ðR2;TþT̂Þ þ 2!1!2covT ðR1;TþT̂;R2;TþT̂Þ

� �
subject to 0 � !i � 1, i ¼ 1, 2.
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In the particular case of a single risky investable asset, if RTþT̂ denotes the risky
asset’s cumulative log excess return, and ! the fraction of initial wealth invested in
the risky asset, then the optimal portfolio is:

!* ¼ 0 for ETRTþT̂ þ
1

2
varTðRTþT̂Þ < 0;

!* ¼ 1 for ETRTþT̂ þ
1

2
varTðRTþT̂Þ > AvarTðRTþT̂Þ

!* ¼
ETRTþT̂

AvarTðRTþT̂Þ
þ 1

2A
otherwise;

ð7Þ

since the objective function is globally concave in !.

(ii) Investment Horizon Effects

In order to understand how the investment horizon changes the moments of
cumulative log excess returns, we start by restricting our attention to the two risky
asset case with multiple predictors, and then focus on the single risky asset, single
predictor special case.

Assume that the two risky assets are a portfolio of stocks and a portfolio of
bonds, denoted with subscripts s and b, respectively. For the sake of tractability,
we assume also that variables predicting stock and bond returns follow univariate
first order autoregressive processes, although we allow for correlation in the error
terms across variables. Return dynamics are therefore governed by the following
VAR model:

rstþ1 ¼ �s þ �s1x1t þ � � � þ �sMxMt þ "stþ1

rbtþ1 ¼ �b þ �b1x1t þ � � � þ �bMxMt þ "btþ1

x1tþ1 ¼ 	1 þ 
1x1t þ "1tþ1

..

.

xMtþ1 ¼ 	M þ 
MxMt þ "Mtþ1

"stþ1

"btþ1

"1tþ1

..

.

"Mtþ1

0
BBBBBBB@

1
CCCCCCCA
	 N 0;

�2
s �sb �s1 � � � �sM

�2
b �b1 � � � �bM

�2
1 �1M

. .
. ..

.

�2
M

0
BBBBBBB@

1
CCCCCCCA

2
66666664

3
77777775

ð8Þ

where we assume that j
kj < 1, 8k. Let us study stock returns, since conclusions are
identical for either risky asset. The first order stationary autocovariance of excess
returns is given by:

covðrst; rstþ1Þ ¼
XM
k 1

�sk�sk þ
XM
k 1

�sk
k

XM
j 1

�sj
j
�kj

1 
k
j
:
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If the predictive coefficient, �sk, and the covariance between returns and the
shock to the predictive variable, �sk, have opposite signs, then shocks to the pre
dictive variable have opposite effects on the current period’s return (through the
contemporaneous covariance) and next period’s expected return (through the
predictive equation) contributing to negative serial correlation in stock returns.
Similarly, negative values for �sk�sj
k
j�kj tend to induce negative autocorrelation
in the return series. Assume, for instance, that �sk, �sj, 
k, 
j > 0 and �kj < 0. In this
case, a positive shock to xkt increases next period’s expected return but is likely to be
contemporaneous with a negative shock to xjt, which, in turn, decreases xjtþ1 and
therefore the expected value of rstþ2. Negative serial correlation in returns, how
ever, does not guarantee that the relative risk return trade off for the risky asset
improves with the investment horizon. To see this, we derive, next, the expressions
for the moments of cumulative returns.

From (5) and (8) it follows that, under stationarity, the conditional variance of
Rs, TþT̂ evolves according to:

vsT̂ � varTðRs;TþT̂Þ ¼ vsT̂ 1 þ �
2
s þ 2

XM
k 1

�sk
1 
T̂ 1

k

1 
k
�sk

þ
XM
k 1

�sk
1 
T̂ 1

k

1 
k

 !XM
j 1

�sj

1 
T̂ 1
j

1 
j

 !
�kj;

for T̂¼ 1, 2, . . . , 1, with vs0 ¼ 0.
Similarly, the cumulative mean of stock returns is given by:

msT̂ � ETðRs;TþT̂Þ ¼ msT̂ 1 þ �s þ
XM
k 1

�sk 	k
1 
T̂ 1

k

1 
k
þ 
T̂ 1

k xkT

 !
;

for T̂¼ 1, 2, . . . , 1, with ms0 ¼ 0.
To complete the analysis, the covariance of cumulative stock and bond returns

evolves with T̂ according to:

covT̂ � covTðRs;TþT̂;Rb;TþT̂Þ

¼ covT̂ 1 þ �sb þ
XM
k 1

�sk
1 
T̂ 1

k

1 
k
�sk þ

XM
k 1

�bk
1 
T̂ 1

k

1 
k
�bk

þ
XM
k 1

�sk
1 
T̂ 1

k

1 
k

 !XM
j 1

�bj

1 
T̂ 1
j

1 
j

 !
�kj

for T̂¼ 1, 2, . . . , 1, with cov0 ¼ 0.
Note that, if excess log returns were i.i.d. (�ik ¼ 0, i ¼ s, b, 8k), both the variance

covariance matrix and the mean vector in (6) would be proportional to T̂, so the
investment horizon could be removed from the objective function and the optimal
risky asset portfolio would have the same composition regardless of the investment
horizon. In the non i.i.d. case, however, predictability in risky asset returns will
cause the whole mean variance frontier to change with the investor’s horizon, which
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will induce investment horizon effects both in the optimal allocation to the risky
portfolio as well as in the composition of the risky portfolio itself.

More specifically, vsT̂ may grow more or less than linearly as the investor’s
horizon increases, depending on whether vT̂ vT̂ 1 is increasing in T̂. For the simple
case of two predictive variables (M ¼ 2) and non negative 
1, 
2, changes in the
conditional cumulative variance will decrease with the investment horizon if:

@ðvsT̂ vsT̂ 1Þ
@T̂

¼ 2�s1�s1

T̂ 1
1

ln
1

1þ 
1
þ 2�s2�s2


T̂ 1
2

ln
2

1þ 
2

þ 2�2
s1�

2
1

1 
T̂ 1
1

1 
1

T̂ 1

1

ln
1

1þ 
1
þ 2�2

s2�
2
2

1 
T̂ 1
2

1 
2

T̂ 1

2

ln
2

1þ 
2

þ 2�s1�s2�12
1 
T̂ 1

2

1 
2

T̂ 1

1

ln
1

1þ 
1
þ 1 
T̂ 1

1

1 
1

T̂ 1

2

ln
2

1þ 
2

 !

< 0:

ð9Þ

It thus follows that for non negative 
k, if �sk and �sk, have opposite signs, the k th
predictive variable not only may induce negative serial correlation in the risky asset
returns, but it also tends to reduce the relative riskiness of a long term investment in
the risky asset as long as:

�sk�sk < �2
sk�

2
k

1 
T̂ 1
k

1 
k
:

Also, when the effects of the predictive variables on the risky asset’s expected
return, i.e., �s1 and �s2, have the same (opposite) sign, and the contemporaneous
covariance between both variables is positive (negative) the last term in the left hand
side of (9) is negative, which contributes towards making the conditional variance of
the risky asset’s return grow less than linearly with the investor’s horizon.

The cumulative mean, on the other hand, grows less than linearly with the
investment horizon if:

@ðmsT̂ msT̂ 1Þ
@T̂

¼
XM
k 1

�sk

T̂ 1
k

ln
k

1þ 
k
ð	k xkTð1 
kÞÞ < 0: ð10Þ

Boudry and Gray (2003) perform their comparative statics exercises by setting the
initial value of one predictive variable below or above its stationary mean, 	k

1 
k
, while

leaving the rest of predictors initially at their long run means. It is clear from (10)
that when the value of the perturbed variable is initially below (above) its stationary
mean and �sk > 0 (< 0), the mean of cumulative returns will grow more than
linearly with the investment horizon.

Finally, the investment horizon also affects the composition of the risky asset
portfolio as well as its total riskiness relative to that of the risk free asset through
the covariance of risky asset returns. In particular, changes in the conditional
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covariance will decrease with the investment horizon if:

@ðcovT̂ covT̂ 1Þ
@T̂

¼ �s1�s1

T̂ 1
1

ln
1

1þ 
1
þ �s2�s2


T̂ 1
2

ln
2

1þ 
2

þ �b1�b1

T̂ 1
1

ln
1

1þ 
1
þ �b2�b2


T̂ 1
2

ln
2

1þ 
2

þ 2�s1�b1�
2
1

1 
T̂ 1
1

1 
1

T̂ 1

1

ln
1

1þ 
1
þ 2�s2�b2�

2
2

1 
T̂ 1
2

1 
2

T̂ 1

2

ln
2

1þ 
2

þ ð�s1�b2 þ �s2�b1Þ�12
1 
T̂ 1

2

1 
2

T̂ 1

1

ln
1

1þ 
1
þ 1 
T̂ 1

1

1 
1

T̂ 1

2

ln
2

1þ 
2

 !

< 0:

ð11Þ

Clearly, under the stationarity assumption, in the long horizon limit (T̂!1), the
expressions in (9), (10) and (11) all converge to zero, which implies that the optimal
portfolio becomes independent of the investment horizon for very large T̂.

In order to reconcile the empirical results obtained by Barberis (2000) and
Boudry and Gray (2003), we focus, next, on the single risky asset, single predictor
case. It follows from (7) that positive horizon effects on the optimal unconstrained
allocation to the risky asset are a consequence of the variance of cumulative log
returns growing slower than mean cumulative log returns with T̂.

The return generating model in the single risky asset, single predictor case
becomes:

rtþ1 ¼ �þ �xt þ "stþ1

xtþ1 ¼ 	 þ 
xt þ "1tþ1

"stþ1

"1tþ1

� 	
	 N 0;

�2
s �s1

�s1 �2
1

 !" #
:

ð12Þ

Under the stationarity assumption, i.e., j
j < 1, the first order autocovariance of
excess returns is given by:

covðrt; rtþ1Þ ¼ ��s1 þ
�2�2

1


1 
2

so returns are serially negatively correlated in the long run if ��s1 < �2�2
1



1 
2 :

The variance of the cumulative return between periods T and T þ T̂ evolves with
T̂ according to:

vT̂ � varTðRTþT̂Þ ¼ vT̂ 1 þ �2
s þ 2�

1 
T̂ 1

1 

�s1 þ �2 1 
T̂ 1

1 


 !2

�2
1; ð13Þ

which holds for T̂¼ 1, 2, . . ., 1, with v0 ¼ 0. For non negative 
, one period
changes in the variance of cumulative returns are decreasing in the horizon if:
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@ðvT̂ vT̂ 1Þ
@T̂

¼2��s1

T̂ 1 ln


1þ 
þ 2�2�2
1

1 
T̂ 1

1 


T̂ 1 ln


1þ 

< 0;

ð14Þ

so the variance grows less than linearly in T̂, for 1 < T̂< 1, if the following condi
tion holds:

��s1 < �2�2
1

1 
T̂ 1

1 

: ð15Þ

Note that, even if � and �s1 have opposite signs, it is not possible to assert whether
their joint effect is enough to cause the variance to always grow less than linearly.
With negatively serially correlated returns, vT̂ could be concave in T̂ at short hor
izons but convex at longer horizons.

As for the mean of cumulative returns:

mT̂ � ETðRTþT̂Þ ¼ mT̂ 1 þ �þ �	
1 
T̂ 1

1 

þ �
T̂ 1xT; ð16Þ

for T̂¼ 1, 2, . . ., 1, with m0 ¼ 0. The mean increases in T̂ only if
�þ �	 1 
T 1

1 
 þ �
T̂ 1xT > 0. So, even if the variance of cumulative returns grows
less than linearly in the investment horizon, a diminishing mean might cause the
optimal allocation to decrease for long horizons. Moreover, assuming that the mean
is positive and increasing in T̂, it could grow slower than the variance. To see this,
note that differentiating mT̂ mT̂ 1 with respect to T̂ gives:

@ðmT̂ mT̂ 1Þ
@T̂

¼ �
T̂ 1 ln


1þ 
 ð	 xTð1 
ÞÞ:

So, for T̂< 1, the mean of cumulative returns mT̂grows less than linearly with T̂ if
the predictor’s initial value is above (below) its long run mean when � is positive
(negative), and more than linearly otherwise. Note that the effect of the predictor’s
initial value on

@ðmT mT 1Þ
@T̂

has an opposite sign to that on mT̂. As a consequence, when
xT affects ET(rTþT̂) positively, its increments decrease as the horizon becomes longer
if the predictor is initially above its long run mean. Intuitively, when the predictive
variable is stationary, the influence of the predictor’s initial value on each period’s
return decays with time. The larger the initial effect of the predicting variable, the
larger the loss in the cumulative expected return as T̂ increases.

Finally, under stationarity, the unconstrained optimal allocation to the risky asset
converges to a constant:

!* ¼
�þ �	

1 


A �2
s þ

2��s1

1 

þ �

1 


� 	2

�2
1

 !þ 1

2A
: ð17Þ
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Convergence, however, is far from obvious in Barberis’s (2000) results for US
stocks because of the high persistence in the predictor (
 ¼ 0.9774), but becomes
evident in Boudry and Gray (2003), where 
 ranges from 0.9039 to 0.9191.

To conclude this section, note that if returns are unpredictable, i.e. � ¼ 0, then
vT̂ ¼ T̂�2

1 and mT̂¼ T̂�, and the unconstrained optimal allocation becomes:

!* ¼ �

A�2
s

þ 1

2A

regardless of the investment horizon.

3. EMPIRICAL RESULTS

In this section, we analyze empirically the effect of the investor’s time horizon on his
optimal asset allocation. We start by considering the case when only a single risky
asset is available for investment and only one variable has predictive power over the
risky asset return, and then extend the analysis to the more general model with two
risky assets and multiple predictors.

As the single risky asset we consider, alternatively, a long term US Government
bond portfolio and a portfolio of US stocks, whose returns are proxied by the return
on a representative constant maturity portfolio of 10 year US Government Bonds
and on the value weighted index of the New York Stock Exchange, respectively.
Data were collected with monthly frequency for the period covering January 1959
to December 1998 from the CRSP (Center for Research in Security Prices) database.
In order to compute excess returns, we also employ the one month Treasury Bill
rate series. When the constant risk free rate is needed, we take rf to be 0.0036, or
4.32% in annual terms.

Two predictive variables are selected for predicting stock and bond returns,
respectively: the dividend yield on the stock index (DP), computed as the sum of
dividends payed on the index over the previous 12 months divided by the current
index level; and the trend of the stock index (Trend), defined as the difference
between the logarithm of the index’s current level and the average level over the
previous 12 months.

We consider first the case of an investor who estimates the parameters in (12) and
takes as the predictive distribution of returns a multivariate normal distribution
with mean and variance �̂sum and �̂sum, respectively. Values of the OLS parameter
estimates in both cases are shown in Table 1. Figure 1 shows graphically the optimal
allocation to stocks. The first conclusion we draw from Figure 1 is that the approxi
mate solution performs remarkably well in this specific setting. Second, the investor
allocates a larger fraction of his wealth to stocks the higher the value of DP and the
longer the investment horizon. This result is consistent with Brennan, Schwartz and
Lagnado (1997), Barberis (2000) or Kritzman and Rich (1998). In fact, it is to be
expected from the results of the previous section for two reasons. First, condition
(15) together with estimated parameters implies that the variance of cumulative
returns grows less than linearly for any finite investment horizon. Second, the high
estimated value of 
, close to unity, prevents conditional expected returns from
reverting fast to the mean. As a consequence, the horizon effect on the variance

12



dominates that on the mean, and the optimal allocation to stocks is increasing for all
investment horizons and all initial values of x considered.

The case of long term bonds is quite different even though the unconditional
autocovariance of excess returns is also negative. In Figure 2 we plot the investor’s
optimal allocation to long term US Government bonds for different investment
horizons and three different cases that correspond to three different initial values
of Trend. A pattern very similar to that documented by Boudry and Gray (2003) is
found: since the coefficient in the regression equation for Trend is negative, the
optimal demand is smaller but increasing in the investment horizon for an initial
value above the predictor’s sample mean, and larger but decreasing for a lower
initial value. In particular, an investor with a relative risk aversion coefficient of 5
doubles his allocation to bonds when his investment horizon increases from 2.5
years to 10 years if the trend’s initial value is high. These results are therefore
consistent with mean driven horizon effects dominating variance driven effects.

Table 1

Parameter Values in the Model with a Single Risky Asset and
One Predictor

Panel A
Constant DP

Stocks 0.0044 0.0025
DP 0.0477 0.9862

Constant Trend

10 year Bonds 0.0025 0.0007
Trend 0.2121 0.8787

Panel B
Stocks DP

Stocks 0.0019 0.9296
DP 0.0290

10 year Bonds Trend

10 year Bonds 0.0005 0.2690
Trend 3.5932

Notes:
This table shows OLS estimates from the VAR model below. Panel A displays
regression coefficients while Panel B shows the variance covariance matrix of
the error terms. rt denotes the continuously compounded monthly excess
return on the risky asset (alternatively, US stocks or 10 year US
Government bonds) and xt is the single predictor: the dividend yield (DP) or
the trend of the stock index (Trend). In Panel B, values above the main
diagonal are correlation coefficients.

rtþ1 �þ �xt þ "1tþ1

xtþ1 	 þ 
xt þ "2tþ1

"1tþ1

"2tþ1

� 	
	 N 0;

�2
s �s1

�s1 �2
1

 !" #
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Next, we solve for the investor’s portfolio choice when both risky assets are avail
able for investment. In this case, we include two additional predictive variables:5

1. The default spread, proxied by the yield difference between Moody’s Baa and
Aaa rated corporate bonds.

2. The term spread, proxied by the yield difference between 10 year and one
year US Government Bonds.

Both series were obtained from the Internet site maintained by the US Federal
Reserve.

If the investor performed an OLS regression of monthly excess stock and bond
returns on the predictive variables in the previous month, he would obtain the
following estimated coefficients and their associated p values (in parentheses):

rstþ1 ¼ 0:0077 þ 0:0066 x1t þ 0:0007 x2t

ð0:2181Þ ð0:1608Þ ð0:4257Þ
þ 0:0054 x3t 0:0004 x4t þ �stþ1

ð0:0071Þ ð0:2291Þ

ð18Þ

Figure 1

Optimal Allocation to Stocks
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Horizon (months)
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0.65
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0.75

Notes:
This figure shows the optimal allocation to stocks as a function of the investment horizon when dividend
yield (DP) is the only predictor, using the approximate analytical solution (solid lines) and the exact
numerical solution (dash dot lines). The bottom line corresponds to an initial value of DP equal to 3, the
middle line to 4, and the top line to 5. The risk aversion coefficient is 10.

5 These predictors have been previously used by Fama and French (1988 and 1989) and Keim and
Stambaugh (1986).
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rbtþ1 ¼ 0:0002 þ 0:0038 x1t 0:0008 x2t

ð0:4814Þ ð0:1333Þ ð0:3288Þ
þ 0:0024 x3t 0:0009 x4t þ �btþ1

ð0:0140Þ ð0:0010Þ

ð19Þ

where rst and rbt stand for continuously compounded excess returns on the stock
and the 10 year bond indices respectively, and xit, i ¼ 1, 2, 3, and 4 denote the value
in month t of the default spread, DP, the term spread, and the stock index trend,
respectively.

In regression (18) only the term spread is significantly different from zero,
whereas in regression (19) the term spread and especially the trend have a signifi
cant predictive power over next month’s expected return. On the other hand, the
R2 coefficient equals 0.0211 in the case of stocks and 0.0319 for bonds. These results
show the magnitude of the investor’s problem of deciding whether he should
consider the empirical evidence on predictability or whether he should think that
evidence is too weak to take the regression estimated coefficients as the true model
parameter values. The Bayesian approach can thus be seen as an intermediate
solution between both extreme attitudes. Next, we solve for the optimal portfolio
choice of an investor who ignores estimation risk and an investor who explicitly

Figure 2

Optimal Allocation to Long term US Government Bonds

20 30 40 50 60 70

Horizon (months)

80 90 100 110 120
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Notes:
This figure shows the optimal allocation to long term US Government bonds as a function of the
investment horizon when the trend of the stock index (Trend) is the only predictor, using the approxi
mate analytical solution (solid lines) and the exact numerical solution (dash dot lines). The top line
corresponds to an initial value of Trend equal to 1, the middle line corresponds to 2, and the bottom
line to 5. The risk aversion coefficient is 10.
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incorporates estimation risk in his portfolio decision problem. When the investor
does not recognize estimation risk, it will be assumed that he takes as the true
parameter values the means of model parameters from the posterior distribution
under a diffuse prior. These values are shown in Table 2.

Figure 3 summarizes the results graphically when all predictors’ starting values
coincide with their sample means. In the case of no parameter uncertainty, a long

Table 2

Parameter Values in the Model with Two Risky Assets and Four Predictors

Panel A
Constant Def. Spread DP Term Spread Trend

Stocks 0.0076 0.0066 0.0007 0.0053 0.0004
10 year Bonds 0.0003 0.0038 0.0008 0.0024 0.0009
Def. spread 0.0039 0.9499 0.0208 0.0142 0.0047
DP 0.0475 0.0462 1.0014 0.0195 0.0022
Term spread 0.0452 0.1522 0.0416 0.9581 0.0126
Trend 0.5764 0.3902 0.0791 0.1989 0.8705

Panel B
Stocks Bonds Def. Spread DP Term Spread Trend

Stocks 0.0019 0.2695 0.0783 0.9379 0.1399 0.9903
Bonds 0.0005 0.2485 0.2827 0.1620 0.2624
Def. spread 0.0102 0.0990 0.1634 0.0723
DP 0.0289 0.1935 0.9325
Term spread 0.0704 0.1318
Trend 3.5845

Notes:
When the investor does not take parameter uncertainty into account, he takes the parameter values in the
VAR model below as known. More specifically, parameter values in this table are the means from the
parameter posterior distribution under a diffuse prior. Panel A displays regression coefficients while
Panel B shows the variance covariance matrix of the error terms. rst denotes the continuously com
pounded monthly excess return on US stocks, rbt denotes the continuously compounded monthly excess
return on 10 year US Government bonds, x1t, x2t, x3t, x4t, are the default spread, the dividend yield (DP),
the term spread, and the trend of the stock index (Trend). In Panel B, values above the main diagonal are
correlation coefficients.

rstþ1 �s þ �s1x1t þ �s2x2t þ �s3x3t þ �s4x4t þ "stþ1
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term investor will invest a higher fraction of his risky asset portfolio in stocks and,
therefore, a lower fraction in bonds than a short term investor. This consequence
of predictability is interesting because the optimal allocation to bonds is indepen
dent of the investor’s horizon when bonds are the only risky investable asset.
Clearly, the sharp decline in the relative riskiness of equity as the investment

Figure 3

Optimal Portfolio Choice as a Function of the Investment Horizon
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The graph plots the static allocation to the riskless asset (light shade), 10 year bonds (medium shade) and
stocks (dark shade) when returns are assumed to be generated by a VAR model with four predictors. The
initial values of all predictive variables are set at their sample means. In the lower graph, the investor
takes parameter uncertainty into account. The risk aversion coefficient is 10.

17



horizon increases tilts the optimal risky portfolio towards a smaller investment in
the other risky asset: long term bonds. As a consequence, long term bonds account
for almost 40% of a 30 month investor’s risky portfolio, and only 23% in the case of
a 10 year investor. This substitution effect, however, is almost completely compen
sated by a larger overall investment in the risky asset portfolio, whose attractiveness
relative to the safe investment increases with the investment horizon: allocation to
bonds declines by only 5% of the total portfolio as the horizon grows from 30 to 120
months. When estimation risk is considered, the decline in the relative riskiness of
stocks is offset by the larger effect of parameter uncertainty at long horizons, so the
optimal allocation to stocks remains almost constant. Long term bonds, however,
become relatively more risky for long investment horizons so the long term investor
replaces bonds with the risk free asset.

Note that investment horizon effects in Figure 3 are solely driven by changes in
the variance covariance matrix, since the horizon is likely to have a negligible effect
on the conditional mean vector according to (10). In Figures 4 to 7 we set the initial
value of one of the predictors above or below its sample mean.

Graphs in Figure 4 correspond to an initial value of Trend equal to its 25th sample
percentile for the cases of parameter certainty and parameter uncertainty. Changes
in the trend’s initial value affect expected returns on stocks and bonds in the same
direction: a low current value of the variable raises next period’s conditional mean
returns on both assets. Consequently, a short term investor allocates more to the
risky asset portfolio than in the previous case. As the investment horizon increases,
however, expected single period returns decline due to mean reversion. As a con
sequence, the risk return trade off deteriorates for long term bonds while stocks
become a more interesting investment alternative due to their lower relative risk, so
the weight of bonds in the optimal risky portfolio sharply decreases from 46% to
26%, while total investment in the risky portfolio increases due to the stronger
appeal of stocks. Estimation risk, however, severely penalizes the long term investor’s
position in risky assets, and induces a negative horizon effect on the optimal alloca
tion both to bonds and stocks. This finding is consistent both with Barberis (2000)
and Boudry and Gray (2003).

Figure 5 shows the results corresponding to the case when Trend’s initial value is
set at its 75th sample percentile. Although the predictor’s effect on expected bond
returns suggests that long term bonds are a better investment at long horizons, the
optimal fraction of bonds in the risky asset portfolio remains almost the same at both
short and long horizons. Given the improvement in the risky investment opportunity
set at long horizons, investment in the risk free asset reduces from 60% to 23% as T̂
increases from 30 to 120 months. In this case, larger estimation risk at long horizons
is also offset by the better risk return trade off, so the optimal portfolio has a similar
composition both at long and short horizons when parameter uncertainty is taken
into account.

It is interesting to note that although Figure 2 shows that the consequences of changes
in the initial value of Trend on the investment horizon effect are symmetric around its
mean, the presence of stocks in the investment opportunity set reinforces the negative
horizon effect (allocation to bonds drops by almost 16% in the horizons considered) and
mitigates the positive horizon effect (allocation to bonds increases by 8%).

Finally, we consider changes in the dividend yield’s initial value. This predictor is
particularly interesting because its autocorrelation coefficient is close to 1 according
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to Table 2. This suggests that the investment horizon effects on the mean of
cumulative returns are negligible due to lack of mean reversion in the predictor.
Investment horizon effects in the optimal allocation to bonds can therefore only be

Figure 4

Optimal Portfolio Choice as a Function of the Investment Horizon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

30 40 50 60 70 80 90 100 110 120

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

30 40 50 60 70

Horizon (months)

Horizon (months)

80 90 100 110 120

Notes:
The graph plots the static allocation to the riskless asset (light shade), 10 year bonds (medium shade) and
stocks (dark shade) when returns are assumed to be generated by a VAR model with four predictors. The
current value of predictor Trend (the trend of the stock index) equals 0.7, while the initial values of the
rest of predictive variables are set at their sample means. In the lower graph, the investor takes parameter
uncertainty into account. The risk aversion coefficient is 10.
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negative and explained by either the lower riskiness of stocks as the horizon
increases or by parameter uncertainty.

Figure 6 corresponds to the case when DP is initially at its 25th sample percentile.
As expected, the presence of long term bonds in the risky portfolio decreases with

Figure 5

Optimal Portfolio Choice as a Function of the Investment Horizon
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Notes:
The graph plots the static allocation to the riskless asset (light shade), 10 year bonds (medium shade) and
stocks (dark shade) when returns are assumed to be generated by a VAR model with four predictors. The
current value of predictor Trend (the trend of the stock index) equals 4.5, while the initial values of the
rest of predictive variables are set at their sample means. In the lower graph, the investor takes parameter
uncertainty into account. The risk aversion coefficient is 10.
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the investment horizon at the same rate as in Figure 3, where all predictors were set
at their initial values. Because investment in the risky asset portfolio increases,
horizon effects in the optimal allocation to bonds are negative but not very

Figure 6

Optimal Portfolio Choice as a Function of the Investment Horizon
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The graph plots the static allocation to the riskless asset (light shade), 10 year bonds (medium shade) and
stocks (dark shade) when returns are assumed to be generated by a VAR model with four predictors. The
current value of predictor DP (dividend yield) equals 2.88, while the initial values of the rest of predictive
variables are set at their sample means. In the lower graph, the investor takes parameter uncertainty into
account. The risk aversion coefficient is 10.
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pronounced if the investor ignores estimation risk. Finally, Figure 7 shows the
results for an initial value of DP equal to its 75th sample percentile. Again, invest
ment horizon effects on bond investment are negative. In this case, however, given

Figure 7

Optimal Portfolio Choice as a Function of the Investment Horizon
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Notes:
The graph plots the static allocation to the riskless asset (light shade), 10 year bonds (medium shade) and
stocks (dark shade) when returns are assumed to be generated by a VAR model with four predictors. The
current value of predictor DP (dividend yield) equals 4.07, while the initial values of the rest of predictive
variables are set at their sample means. In the lower graph, the investor takes parameter uncertainty into
account. The risk aversion coefficient is 10.
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the predominance of stocks in the optimal portfolio, changes in the investor’s
allocation to long term bonds are very small in relative terms, and only become
apparent when parameter uncertainty is considered explicitly.

4. CONCLUSIONS

This paper takes a deeper look into the consequences of return predictability on
investment horizon effects in the optimal buy and hold asset allocation of a utility
maximizing investor.

The paper’s first contribution is a theoretical analysis of how the parameters in
the model driving the return dynamics influence the evolution of the investor’s
opportunity set with the investment horizon. It is shown that under stationarity of
the predictive variables, all investment horizons disappear in the long horizon limit.
When a single risky asset is available for investment, it is demonstrated that changes
in the variance of cumulative returns are not necessarily monotonic in the invest
ment horizon. It is also shown that the investment horizon can have either a positive
or a negative effect on the mean of cumulative returns. This is due to a diminishing
influence of the predictor’s effect on expected returns when the state variable is
stationary. If this effect is positive and the predictor’s initial value is above average, a
long term investor who believes in return predictability will expect a relatively lower
return than a short term investor.

The paper also contributes to the literature on multi period asset allocation by
extending Barberis (2000) and Boudry and Gray (2003) to the portfolio choice
problem when two risky assets long term US Government Bonds and US stocks
are available for investment both under parameter certainty and parameter uncer
tainty. The main conclusion is that under return predictability the risk return
characteristics of each risky asset can either improve or worsen with the investment
horizon. The weight of each risky asset in the risky portfolio may therefore change
as its relative appeal with respect to the other risky asset varies with the investment
horizon.
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