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Resumen

La utilidad de los modelos de componentes inobservados ha sido probada en innumer-

ables oportunidades mediante trabajos emṕıricos, no sólo para explicar la evolución

dinámica de las series, sino la de los componentes inobservados, los cuales, muchas

veces, tienen su interés en śı mismos; por ejemplo, ver Orphanides and van Norden

(2002), Smets (2002), Gerlach and Yiu (2004) y Doménech and Gómez (2006) para la

estimación del “output gap” en varias economı́as, Harvey (2008) para la modelización

de la curva de Phillips en los EEUU, Alonso et al. (2008) para explicar la evolución de

los precios españoles de la electricidad, Stock and Watson (2007) para un modelo de

componentes ćıclicos donde la inflación posee componentes de volatilidad estocástica.

En un contexto de modelos lineales de componentes inobservados con errores condi-

cionalmente Gaussianos, si los parámetros son asumido conocidos, el filtro de Kalman

proporciona estimaciones de tales componentes con error cuadrático medio mı́nimo

(ECMM) conjuntamente con sus correspondientes errores cuadráticos medios (ECM)

condicionados a la información disponible; ver Harvey (1989). Sin embargo, en la

práctica, los parámetros son desconocidos y tienen que ser estimados por algún proced-

imiento consistente. La estimación de los parámetros introduce una nueva fuente de

incertidumbre en la estimación de los componentes inobservados. Consecuentemente,

cuando los ECMs de las predicciones y de los componentes inobservados son estimados

usando el filtro de Kalman ejecutado con parámetros estimados, ellos subestiman la

9
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verdadera incertidumbre de tal estimación.

Varios procedimientos han sido propuestos para incorporar la incertidumbre de la

estimación de los parámetros, ellos se pueden agrupar en tres conjuntos. El primero,

en el cual los procedimientos están basados en técnicas Bayesianas. Sin embargo, es-

tos procedimientos pueden ser computacionalmente muy intensivos y requieren mucho

tiempo de cálculo. El segundo grupo contiene aquellos procedimientos que se basan en

incorporar la incertidumbre de la estimación de los parámetros utilizando la distribución

asintótica del estimador. No obstante, en muestra pequeñas, esta distribución puede ser

una muy pobre aproximación de la verdadera distribución del estimador. Finalmente,

encontramos los procedimientos que utilizan las técnicas bootstrap para aproximar la

distribución del estimador en muestra pequeñas. Analizando los procedimientos boot-

strap para la incorporación de la incertidumbre de estimación hemos encontrado dos

problemas importantes en ellos. Por un lado, cuando el objetivo es el cómputo del ECM

de la estimación de los componentes inobservados, los procedimientos bootstrap aproxi-

man los ECMs incondicionales, en el sentido de que no están estimados condicionados a

la información disponible. Cabe mencionar, que el filtro de Kalman provee estimaciones

condicionales tanto de los componentes como de sus ECMs. Por otro lado, cuando el

objetivo es la construcción de intervalos de predicción de las series observadas, los pro-

cedimientos bootstrap están basados en la representación “backward” del modelo, y

por lo tanto, aquellos modelos para los que esta representación no existe, estos no se

pueden aplicar, además, son computacionalmente complicados.

En esta tesis, proponemos el uso de técnicas bootstrap para incorporar la incer-

tidumbre de la estimación de los parámetros en modelos de componentes inobservados

expresado en un contexto de modelos de espacio de los estados. A lo largo de los

caṕıtulos usamos simulaciones Monte Carlo y datos reales para mostrar los resultados
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de los procedimientos propuestos.

En el Caṕıtulo 2 proponemos dos procedimientos bootstrap para la estimación del

ECM de los componentes inobservados que provee el filtro de Kalman, incorporando

la incertidumbre de la estimación de los parámetros, y además, son condicionales a

la información disponible. Por otro lado, mostramos que nuestros procedimientos son

más simples que los alternativos propuestos en la literatura. Finalmente, mostramos

en una aplicación emṕırica que cuando se incorpora la incertidumbre de la estimación

de los parámetros, las conclusiones de poĺıtica económica pueden cambiar respecto a la

situación en la que no se considera tal incertidumbre.

En el Caṕıtulo 3 proponemos un procedimiento bootstrap para la aproximación de

las densidades de las observaciones futuras de la serie observada, y por lo tanto, la

construcción de intervalos de predicción. Nuestro procedimiento no está basado en la

representación “backward” del modelo, por lo que se puede extender a aquellos modelos

para los cuales esta representación no existe. Además, debido a que no necesita esta

representación, es computacionalmente más simple, y por lo tanto, requiere menor

tiempo de cálculo. Finalmente, mediante simulaciones Monte Carlo, mostramos que

nuestro procedimiento tiene mejores propiedades en muestras pequeñas en un modelo

de nivel local.



Chapter 1

Introduction

1.1 Motivation

Unobserved component (UC) models have proven to be very useful for describing the

dynamic evolution of financial and economic time series; see, for example, Orphanides

and van Norden (2002), Smets (2002), Gerlach and Yiu (2004) and Doménech and

Gómez (2006) for estimating the output gap in several economies, Harvey (2008) for

modelling the Phillips curve in the US economy, Alonso et al. (2008) for Spanish elec-

tricity prices or Pedregal and Young (2006) for electricity load demand with unobserved

modulated periodic components, Stock and Watson (2007) for a trend-cycle model with

stochastic volatility fitted to US inflation and Malley and Molana (2008) for a model

for unemployment. On the other hand, when modelling financial series, the volatility

can also be modelled as an unobserved component; such models are referred as stochas-

tic volatility models; see Taylor (1986), Harvey et al. (1994), Ghysels et al. (1996),

Barndorff-Nielsen et al. (2002) and Carnero et al. (2004) for some useful references

describing these models.

One of the main attractiveness of UC models is that they allow the estimation of

the underlying components which are often of interest in themselves. In the context

12
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of linear and Gaussian UC models, if the parameters are assumed to be known, the

Kalman filter provides Minimum Mean Square Error (MMSE) estimates of the un-

derlying components together with their corresponding prediction mean square errors

(PMSE) conditional on the available information set; see Harvey (1989). In this sense,

the filter provides one-step-ahead predictions of the underlying components at time t

conditional on the information up to time t− 1. It also provides updated estimates of

the underlying components at time t based on the information available up to time t.

Finally, the Kalman filter provides the information necessary for obtaining estimates of

the underlying components conditional on the whole sample using an algorithm known

as smoothing; see Durbin and Koopman (2001). Moreover, the filter also gives the

framework for making k-step-ahead predictions and construct prediction intervals for

future values of the observed series and of the underlying unobserved components given

the available data set.

As we mentioned, the Kalman filter is run assuming known parameters. However, in

practice, the model parameters are unknown and they must be substituted by consistent

estimates. Consequently, this introduces a new source of uncertainty associated with

parameter estimation that should be introduced in the PMSE of both the underlying

components and future observations. Consequently, when both PMSEs are computed by

the standard expressions given by the Kalman filter with the true parameter substituted

by their estimates, they underestimate the true uncertainty.

There are several alternatives proposed in the literature for incorporating the pa-

rameter estimation uncertainty into the PMSEs given by the Kalman filter. Consider

first, the procedures proposed to incorporate the estimation uncertainty into the pre-

diction intervals of future values of the observed variables. Several authors propose

Bayesian procedures which provide the posterior distribution of the parameters con-
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ditional on the available information which is used for estimating the PMSE; see for

example Liang and Kelemen (2007) and Pedroza (2006). However, these procedures

can be computational very intensive and very hard of dealing with when the structure

behind the model is quite complicated; see for example Datta et al. (1999). Alterna-

tively, the parameter uncertainty can be incorporated into the PMSEs by using the

asymptotic distribution of the parameters estimator to approximate its finite empirical

distribution. The main problem with these procedures is that the asymptotic distribu-

tion may be a very poor approximation in finite samples of the true finite distribution

of the parameter estimator. Finally, an alternative that has proved to have very good

performance in practical applications is to use bootstrap procedures. These procedures,

introduced by Efron (1979), are based on resampling data coming from a variable that is

independent and identically distributed (IID). Although, in time series data this aspect

is clearly violated, there are several bootstrap procedures that deal with dependent

observations. One solution is resampling the residuals from of the estimated model

associated with the data generating process (DGP). Therefore, by resampling those

residuals and using the chosen model with the estimated parameters, one can obtain

bootstrap replicates that mimic the dynamic properties of the original observations; see

for instance, Li and Maddala (1996) and Hardle et al. (2003) for very interesting reviews

of bootstrap procedures in time series. Although, bootstrap procedures seem to be an

interesting alternative for incorporating the parameter uncertainty into the PMSEs pro-

vided by the Kalman filter, the current procedures in the literature are based on the

backward representation of the model. In particular, Wall and Stoffer (2002) propose

a bootstrap procedure for incorporating the parameter uncertainty into the prediction

intervals of future values of the series of interest by fixing the last observation of each

bootstrap replicate. Consequently, the procedure requires the backward representation
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of the model and its application is limited to those models for which that represen-

tation exists. Moreover, the procedure proposed by Wall and Stoffer (2002) does not

approximate the prediction densities of the future values of the series, but that of the

prediction errors which complicates even further the procedure. In this thesis, following

the ideas of Pascual et al. (2004), we propose a new bootstrap procedure to incorporate

the parameter uncertainty into the prediction intervals of future observations that does

not rely on the backward representation of the model. Consequently, the new boot-

strap procedure is much simpler from a computational point of view without loosing

the good finite sample performance of bootstrap procedures. Furthermore, it can be

implemented in models in which the backward representation does not exists.

Bayesian, asymptotic and bootstrap procedures have also been proposed to incor-

porate the parameter uncertainty into the PMSE associated with the estimates of the

underlying components of the model; see for example, Ansley and Kohn (1986), Hamil-

ton (1986) and Quenneville and Singh (2000) for the asymptotic and Bayesian approx-

imations. However, the asymptotic and Bayesian procedures have the same limitations

commented for the prediction intervals. Recently, Pfeffermann and Tiller (2005) pro-

pose several bootstrap procedures for incorporating the parameter uncertainty into the

PMSEs of the estimated unobserved states. The bootstrap PMSEs proposed by Pf-

effermann and Tiller (2005) are based on obtaining the unconditional PMSEs of the

estimates of the underlying states. However, one should note that the Kalman filter

is designed to generate PMSE conditional on the available information set. Although

this distinction is irrelevant in state space models with time-invariant system matrices,

it could be important when the system matrices in state space model are observation

dependent. Consequently, by taking into account this distinction, in this thesis, we

propose new bootstrap procedures that simplify the bootstrap procedures proposed by
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Pfeffermann and Tiller (2005) improving, at the same time, their finite sample perfor-

mance.

It is also important to mention that bootstrap procedures not only allow to incor-

porate the parameter uncertainty into PMSEs but also, they do not require, in general,

the assumption of conditional Gaussianity for their implementation. Therefore, they

allow to obtain prediction intervals of future observations and PMSEs of the underlying

components in the context of non-Gaussian models.

The rest of the chapter is organized as follows. Section 2 describes briefly the prop-

erties of state space models and the Kalman filter needed in the rest of the thesis. We

also describe how prediction intervals of future observations can be constructed using

the information that the filter provides. Finally, we also briefly describe the asymp-

totic procedure of Hamilton (1986) for incorporating the parameter uncertainty into

the PMSEs of the estimated unobserved components. Section 3 describes the boot-

strap procedures previously proposed in the literature for incorporating the parameter

uncertainty into PMSEs of estimated underlying states and prediction intervals of fu-

ture observations. Finally, Section 4 summarizes the main objectives of this thesis and

its organization.

1.2 State space models and the Kalman filter

In this section we describe state space models and the Kalman filter. First, we describe

the filter run with known parameters. Then, we present the problem of using the

estimated parameters instead of the true ones for estimating the PMSE of the estimated

unobserved components. Finally, we describe how prediction intervals of the future

values of the series are constructed using the filter.
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1.2.1 The filter with known and estimated parameters

Unobserved component models can be casted into the following state space framework

Yt = Ztαt + dt +R1tεt, (1.1a)

αt = Ttαt−1 + ct +R2tηt, t = 1, . . . , T, (1.1b)

where Yt is a N × 1 vector time series observed at time t, αt is the m × 1 vector

of unobservable state variables, εt is a k × 1 vector of independent white noises with

zero mean and covariance matrix Ht and ηt is a g × 1 vector of serially uncorrelated

disturbances with zero mean and covariance matrix Qt. The disturbances εt and ηt are

uncorrelated with each other in all time periods. Finally, the initial state vector, α1, has

mean a1|0 and covariance matrix P1|0. All the system matrices, Zt, dt, R1t, Tt, ct, R2t, Ht

and Qt, are assumed to be known one-step-ahead. The model in (1.1) is time-invariant

when, with the exception of dt and ct, all the system matrices are time-invariant.

The Kalman filter provides one-step-ahead estimates at time t of the underlying

states, αt, and their corresponding PMSE, which are denoted by at|t−1 and Pt|t−1 re-

spectively, given the information available at time t− 1, i.e. {Y1, ..., Yt−1} . If the errors

are further assumed to have a conditional joint Normal distribution, using well known

results of this distribution, at|t−1 and Pt|t−1 are the conditional mean and conditional

PMSE respectively. In particular, it is possible to see that, in this case,

αt
Yt

∣∣∣∣Y1, . . . , Yt−1 ∼ N
[(

at|t−1

Ztat|t−1 + dt

)
,

(
Pt|t−1 Pt|t−1Z

′
t

ZtPt|t−1 Ft

)]
, (1.2)

where at|t−1 and Pt|t−1 are given by the following prediction equations

at|t−1 = Ttat−1 + ct (1.3a)

Pt|t−1 = TtPt−1T
′
t +R2tQtR

′
2t, (1.3b)
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and at−1 and Pt−1 are given by the following updating equations

at−1 = at−1|t−2 + Pt−1|t−2Z
′
t−1F

−1
t−1Vt−1, (1.3c)

Pt−1 = Pt−1|t−2 − Pt−1|t−2Z
′
t−1F

−1
t−1Pt−1|t−2Z

′
t−1 +R2t−1QtR

′
2t−1, (1.3d)

with Vt = Yt−Ztat|t−1−dt the one-step-ahead vector of innovations and Ft = ZtPt|t−1Z
′
t+

R1tHtR
′
1t its covariance matrix; see, Harvey (1989) for details. When running the

Kalman filter equations given in (1.3), it is assumed that all the parameters involved in

the system matrices and the initial conditions a1|0 and P1|0 are known. It is important

to observe that in linear models in which the system matrices are independent of the

observations, the PMSE, Pt|t−1, is also independent of the observations. Therefore,

in this case, Pt|t−1 is also the unconditional error covariance matrix associated with

the conditional mean estimator of the underlying state. Also note that, when the

system of matrices are time-invariant, the Kalman filter converges to a steady state

with covariance matrices Pt|t−1 = P and Pt = aP , where a is a constant, and Ft = F ;

see Anderson and Moore (1979) and Harvey (1989). Finally, note that, when the model

in (1.1) is not conditionally Gaussian, the Kalman filter in (1.3) is still optimum in the

sense that it provides the Minimum Mean Square Linear Estimator (MMSLE) of the

underlying components; see Harvey (1989).

Finally, it is also useful for one of the bootstrap procedures described later in this

thesis to express the state space model in (1.1) in what is known as the Innovation Form

(IF) which depends on a unique disturbance vector instead of two. The IF is given by

equation (1.3a) together with

Yt = Ztat|t−1 + dt + Vt. (1.4)

Note that the unique disturbance vector in the IF is the one-step-ahead innovations,

Vt.
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Up to now, we have assumed that the parameters of the model are known when the

Kalman filter is run. However, in practice, some of these parameters are unknown and

have to be substituted by consistent estimates. In this thesis, we consider the Quasi-

Maximum Likelihood (QML) estimator of the parameters based on maximizing the

Gaussian likelihood; see, for example, Harvey (1989) and Durbin and Koopman (2001)

for details. Denote by Ẑt, d̂t, Ĥt, R̂1t, T̂t, ĉt, R̂2t and Q̂t the system of matrices where

the unknown parameters have been substituted by their QML estimates. Furthermore,

the initial conditions for the filter are also unknown. The usual practice is to assume

that they are given by the unconditional distribution of the unobserved state in case

of stationary states or by a diffuse prior distribution when they are non-stationary; see

Harvey (1989). Then, equations (1.3a)-(1.3d) of the Kalman filter can be run with the

system matrices substituted by their respective estimates providing ât|t−1 and P̂t|t−1

respectively, and the corresponding updated estimates ât and P̂t. Note that, ât|t−1 is an

estimate of the conditional mean of the underlying component, at|t−1. However, P̂t|t−1 is

not the PMSE of ât|t−1 because it does not take into account the parameter estimation

uncertainty.

1.2.2 PMSE of the unobserved states with estimated param-

eters

As we mentioned, when the Kalman filter is run with the system matrices substituted

by their respective estimates, it provides ât|t−1 and P̂t|t−1 where, ât|t−1, is an estimate

of the conditional mean of the state, at|t−1, but, P̂t|t−1 is no longer the PMSE of ât|t−1,
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which is given by

PMSEt|t−1 = E
t−1

[(
ât|t−1 − αt

) (
ât|t−1 − αt

)′]
= E

t−1

[(
ât|t−1 − at|t−1

) (
ât|t−1 − at|t−1

)′]
+

E
t−1

[(
at|t−1 − αt

) (
at|t−1 − αt

)′]
= E

t−1

[(
ât|t−1 − at|t−1

) (
ât|t−1 − at|t−1

)′]
+ Pt|t−1 (1.5)

where the t−1 under the expectation means that it is taken conditional on {Y1, . . . , Yt−1}.

Note that the cross-product E
t−1

[(
ât|t−1 − at|t−1

) (
at|t−1 − αt

)′]
is zero under the assump-

tion of conditional Normality. The second term in (1.5) is denoted by Hamilton (1986)

as filter uncertainty. It represents how far would the state be from its estimate when

the parameters are known. This uncertainty is due to the uncertainty in separating

signal and noise and it is inherent to the Kalman filter. On the other hand, the first

term in (1.5), denoted as parameter uncertainty, represents the discrepancy between

the estimates of the unobserved states obtained with known and unknown parameters.

P̂t|t−1 does not take into account the parameter uncertainty involved in the first term

of (1.5). Therefore, P̂t|t−1 will underestimate in general the true conditional PMSE of

ât|t−1.

As we said in the introduction, there have been several proposals in the literature

to compute the PMSE of the estimator of the unobserved components that take into

account the parameter uncertainty. Next, we describe one of the most popular of these

alternatives proposed by Hamilton (1986) which is based on the asymptotic distribution

of the parameter estimator. Hamilton (1986) proposes to estimate the PMSE of ât|t−1

by considering the decomposition in (1.5) and the following relationship

PMSEt|t−1 = Eθ

{
E
t−1

[(
ât|t−1 − at|t−1

) (
ât|t−1 − at|t−1

)′ |θ]}+

Eθ

{
E
t−1

[(
at|t−1 − αt

) (
at|t−1 − αt

)′ |θ]} , (1.6)
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where θ is the vector of model parameters.

Once the parameters are estimated, a large number, M , of realizations of θ̂(i) are

generated from the asymptotic distribution of the estimator. Then, the Kalman fil-

ter is run as in 1.3 using each of the realizations θ̂(i) and the original observations,

{Y1, . . . , YT}, obtaining a series of estimates the state and their corresponding PMSE,

denoted by â
(i)
t|t−1 and P̂

(i)
t|t−1, respectively. In this way, an analogue of the expectations

within squared brackets in (1.6) can be obtained by
(
â

(i)
t|t−1 − ât|t−1

)(
â

(i)
t|t−1 − ât|t−1

)′
and P̂

(i)
t|t−1 respectively. Then, the sample averages for all possible values of the param-

eters are obtained to estimate the expectation over all values of θ. Finally, the estimate

of PMSE in (1.6) is given by

P̂MSE
Asy

t|t−1 =
1

M

M∑
i=1

P̂
(i)
t|t−1 +

1

M

M∑
i=1

(
â

(i)
t|t−1 − ât|t−1

)(
â

(i)
t|t−1 − ât|t−1

)′
. (1.7)

1.2.3 Prediction intervals of future observations

Consider the state space model in (1.1) with time-invariant system of matrices, then, as

mentioned before, the Kalman filter converges to a steady state with covariance matrices

Pt|t−1 = P and Pt = aP , where a is a constant, and Ft = F . After the last observation

is available, the Kalman filter can still be run without the updating equations, in (1.3c)

and (1.3d). In this case, the k-step ahead predictions of the underlying unobserved

components are given by

aT+k|T = T kaT +
k−1∑
j=0

T jc, (1.8a)

and their associated PMSE matrices are given by

PT+k|T =
(
T k
)
PT
(
T k
)′

+
k−1∑
j=0

[(
T j
)
R2QR

′
2

(
T j
)′]

. (1.8b)

The k-step ahead prediction of YT+k is given by

ỸT+k|T = ZaT+k|T + d, (1.9a)
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with prediction PMSE given by

PMSE(ỸT+k|T ) = ZPT+k|TZ
′ +R1HR

′
1. (1.9b)

Consequently, assuming that future prediction errors are Normally distributed, pre-

diction intervals for YT+k are given by

[
Ỹ

(i)
T+k|T − z1−α/2σ

(i)
T+k|T , Ỹ (i)T+k|T + z1−α/2σ

(i)
T+k|T

]
, i = 1, . . . , N, (1.10)

where σ
(i)
T+k|T is the ith element of the main diagonal of PMSE(ỸT+k|T ) in (1.9b) and

z1−α/2 is the
(
1− α

2

)
-percentile of the Standard Normal distribution; see, for example,

Durbin and Koopman (2001).

When the parameters of the model are estimated, the prediction and their PMSE

are obtained by (1.9) with all system matrices substituted by their estimates and with

aT+k|T and PT+k|T substituted by âT+k|T and P̂T+k|T respectively, where the latter are

given by (1.8a) with the system matrices substituted by their estimates and aT and pT

substituted by âT and P̂T respectively. Consequently, the k-step ahead prediction of

YT+k is given by

ŶT+k|T = ẐT+kâT+k|T + d̂T+k (1.11a)

with estimated PMSE given by

P̂MSE
(
ŶT+k|T

)
= ẐP̂T+k|T Ẑ

′ + R̂1ĤR̂
′
1. (1.11b)

Then, in practice, the prediction intervals for future values of Yt are given by

[
Ŷ

(i)
T+k|T − z1−α/2σ̂

(i)
T+k|T , Ŷ

(i)
T+k|T + z1−α/2σ̂

(i)
T+k|T

]
, i = 1, . . . , N. (1.12)

where σ
(i)
T+k|T is the ith element of the main diagonal of P̂MSE(ŶT+k|T ) in (1.11b). We

denote the interval in (1.12) as standard (ST). Note that P̂T+k|T does not incorporate

the parameter uncertainty and, consequently, the ST prediction intervals in (1.12) are
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expected to have coverages under the nominal. Furthermore, they are constructed under

the assumption of conditional Normality. Therefore, they can be inadequate when this

assumption is not satisfied.

1.3 Bootstrap procedures for state space models

In this section we describe the bootstrap procedures available in the literature proposed

to incorporate the parameter estimation uncertainty into the PMSEs of the estimated

unobserved states and prediction intervals of future values of the series of interest.

1.3.1 Bootstrap procedures for estimating PMSE

As we mentioned, when the Kalman filter is run with estimated parameters the PMSE

associated with the estimates of the underlying component, P̂t|t−1, underestimate the

true uncertainty of ât|t−1. Hamilton (1986) propose to use the asymptotic distribution

of the estimator to incorporate the parameter uncertainty into the PMSEs. However,

when the sample size is small or even moderate, this approximation can be poor; see

for example Quenneville and Singh (2000). To overcome this problem, Pfeffermann

and Tiller (2005) propose to use bootstrap procedures. Although, the Kalman filter

is designed to generate PMSE conditional on the available information set, their are

based on obtaining the unconditional PMSE of estimates of the underlying states.

They propose parametric and non-parametric bootstrap procedures. Next, we only

describe the parametric bootstrap because it has the best performance according to our

simulation results. They consider the decomposition of the PMSE in (1.5) but with

the expectations taken over all possible realizations of {Y1, . . . , YT} and {α1, . . . , αT}

instead of expectations conditional on the available data set. The parametric bootstrap

analogue of (1.5) proposed by Pfeffermann and Tiller (2005) is obtained as follows:
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Step 1: Given a realization of {Y1, . . . , YT}, estimate the parameters, θ̂ , and implement

the Kalman filter to obtain the estimates of the underlying state, ât|t−1(θ̂) and

the corresponding PMSE, P̂t|t−1(θ̂).
1

Step 2: Obtain a bootstrap replicate of the series {Y ∗1 , . . . , Y ∗T }, and of the underlying

state {α∗1, . . . , α∗T}, by extracting realizations, ε∗t and η∗t , t = 1, . . . , T, from the

joint Gaussian distribution of εt and ηt, using them and the estimated param-

eters, θ̂, substituted in model (1.1). Then, estimate the bootstrap parameters,

θ̂∗.

Step 3: Implement again the Kalman filter with the bootstrap estimates, θ̂∗, and the

bootstrap replicates {Y ∗1 , . . . , Y ∗T }, to obtain bootstrap estimates of the state,

â∗t|t−1(θ̂
∗), and their corresponding PMSE, P̂ ∗t|t−1(θ̂

∗).

Step 4: Using the bootstrap series {Y ∗1 , . . . , Y ∗T } and the parameters estimated in step

1, θ̂, run the Kalman filter to obtain the estimates of the state denoted by

â∗t|t−1(θ̂).

1We add explicitly the dependence of the estimates of the unobserved states and their corresponding
PMSE on the estimated parameters to clarify the procedure.
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Repeat B times steps 2 to 4. Finally, the bootstrap analogue of the PMSE of ât|t−1

in (1.5) is estimated by2

P̂MSE
PT

t =
1

B

B∑
j=1

(
â
∗(j)
t|t−1(θ̂

∗)− â∗t|t−1(θ̂)
)(

â
∗(j)
t|t−1(θ̂

∗)− â∗t|t−1(θ̂)
)′

+2P̂t|t−1 −
1

B

B∑
j=1

P̂
∗(j)
t|t−1(θ̂

∗). (1.13)

As we noted above, the PMSE in (1.13) is computed by taking expectations over

all bootstrap realizations of the original series. However, the Kalman filter is designed

to obtain conditional estimates of the underlying state and their corresponding PMSE.

Therefore, it could be possible to simplify computationally the bootstrap procedure

and, simultaneously improve its performance by computing the PMSEs conditional on

the available data set.

1.3.2 Bootstrap prediction intervals of future observations

In the context univariate of ARIMA models several authors propose to use bootstrap

procedures to construct prediction intervals that incorporate the parameter uncertainty.

The seminal paper in this area is Thombs and Schucany (1990) who propose a bootstrap

procedure to obtain prediction intervals for AR(p) models based on estimating directly

the distribution of the conditional predictions. They argue that, because predictions

are conditional on the available data set, all bootstrap replicates generated to obtain

bootstrap replicates of the estimated parameters, should have the same last p values.

Consequently, the procedure of Thombs and Schucany (1990) requires the use of the

2Pfeffermann and Tiller (2005) also propose a non-parametric bootstrap for estimating the PMSE
which is based on obtaining the bootstrap replicates of {Y ∗1 , . . . , Y ∗T } by using the IF of the model
in (1.3a) and (1.4) and random extractions, {V ∗1 , . . . , V ∗T }, from the empirical distribution of the
standardized innovations, V̂tF̂

−1/2
t ; see, Stoffer and Wall (1991) and Rodriguez and Ruiz (2009) for its

practical implementation. This non-parametric bootstrap does not assume any particular distribution
of the errors. In our comparisons, we do not consider this non-parametric bootstrap because the results
are always worse than those of the parametric bootstrap.
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backward representation of the model. The need of this representation complicates

computationally the procedure and limits its implementation to models with it. On the

other hand, Pascual et al. (2004) show that when trying to incorporate parameter un-

certainty in prediction intervals, there is not need of fixing the last p observations of each

bootstrap replicate. They only fix the last p observations to obtain bootstrap replicates

of future values of the series but the estimated parameters are bootstrapped without

fixing any observation in the sample. Consequently, the backward representation is

unnecessary, which simplifies the construction of bootstrap prediction intervals and al-

lows to extend the procedure to models without such representation. Unlike ARIMA

models, models with unobserved components may have several disturbances. There-

fore, the bootstrap procedures proposed by Thombs and Schucany (1990) and Pascual

et al. (2004) cannot be directly applied to them. To overcome this problem, Stoffer and

Wall (1991) propose to use the IF based on a unique set of error terms, in order to use

bootstrap procedures for obtaining prediction intervals of future observations in state

space models. However, as in Thombs and Schucany (1990), the bootstrap procedure

proposed by Wall and Stoffer (2002) requires the use of the backward representation.

Furthermore, its implementation is complicated by the fact that the bootstrap density

of the prediction errors is obtained in two steps. They obtain first the density that in-

corporates the parameter estimation uncertainty and then the density that takes into in

account the variability of future innovations. Finally, these two densities are combined

in the overall density of the prediction errors that is itself used to obtain the density

of future observations. They show that their procedure works well in the context of

univariate Gaussian state space models. However, it is computationally complicated in

practice and it is difficult to extend it to more general models.

Next, we describe the procedure proposed by Wall and Stoffer (2002). The backward
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representation of state space models is based on the IF in equations (1.3a) and (1.4). To

simplify the procedure, we consider that dt = ct = 0. Moreover, the system of matrices

are assumed to be time-invariant, consequently, Pt|t−1 = P and Ft = F . Let’s define

V s
t = VtF

−1/2
, t = 1, . . . , T, the standardized innovations. The following equations

represent the backward recursion of the state space model in (1.1)

Yt = Ntτt+1 − Ltat|t−1 +MtV
s
t , t = T − 1, . . . , 1, (1.14a)

τt = T ′τt+1 + Atat|t−1 −BtV
s
t , t = T − 1, . . . , 1, (1.14b)

where τt is the reverse time estimate of the state vector with τT = V−1
T aT |T−1. The

matrices in the backward recursions are given by Nt = ZVtT ′ + FK
′
, Lt = F

1/2
B′t −

ZVtAt, Mt = F
1/2
ct − ZVtBt, At = V−1

t − T ′V−1
t+1T, Bt = T ′V−1

t+1KF
1/2

, ct = I −

F
1/2
K
′V−1
t+1KF

1/2
, Vt+1 = TVtT ′+KFK

′
andK = TPZ ′. These matrices are computed

together with the forward Kalman filter with V1 = E
[
a1|0a

′
1|0

]
.

Note that, as explained before, in practice the parameters are unknown and, con-

sequently, the backward recursion in (1.14) should be carried out by substituting the

unknown parameters by the corresponding QML estimates. In this case, the backward

estimates of the state are denoted by τ̂t for t = 1, . . . , T .

The bootstrap prediction intervals of YT+k are obtained by the following steps:

Step 1: Estimate the parameters of model (1.1) by QML, θ̂, and construct the stan-

dardized innovations
{
V̂ s
t ; 1 ≤ t ≤ T

}
.

Step 2: Construct a sequence of bootstrap standardized innovations
{
V̂ s∗
t ; 1 ≤ t ≤ T+

K} via random draws with replacement from the standardized innovations, V̂ s
t ,

with V̂ ∗sT = V̂ s
T .
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Step 3: Construct a bootstrap replicate of the series, {Y ∗t ; 1 ≤ t ≤ T − 1} via the back-

ward state space model, in (1.14), with estimated parameters, θ = θ̂, using the

innovations
{
V̂ s∗
t ; 1 ≤ t ≤ T − 1

}
and keeping Y ∗T = YT fixed. Estimate the

parameters of the model in order to obtain a bootstrap replicate, θ̂∗, of them.

Step 4: Generate conditional forecasts
{
Y ∗T+k|T ; 1 ≤ k ≤ K

}
via the IF with estimated

parameters and bootstrap errors as follows

a∗T+k|T = T̂ kâT |T−1 + kĉ
k−1∑
j=0

T̂ k−1−j +
k−1∑
j=0

T̂ k−1−jK̂F̂
−1

V̂ ∗T+j, (1.15a)

Y ∗T+k|T = ẐT̂ kâT |T−1 + Ẑ
k−1∑
j=0

T̂ k−1−j + kĉẐ
k−1∑
j=0

T̂ k−1−j

+ d̂K̂F̂
−1

V̂ ∗T+j + V̂ ∗T+k, k = 1, 2, . . . , (1.15b)

where V̂ ∗T+j = F̂
(1/2)

V̂ s∗
T+j

Step 5: Construct the conditional forecast values
{
Ŷ ∗T+k|T ; 1 ≤ k ≤ K

}
via the IF with

bootstrap parameters and future errors equal to zero, i.e.

â∗T+k|T = T̂ ∗kâT |T−1 + kĉ∗
k−1∑
j=0

T̂ ∗k−1−j (1.16a)

Ŷ ∗T+k|T = Ẑ∗T̂ ∗kâT |T−1 + kĉ∗Ẑ∗
k−1∑
j=0

T̂ ∗k−1−j + d̂∗, k = 1, . . . , . (1.16b)

where â∗T |T−1 = âT |T−1.

Step 6: Finally, compute the bootstrap forecast error by

d∗k = Y ∗T+k|T − Ŷ ∗T+k|T , for k = 1, 2, . . . , K .

Steps 2 to 6 are repeated B times.

Note that this procedure does not approximate directly the conditional distribution

of YT+k but the distribution of the prediction errors. In Step 4 the bootstrap replicates
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Y ∗T+k|T are constructed using the estimated parameters. They incorporate the uncer-

tainty due to the fact that when predicting, future innovations are equal to zero while

in fact they are not. However these bootstrap replicates do not incorporate the uncer-

tainty due to parameter estimation. Then, in Step 5 the bootstrap replicates Ŷ ∗T+k|T

incorporate the variability attributable to parameter estimation through the use of θ̂∗

instead of θ̂. However, in Ŷ ∗T+k|T , future innovations are assumed to be zero. Finally,

the conditional bootstrap prediction errors, d∗k, are computed as the difference between

Y ∗T+k|T − Ŷ ∗T+k|T . The corresponding prediction intervals, denoted by WS, are centered

at the point prediction ỸT+k|T . They are given by

[
Ŷ

(i)
T+k|T +Q

∗(i)
α/2,d∗k

, Ŷ
(i)
T+k|T +Q

∗(i)
1−α/2,d∗k

]
, i = 1, . . . , N, (1.17)

where Q
∗(i)
α/2,d∗k

is the α
2
-percentile of the empirical conditional bootstrap distribution of

the k-step ahead prediction errors of Y
(i)
T+k.

1.4 Organization of the thesis

In this thesis, we focus on two main problems. On one hand, in Chapter 2 we analyze

the way in which the parameter uncertainty can affect the PMSE associated with the

estimation of the underlying components and propose two new bootstrap procedures

to obtain conditional PMSEs of the estimated unobserved states in state space models

that incorporate the parameter uncertainty. We simplify the procedures with respect

to alternative bootstrap PMSEs. The first bootstrap procedure proposed is parametric

in the sense that it is based on constructing the bootstrap replicates by resampling the

residuals from the assumed distribution of the errors with the estimated parameters.

The second procedure is based on resampling from the empirical distribution of the

residuals of the estimated model and consequently, it does not assume any particular
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distribution of the errors. We carry out Monte Carlo experiments to analyze the finite

sample performance of our procedures. Finally, we implement the two new bootstrap

procedures to a real macroeconomic problem and show how taking into account the

parameter uncertainty can change some conclusion of interest for policy makers.

On the other hand, in Chapter 3, we propose bootstrap procedures to incorporate the

uncertainty associated with parameter estimation into the prediction densities of future

values of the observed series. The proposed procedure is not based on the backward

representation of the model. Moreover, prediction densities of future observations are

obtained in just one step. Consequently, our new bootstrap procedure has the advantage

of being much simpler without loosing the already proven good small sample behavior of

bootstrap procedures. In addition, from the computational point of view, our procedure

is less time consuming. We carry out Monte Carlo experiments for analyzing the finite

sample behavior of the new bootstrap procedure and compare them with alternatives.

We also apply the new procedure to a real time series. We illustrate the performance

of the proposed procedure to construct bootstrap prediction intervals by implementing

it on the standardized quarterly mortgages change in home equity debt outstanding,

unscheduled payments. We show that when the parameter uncertainty is not taken into

account, the prediction intervals have a coverage that is under the nominal.

Finally, in Chapter 4, we summarize the main conclusions of this thesis and present

some suggestions for future research.



Chapter 2

Bootstrap Prediction Mean Squared

Errors of Unobserved States Based

on the Kalman Filter with

Estimated Parameters

2.1 Introduction

As mentioned in Chapter 1, the parameter uncertainty should be incorporated in the

PMSEs of the estimated unobserved state when they are obtained by running the

Kalman filter with estimated parameters. There are several alternatives proposed in

the literature with this goal. They can be classified into three main groups. First,

several proposals are based on the asymptotic distribution of the parameter estimator;

see Chapter 1 for the description of the procedure proposed by Hamilton (1986). As we

mentioned before, these procedures can be inadequate in small samples because, in this

case, the asymptotic distribution could be a poor approximation of the finite sample

distribution of the parameter estimator. Second, there are Bayesian procedures which

provide the posterior distribution of the parameters conditional on the available infor-

mation which is used for estimating the PMSE. However, these procedures can be very

intensive computationally mainly when the structure behind the model is quite compli-

31
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cated; see for example Datta et al. (1999). Finally, in Chapter 1 we have also described

the bootstrap procedures proposed by Pfeffermann and Tiller (2005) which have the

advantage of being computationally simple even in relatively complicated models. The

bootstrap PMSEs proposed by Pfeffermann and Tiller (2005) are based on obtaining the

unconditional PMSEs of the estimates of the underlying states. However, one should

note that the Kalman filter is designed to generate PMSEs conditional on the avail-

able information set. Although this distinction is irrelevant in state space models with

time-invariant system matrices, it could be important when the system matrices in the

state space model are observation dependent. Furthermore, by taking into account this

distinction, it is possible to simplify the bootstrap procedures proposed by Pfeffermann

and Tiller (2005) improving at the same time their finite sample performance.

In this chapter, we propose two new bootstrap procedures to obtain PMSEs of the

Kalman filter estimates of the unobserved states in Gaussian state space models that

incorporate the parameter uncertainty. By obtaining replicates of the underlying states

conditional on the information available at each moment of time, we simplify the proce-

dures with respect to alternative bootstrap PMSEs. The first bootstrap procedure pro-

posed is parametric and it is based on resampling from the assumed distribution of the

errors. Alternatively, we propose resampling from the residuals of the estimated model.

Consequently, our proposed procedure does not assume any particular error distribu-

tion. We carry out Monte Carlo experiments to analyze the finite sample performance

of our new procedures and compare them with that of the standard PMSE obtained

from the Kalman filter with estimated parameters and with those of the asymptotic

procedure of Hamilton (1986) and the bootstrap PMSEs proposed by Pfeffermann and

Tiller (2005). We show that in small samples, the procedures proposed in this thesis

have smaller biases than any of the other alternatives considered. We also show with
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simulated data that the proposed procedures can be implemented in the context of

non-Gaussian models with good performance.

In this chapter, we also analyze how the parameter uncertainty can change the inter-

vals of unobserved components in an empirical application. In particular, we considerer

the estimation of the output gap, the non accelerating inflation rate of unemployment

(NAIRU), the long-run investment rate and the core inflation in the US which are obvi-

ously variables of interest in the context of macroeconomic policy. We build on previous

work by Doménech and Gómez (2006) who propose a multivariate unobserved compo-

nents model for the US economy with the four unobserved variables mentioned above.

They obtain prediction intervals of the unobserved output gap, NAIRU, core inflation

and structural investment rate that do not incorporate the parameter uncertainty. We

show that taking into account the additional uncertainty associated with the estimation

of the parameters, the conclusions about the utility of the NAIRU as a macroeconomic

indicator for expansions and recessions can be changed.

The rest of the chapter is organized as follows. In Section 2, we propose two new

bootstrap procedures to obtain PMSEs of the one-step-ahead estimator of the unob-

served states that take into account the parameter uncertainty. Section 3 analyzes the

finite sample properties of the new procedures by means of Monte Carlo experiments,

in the context of the random walk plus noise (RWN) model with homoscedastic, het-

eroscedastic and non-Gaussian errors. Section 4 contains the empirical application in

which we estimate the uncertainty associated with the unobserved quarterly output gap,

NAIRU, investment rate and core inflation in the US. Finally, Section 5 summarizes

the main conclusions of the chapter.
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2.2 A new bootstrap procedure

In this section, we propose two new bootstrap procedures to estimate the conditional

PMSE of the one-step-ahead estimator of the unobserved components obtained by the

Kalman filter run with estimated parameters. These procedures are similar to that

proposed by Hamilton (1986) in the sense that we compute PMSE conditional on the

available information set. However, instead of dealing with the parameter uncertainty

by simulating the parameters from the asymptotic distribution of the corresponding

estimator, we simulate them from a bootstrap distribution. In this way we obtain

PMSEs with better small sample properties than those of Hamilton (1986). On the

other hand, dealing with conditional PMSE allows us to simplify computationally the

procedure with respect to the bootstrap procedures proposed by Pfeffermann and Tiller

(2005) improving at the same time their performance in small samples. Furthermore,

from an analytical point of view, the distinction between conditional and unconditional

PMSEs can be important when dealing with models in which the system matrices are

time-variant.

The first procedure proposed in this chapter is a parametric bootstrap procedure

based on resampling from the assumed joint Gaussian distribution of the noises. Al-

ternatively, we also propose a non-parametric procedure, based on resampling from the

empirical distribution of the standardized one-step-ahead innovations, which does not

assume any particular distribution of the errors.

Consider the state space model in equations (1.1) of Chapter 1. First, we describe

the proposed parametric bootstrap algorithm to obtain the PMSE of ât|t−1.

Step 1: Given the realization {Y1, . . . , YT}, estimate the parameters, θ̂ , and implement

the Kalman filter to obtain the estimates of the underlying state, ât|t−1(θ̂), and
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the corresponding PMSE, P̂t|t−1(θ̂), t = 1, . . . , T.

Step 2: Obtain a bootstrap replicate of the series {Y ∗1 , . . . , Y ∗T } and of the underlying

state {α∗1, . . . , α∗T}, by extracting realizations, ε∗t and η∗t , t = 1, . . . , T, from the

joint Gaussian distribution of εt and ηt and using them in model (1.1) with the

parameters substituted by θ̂ as follows

α∗t = T̂tα
∗
t−1 + ĉt + R̂2tη

∗
t ,

Y ∗t = Ẑtα
∗
t + d̂t + R̂1tε

∗
t ,

with α∗0 = E (αt) or the initial observations for non-stationary processes. Esti-

mate the bootstrap parameters, θ̂∗.

Step 3: Run the Kalman filter with the original observations {Y1, . . . , YT} and the boot-

strap parameters estimated in step 2 as following

ât|t−1(θ̂
∗) = T̂tat−1|t−2(θ̂

∗) + ĉt

+Kt(θ̂
∗)F−1

t−1(θ̂
∗)
(
Yt−1 − d̂t − Ẑtât−1|t−2(θ̂

∗)
)
,

P̂t|t−1(θ̂
∗) = T̂tP̂t−1|t−2(θ̂

∗)T̂ ′t −Kt(θ̂
∗)F−1

t−1(θ̂
∗)K ′t(θ̂

∗) + R̂2tQ̂tR̂
∗′
2t,

where K̂t(θ̂
∗) = T̂tP̂t−1|t−2(θ̂

∗)Ẑ ′t−1, to obtain a bootstrap replicate of ât|t−1(θ̂
∗)

and P̂t|t−1(θ̂
∗), t = 1, . . . , T.

Steps 2 and 3 are repeated B times. Then, similarly as proposed by Hamilton (1986)

in equation (1.7), the parametric conditional bootstrap PMSEs are obtained as follows

P̂MSE
CB1

t|t−1 =
1

B

B∑
j=1

P̂
(j)
t|t−1(θ̂

∗)

+
1

B

B∑
j=1

(
â

(j)
t|t−1(θ̂

∗)− ât|t−1(θ̂)
)(

â
(j)
t|t−1(θ̂

∗)− ât|t−1(θ̂)
)′
. (2.1)
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The first two steps are identical to those proposed by Pfeffermann and Tiller (2005);

see section 1.2.2. However, in Step 3, we run the Kalman filter with the bootstrap

estimates of the parameters and the original observations, while they run the filter with

the bootstrap replicates of the series. In this way, we compute the PMSE conditional

on the information contained in the original series, while the P̂MSE
PT

t in equation

(1.13) are unconditional. Furthermore, by computing the conditional PMSE, we avoid

running the filter for each bootstrap replicate as it is done in Step 4 of Pfeffermann

and Tiller (2005). This simplification implies a large reduction in computing time when

estimating the PMSE of the underlying unobserved components.

We also propose a second non-parametric bootstrap procedure for estimating the

conditional PMSE. Steps 1 and 3 are the same as in the parametric procedure just

described. However, in Step 2, we construct the bootstrap replicates by resampling

the standardized one-step-ahead innovations, V̂ s
t , and using the IF with the estimated

parameters, θ̂, as follows

a∗t+1|t = T̂t+1â
∗
t|t−1 + ĉt+1 + K̂∗t+1F̂

∗−1
t V̂ ∗t (2.2)

Y ∗t = Ẑtâ
∗
t|t−1 + d̂t + V̂ ∗t . (2.3)

Then the bootstrap parameters, θ̂∗ are estimated. Finally, the conditional PMSE is

estimated as in equation (2.1) and is denoted by P̂MSE
CB2

t|t−1.

2.3 Monte Carlo experiments

In this section we carry out simulation experiments for evaluating the performance of

the two new bootstrap procedures for estimating the conditional PMSEs and, compare

their results with those of the standard PMSE given by the Kalman filter and the

alternatives described in Chapter 1, namely, the asymptotic approximation proposed
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by Hamilton (1986) and the parametric bootstrap procedures proposed by Pfeffermann

and Tiller (2005). We consider three Monte Carlo designs based on the RWN model

with different assumptions about the distribution of its disturbances. In particular

we consider a first model with homoscedastic Gaussian disturbances, a second model

with heteroscedastic Gaussian disturbances and, finally, an homoscedastic model with

non-Gaussian disturbances. The RWN model is defined by the following equations

yt = µt + εt (2.4a)

µt = µt−1 + ηt (2.4b)

where yt is the observation at time t of the series of interest and εt and ηt are mutually

independent white noises with variances σ2
ε and σ2

η = σ2
εq respectively, where q is known

as the signal-to-noise ratio. Although we consider this particular model for its simplicity,

it has been successfully applied for explaining the dynamic evolution of many real time

series; see, among many others, Commandeur and Koopman (2007) who fit the RWN to

the log of the annual number of road traffic fatalities in Norway and Koopman and Bos

(2004) and Stock and Watson (2007) who fit it for explaining the monthly US inflation.

2.3.1 Homoscedastic RWN model

We generate R = 1000 replicates of {y(j)
t , µ

(j)
t , j = 1, ..., R} by model (2.4) with σ2

ε = 1

and q = 0.25, sample sizes T = 40, 100 and 500, and initial value equal to zero, µ0 = 0.

For each replicate, we run the Kalman filter in (1.3) with known parameters to ob-

tain one-step-ahead estimates of the underlying level, µ
(j)
t , denoted by m

(j)
t|t−1 and their

PMSE, denoted by P
(j)
t|t−1. Furthermore, for each simulated series j and moment of

time t, we also generate 10000 replicates of µ
(j)
t+1, denoted by µ

(j,i)
t+1 , i = 1, ..., 10000,

from the corresponding conditional distribution in (1.2). Then, at each moment of

time, we compute the empirical conditional PMSE of m
(j)
t|t−1 given by PMSE

(j)
t|t−1 =
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1
10000

∑10000
i=1

(
µ

(j,i)
t −m(j)

t|t−1

)2

and the relative bias d
(j)
t = P

(j)
t|t−1/PMSE

(j)
t|t−1− 1. More-

over, in order to compare the two new bootstrap procedures with the parametric boot-

strap procedure proposed by Pfeffermann and Tiller (2005), we also compute the empiri-

cal unconditional PMSE ofm
(j)
t|t−1 which is given by UPMSEt = 1

R

∑R
j=1

(
µ

(j)
t −m

(j)
t|t−1

)2

and the corresponding relative bias ud
(j)
t = P

(j)
t|t−1/UPMSE

(j)
t|t−1− 1. For each replicate,

we estimate the parameters by QML using as starting values for the filter m̂1|0 = 0

and P̂1|0 = ∞. Then, as before, we calculate the empirical conditional and uncon-

ditional PMSE of m̂t|t−1 given by PMSE
(j)
t|t−1 = 1

10000

∑10000
i=1

(
µ

(j,i)
t − m̂(j)

t|t−1

)2

and

UPMSE
(j)
t|t−1 = 1

R

∑R
i=1

(
µ

(j)
t − m̂

(j)
t|t−1

)2

respectively, and their corresponding relative

bias djt and udjt . On the other hand, for each Monte Carlo replicate, we also generate

M = 1000 realizations of the parameters, σ2
ε and q, from the asymptotic distribution of

the QML estimator to obtain the PMSEAsy
t|t−1 proposed by Hamilton (1986) in equation

(1.7). Finally, for each Monte Carlo replicate, we generate B = 1000 bootstrap repli-

cates and obtain the parametric bootstrap PMSEPT
t|t−1 proposed by Pfeffermann and

Tiller (2005) in equation (1.13), and the two new bootstrap procedures proposed in

this thesis.

Figure 2.1 plots the averages of the relative biases d
(j)
t of the conditional PMSE over

the Monte Carlo replicates for all procedures considered in this thesis1. When the

parameters are known the relative biases are denoted as KF1 which, as expected, evolve

1Note that when the Kalman filter is run the effect of the initial values on the estimates of the
PMSE vanishes in approximately five iterations; see Ray (1989). Consequently, we remove P̂t|t−1, for
t = 1 to 5, for calculating the corresponding biases d(j)

t .
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Table 2.1: Averages and standard deviations (Std) through

time of the relative biases (in percentage) of PMSE of the un-

derlying level in the RWN models with Gaussian homoscedastic,

Gaussian heteroscedastic and non-Gaussian errors.

Homoscedastic Heteroscedastic Non-Gaussian

Average Std Average Std Average Std

T = 40

KF 1a 0.02 0.04 0.02 0.04 -2.69 9.84
KF 2b -8.02 0.57 -15.44 0.71 -10.85 6.81
Asyc 20.53 15.34 20.71 1.23 21.59 19.30
PT -7.62 0.68 -11.72 1.12 -94.62 8.58
CB 1 -1.46 0.61 -1.63 1.28 -3.25 3.75
CB 2 -1.21 0.60 -1.87 1.28 -3.42 3.54

T = 100

KF 1 0.02 0.01 0.02 0.04 -1.18 6.52
KF 2 -6.82 0.25 -6.24 0.24 -7.02 4.92
Asy -3.88 0.22 11.03 0.73 -4.32 4.97
PT -3.55 0.20 -3.20 0.50 -96.53 6.08
CB 1 -0.64 0.37 -0.79 0.36 -2.12 2.60
CB 2 -0.56 0.37 -2.33 0.36 -2.35 2.58

T = 500

KF 1 0.02 0.05 0.02 0.05 -0.37 3.18
KF 2 -0.97 0.14 -1.25 0.10 -1.79 2.74
Asy -0.29 0.15 -0.23 0.11 -1.65 2.74
PT 0.20 0.15 -0.80 0.34 -99.10 2.35
CB 1 -0.18 0.15 -0.96 0.12 -1.86 1.59
CB 2 -0.25 0.15 -1.08 0.12 -1.60 1.63

a Kalman filter procedure with known parameters.
b Kalman filter procedure with estimated parameters.
c Asymptotic approximation proposed by Hamilton (1986).

around zero through time regardless of the sample size considered. The average and

standard deviations through time of the Monte Carlo averages plotted in Figure 2.1

have been reported in the first two columns of Table 2.1. Note that the average relative

biases and their standard deviations, which as expected are very small, do not depend

on the sample size. These biases and standard deviations can be attributed to the

simulation error. When the parameters are substituted by their QML estimates, the
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Table 2.2: Averages and standard deviations (Std) through

time of the relative biases (in percentage) of unconditional

PMSE of the underlying level in the RWN models with

Gaussian homoscedastic, Gaussian heteroscedastic and non-

Gaussian errors.

Homoscedastic Heteroscedastic Non-Gaussian

Average Std Average Std Average Std

T = 40

KF 1a -0.51 5.19 -1.25 4.58 -2.11 5.68
KF 2b -9.62 4.72 -10.33 3.94 -5.62 5.23
Asyc 27.92 3.42 35.92 2.78 21.59 19.30
PT 1.12 3.37 -0.60 2.77 -94.62 8.58
CB 1 2.76 3.61 -1.71 2.76 -3.25 3.75
CB 2 2.51 3.62 -1.96 2.76 -3.42 3.54

T = 100

KF 1 0.25 5.07 1.51 4.19 1.00 7.21
KF 2 -2.20 4.69 -2.67 3.83 -3.55 6.68
Asy -1.16 3.28 17.30 2.61 -5.46 4.97
PT 0.11 3.28 2.27 2.65 -96.53 6.08
CB 1 -1.10 3.29 4.82 2.61 -2.12 2.60
CB 2 -1.09 3.29 3.19 2.61 -2.35 2.58

T = 500

KF 1 -0.13 4.34 1.04 4.50 0.68 5.66
KF 2 0.22 3.89 -0.01 3.84 -1.18 5.60
Asy 0.26 2.79 1.08 2.74 -1.87 2.74
PT 0.74 2.79 1.22 2.77 -99.10 2.35
CB 1 0.23 2.79 0.24 2.74 -1.16 1.59
CB 2 0.10 2.79 0.12 2.74 -1.26 1.63

a Kalman filter procedure with known parameters.
b Kalman filter procedure with estimated parameters.
c Asymptotic approximation proposed by Hamilton (1986).

relative biases through time, denoted as KF2, evolve around approximately 9% when

T = 40. Obviously, because this bias is caused by using estimated parameters which

are obtained by consistent estimators, it disappears as the sample size increases. The

average biases reported in Table 2.1 show that when the Kalman filter is run with

estimated parameters P̂t|t−1 is a negatively biased estimator of the conditional true
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Figure 2.1: Monte Carlo averages of the ratios dt = 100 ×
(

Pt|t−1

PMSEt
− 1
)

for

the RWN model with homoscedastic Gaussian error and T = 40 (first row),

T = 100 (second row) and T = 500 (third row).

Figure 2.2: Monte Carlo averages of the ratios udt = 100 ×
(

Pt|t−1

UPMSEt
− 1
)

for the RWN model with homoscedastic Gaussian error and T = 40 (first row),

T = 100 (second row) and T = 500 (third row).
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PMSE of m̂t|t−1. The biases are as large as -8% when T = 40 and -6.82% when T = 100.

On the other hand, Figure 2.2 shows the same information plotted in Figure 2.1, but

for the biases corresponding to the unconditional PMSE, du
(j)
t . The corresponding

averages and the standard deviations through time of the relative biases are reported

in Table 2.2. When the parameter are known, the relative biases evolve around zero.

However, they are larger and much volatile than those of the conditional PMSE, even

for large sample size. When the parameters are substituted by their corresponding

QML estimates, the relative biases are -9.62% when T = 40 , -2.2% when T = 100

and, 0.22% when T = 500. Consequently, P̂t|t−1 is a negatively biased estimator of the

unconditional true PMSE of m̂t|t−1.

Figure 2.1 also plots the relative biases of the asymptotic estimator of the condi-

tional PMSE in (1.7), denoted as Asy, for the RWN model considered above. When

T = 40 the biases are even larger in absolute value than when the PMSE are computed

with estimated parameters. Table 2.1, that reports the averages through time, shows

that this quantity for the asymptotic procedure is around 20%, while the relative bias

of the PMSEs obtained from the Kalman filter with estimated parameters is -8%. This

result illustrates in small samples that, the asymptotic distribution can be a very inad-

equate approximation of the sample distribution of the QML estimator in unobserved

component models. Obviously, as the QML estimator is consistent, the biases decrease

with the sample size. Similar results occur when the unconditional PMSE is measured.

When T = 40 the biases of the PMSE proposed by Hamilton (1986) is almost out of

the range of Figure 2.2. In particular, Table 2.2 shows that it is about 28%. But, as in

the case of the conditional PMSEs, the relative biases decrease when the sample size

increases.
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Figure 2.1 also plots the Monte Carlo averages of the relative biases of the parametric

bootstrap procedure proposed by Pfeffermann and Tiller (2005) and denoted by PT.

For this procedure, when T = 40, the relative biases of PMSEPT
t|t−1 are smaller than those

of the asymptotic PMSEs, but only slightly smaller than the biases obtained when the

Kalman filter is run with estimated parameters. This fact is clearly observed in Table

2.1 where the bias of the parametric bootstrap PMSE is -7.62% compared with -8.02%

in the Kalman filter with estimated parameters. In the moderate sample size, T = 100,

the procedures proposed by Hamilton (1986) and Pfeffermann and Tiller (2005) have

similar relative biases. Finally, when T = 500, the parametric bootstrap PMSEs are

approximately unbiased.

Finally, consider the two new bootstrap procedures proposed in this chapter. When

the proposed parametric and non-parametric bootstrap PMSE, denoted by CB1 and

CB2 respectively, are used for estimating the conditional PMSE, Figure 2.1 shows that,

regardless of the sample size, the biases of these procedures are very similar. These bi-

ases obviously decrease with the sample size and are clearly smaller than those observed

when the PMSEs are computed using the Kalman filter with estimated parameters, the

asymptotic PMSEs proposed by Hamilton (1986) or the parametric bootstrap proce-

dure proposed by Pfeffermann and Tiller (2005) when the sample sizes are small or

moderate. The time averages and standard deviations reported in Table 2.1 show that

the reductions of the relative biases can be very important when T = 40. For example,

the relative bias is -8.02% when using the Kalman filter with estimated parameters,

20.53% when using the asymptotic distribution of the QML estimator, -7.62% when

using the bootstrap procedure of Pfeffermann and Tiller (2005) while they are as small

as -1.46% and -1.21% when using the parametric and non-parametric bootstrap proce-

dures proposed in this chapter. The reduction of the relative biases is still important
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when T = 100 while when T = 500 all procedures to compute the conditional PMSEs of

the estimates of the unobserved level µt are approximately unbiased. The good perfor-

mance of the parametric bootstrap procedures could be expected given that the model

is conditionally Gaussian and in the parametric procedure, we are resampling from

the true Gaussian distribution. However, it is comforting to observe that the behavior

of the non-parametric procedure which does not assume any particular distribution is

comparable with that of the parametric procedure.

When the unconditional PMSE is considered, it can be observed in Table 2.2 that,

the procedure for estimating the PMSE proposed by Pfeffermann and Tiller (2005)

perform better for in small sample, T = 40, its relative bias is 1.12%, while for both the

CB1 and CB2 bootstrap procedures are 2.76% and 2.51% respectively. However, the

relatives biases are significantly smaller for the CB1 and CB2 procedures than those of

the PMSE obtained with the estimated parameters and the asymptotic approximation

proposed by Hamilton (1986). Moreover, these biases seems to disappear when the

sample size increases. Figure 2.2 confirms all the results in Table 2.2, specially those

for small sample size.

2.3.2 Heteroscedastic RWN model

In this subsection we carry out simulations generating replicates by a time-varying state

space model. In particular, we consider the RWN model in (2.4) where the transitory

noise, εt, is heteroscedastic and given by

εt = ε†σt, (2.5)

where σ2
t = α0+α1v

2
t−1, vt is the one-step-ahead innovation given by vt = yt−mt|t−1, and

ε†t is a Gaussian white noise process with variance 1, distributed independently of ηt.
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Note that, given the specification of σ2
t and assuming that the parameters are known,

the model is still conditionally Gaussian since knowledge of past observations and past

estimates of the state implies knowledge of past innovations vt−1. This model is related

with the STARCH model described by Harvey et al. (1992) but they differ in that the

STARCH model assumes that σ2
t = α0 + α1ε

2
t−1 and, consequently, it is not condition-

ally Gaussian. Unobserved component models with heteroscedastic disturbances are

becoming very popular to represent the dynamic evolution of macroeconomic variables

as, for example, inflation or electricity prices; see, Broto and Ruiz (2009), Jungbacker

et al. (2009) and Stock and Watson (2007) among many others. In this case, we also

generate R = 1000 series from the heteroscedastic RWN model with εt defined as in

(2.5) with α0 = 0.6719, α1 = 0.2 and σ2
η = 0.25. The initial conditions are given by

µ0 = 0 and σ2
1 equal to the marginal variance of εt, which is one. As before, for each

simulated series j and moment of time t, we also generate 10000 replicates of µ
(j)
t+1,

denoted by µ
(j,i)
t+1 , i = 1, ..., 10000, from the corresponding conditional distribution in

(1.2), then we run the Kalman filter with known parameters for each simulated series

and compute m
(j)
t|t−1 and P

(j)
t|t−1 and the corresponding relative biases d

(j)
t and ud

(j)
t .

Once more, when the Kalman filter is run with known parameters, the relative

biases of the conditional PMSE, denoted as KF1 in Figure 2.3, evolve around zero for

all sample sizes. This is also observed in Table 2.1, that reports the averages through

time of the relative biases which are 0.02% for the three sample sizes. However, when the

estimation of the unconditional PMSE is considered, the relative biases of the PMSEs

computed with known parameters are larger than those for the conditional PMSEs. In
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Figure 2.3: Monte Carlo averages of the ratios dt = 100 ×
(

Pt|t−1

PMSEt
− 1
)

for

the RWN model with heteroscedastic Gaussian error and T = 40 (first row),

T = 100 (second row) and T = 500 (third row).

Figure 2.4: Monte Carlo averages of the ratios udt = 100 ×
(

Pt|t−1

UPMSEt
− 1
)

for the RWN model with homoscedastic Gaussian error and T = 40 (first row),

T = 100 (second row) and T = 500 (third row).
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particular, Table 2.2 reports that the relative biases are -1.25% when T = 40, 1.51%

when T = 100 and 1.04% when T = 500. Consequently, it not clear that the relative,

ud
(j)
t , bias decreases with the sample size. Note that in this case, the model is not time-

invariant and, consequently, the conditional and unconditional PMSE do not coincide.

Given that the Kalman filter is designed to obtain the conditional PMS, it could be

expected that it gives biased unconditional PMSE even when the sample sizes are large.

When the Kalman filter is run with estimated parameters, Figure 2.3 plots the cor-

responding average biases denoted by KF2 which, similarly to those plotted in Figure

2.1 for the time-invariant model, are clearly below of zero for the small and moder-

ate sample sizes. The central columns of Table 2.1 report the averages and standard

deviations through time of the averages of the biases d
(j)
t , plotted in Figure 2.3 which

behave similar to those reported in the time-invariant case, except for the small sample

size. In this latter case, the average relative bias is -15.44% compared with -8.02% in

the time-invariant model. As expected, these relative biases tend to decrease when the

sample size increases.

Figure 2.4, that reports the averages through the Monte Carlo replicates of the

relative biases of the unconditional PMSE, ud
(j)
t , shows that when T = 40 or T = 100,

the relative biases of the KF2 are negative bias and larger than those of the conditional

PMSE.

Figure 2.3 also plots the relative biases of the asymptotic estimator of the condi-

tional PMSE in (1.7). When T = 40 the biases are even larger than when the PMSE

are computed with the Kalman filter with estimated parameters. Table 2.1 shows that

the relative bias is around 20% compared with that of the Kalman filter with estimated

parameters which is -15%. Obviously, as the QML estimator is consistent, the biases
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decrease with the sample size. However, it is important to note that even when T = 100

the biases are larger than for the time-invariant model. With respect to the uncondi-

tional PMSE, Table 2.2 shows that when T = 40 and T = 100 the relative biases are

very large, 35.92% and 17.30% respectively. This result is clearly observed in Figure

2.4 where the relative biases associated with the Asy PMSEs are far from the zero line.

Finally, with respect to the two new bootstrap procedures, Figure 2.1 shows that, as

in the time-invariant model, the biases of the proposed parametric and non-parametric

bootstrap PMSE are very similar. These biases decrease with the sample size and

are clearly smaller than those observed when the conditional PMSEs are computed

using the Kalman filter with estimated parameters, the asymptotic proposal of Hamil-

ton (1986) or the parametric bootstrap procedure proposed by Pfeffermann and Tiller

(2005) when the sample sizes are small or moderate. The time averages and standard

deviations reported in Table 2.1 show that the reductions of the relative biases can be

very important when T = 40. For example, the relative bias is -15.44% when using the

Kalman filter with estimated parameters, 20.71% when using the asymptotic distribu-

tion of the QML estimator, -11.72% when using the bootstrap procedure of Pfeffermann

and Tiller (2005) while for the two new bootstrap procedures the relative biases are as

small as -1.63% and -1.87% when using the parametric and non-parametric procedures

proposed in this thesis respectively. The reduction of the relative biases is still impor-

tant when T = 100, while when T = 500 all procedures to compute the conditional

PMSEs of the estimates of the unobserved level µt are approximately unbiased. It is

also remarkable that the relative biases and standard deviations of the parametric and

non-parametric bootstrap procedures proposed in this chapter are approximately the

same.
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Therefore, our simulation results show that in small and moderate sample sizes

the proposed bootstrap procedures to compute the conditional PMSE of ât|t−1 have

very small biases which are smaller than those of alternative procedures. Furthermore,

this reduction of bias is accomplished BY using procedures which are simpler from a

computational point of view. It is also important to point out that we have considered a

very simple model in order to illustrate the performance of the CB1 and CB2 procedures.

Therefore, it is expected that the simplicity of our procedures when compared with

alternatives is going to be even more important when dealing with more complicated

models.

2.3.3 Non-Gaussian RWN model

Remember that when the conditional Normality assumption is not satisfied, the Kalman

filter in equations (1.3a) and (1.3b) do not provide the conditional mean of the unob-

served states and their corresponding conditional PMSEs. However, at|t−1 still are

optimal one-step-ahead estimates of the underlying state in the sense that they have

minimum PMSE, given by Pt|t−1, among all estimators which are linear functions of

the observations. Taking into account this feature, in this section, we analyze the ro-

bustness of the two new bootstrap procedures proposed in this chapter to estimate the

conditional and unconditional PMSE of the unobserved components in non-Gaussian

unobserved component models. We focus on a particular specification of interest in the

context of Stochastic Volatility models. In particular, we consider again the RWN model

in (2.4) with the measurement equation disturbance, εt, having a log (χ2
1) distribution;

see, for instance, Harvey et al. (1994) for the relation between this model and the linear

transformation of the Autoregressive Stochastic Volatility Model. In order to guarantee

that the variances of the two error terms are equal to those of the homoscedastic Gaus-
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sian model considered in the previous sections, we center and re-scaled the log (χ2
1). In

addition, given that the model is not conditionally Gaussian, the distribution in (1.2)

is not further the true conditional distribution of the vector (αt, Yt)
′. Consequently,

for each simulated series j and moment of time t, we generate 10000 replicates of µ
(j)
t ,

µ
(j,i)
t , i = 1, . . . , 10000, by particle filtering; see, Kitagawa (1996) and Arulampalam

et al. (2002) for details about particle filtering procedures. Then, the empirical condi-

tional and unconditional PMSEs and their corresponding relative biases are computed

as in previous sections.

Figure 2.5: Monte Carlo averages of the ratios dt = 100×
(

Pt|t−1

PMSEt
− 1
)

the

RWN model with error term εt distributed as logχ2
1 and T = 40 (first row),

T = 100 (second row) and T = 500 (third row).

Figure 2.5 plots the averages through Monte Carlo replicates of the relative biases when

the Kalman filter is run with known parameters. First of all this figure illustrates that
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Figure 2.6: Monte Carlo averages of the ratios udt = 100 ×
(

Pt|t−1

UPMSEt
− 1
)

for the RWN model with homoscedastic Gaussian error and T = 40 (first row),

T = 100 (second row) and T = 500 (third row).

even in this case, Pt|t−1 are slightly biased estimates of the true conditional PMSE.

This result can also be observed in the fifth column of Table 2.1 that reports the

averages and standard deviations through time of the relative biases plotted in Figure

2.5. In the small sample, when T = 40, the relative bias is -2.69% and this bias

decrease with the sample size. However, the standard deviations are much larger than

those reported for the conditional Gaussian models. These biases can be attributed

to the fact that when the model is not conditionally Gaussian, mt|t−1 is not the true

conditional mean of µt. When the Kalman filter is run with known parameters for

estimating the unconditional PMSE of the estimates of the unobserved components,

the averages reported in Table 2.2 are similar in absolute value to those reported in

Table 2.1 for the estimation of the conditional PMSE. In particular, the relative biases

for the unconditional PMSE are -2.11%, 1.00% and 0.68% for T = 40, 100 and 500

respectively, while for the conditional PMSE they are -2.69%, -1.18% and -0.37% for
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T = 40, 100 and 500 respectively. Moreover, their corresponding standard deviations

are also similar; see also Figure 2.6.

On the other hand, the relative biases for estimating the conditional PMSE reported

in the fifth column of Table 2.1 for the PMSE computed with the Kalman filter with

estimated parameters, which have been estimated by QML by maximizing the Gaussian

log-likelihood, are not very different from those reported for the conditional Gaussian

models. However, once more, the standard deviations are much larger.

The result observed for the asymptotic procedure proposed by Hamilton (1986)

seems to be robust to the presence of non-Gaussianity. However, as it is observed in

Table 2.1, the relative biases are larger than those for the Kalman filter with known

and estimated parameters when T = 40. On the other hand, it is remarkable that,

the parametric bootstrap procedure proposed by Pfeffermann and Tiller (2005) has

very large biases which do not decrease with the sample size for both the conditional

and unconditional PMSEs. The parametric bootstrap are based in resampling from the

centered and re-scaled log (χ2
1) distribution to obtain replicates of εt while the replicates

of ηt are obtained by resampling from a N
(
0, σ̂2

η

)
distribution. It has in average an

overestimation of the true PMSE of approximately 95% for all sample sizes.

Finally, the two new bootstrap procedures proposed in this chapter have an adequate

performance even in the small sample size. In particular, the relative biases of the new

parametric and non-parametric procedures for estimating the conditional PMSE are

-3.25% and -3.42%, respectively when T = 40, and, -2.12% and -2.35% when T =

100. They are clearly smaller than the biases of any of the three alternative feasible

estimators of the PMSE and very close to those reported for the PMSE computed

by the Kalman filter with known parameters. Finally, notice that as in the Gaussian
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RWN models, the biases and standard deviations of the parametric and non-parametric

procedures are very similar.

Therefore, we can conclude that the proposed procedures can be implemented in

non-Gaussian state space models with adequate performances.

2.4 Empirical application: Estimating the Output

Gap, NAIRU, Trend Investment Rate and Core

Inflation in US

In this section, we apply the proposed bootstrap estimators of the PMSE of the unob-

served components to estimate the uncertainty associated with the estimation of the

output gap of the US economy based on the unobserved components model proposed

by Doménech and Gómez (2006). Remember that, as mentioned in the introduction,

this model is multivariate. Therefore, as a by product, we illustrate how the bootstrap

procedures proposed in this chapter to estimate PMSE of the unobserved components

can also be implemented in multivariate systems. Furthermore, further to the out-

put gap, the model also has several other unobserved variables, as the NAIRU, the

investment trend and the core inflation. We compute the PMSE for each of the four

unobserved variables in the model. First, we obtain them by running the Kalman filter

without taking into account the parameter uncertainty. We also compute the PMSE

using the asymptotic approximation of Hamilton (1986) and the parametric bootstrap

procedure of Pfeffermann and Tiller (2005). Finally, we implement the parametric and

non-parametric procedures proposed in this chapter.

The model proposed by Doménech and Gómez (2006) has the following unobserved
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component form

yt ≡ ypt + zt, (2.6a)

zt+1 = 2θ1 cos θ2zt−1 − θ2
1zt−2 + ωzt, (2.6b)

ypt+1 = µ+ ypt + ωyt, (2.6c)

πt =

(
1−

4∑
i=1

µi

)
πt +

(
4∑
i=1

µiπt−i

)
+ ηyzt + vπt, (2.6d)

πt = πt−1 + ωπt, (2.6e)

Ut = φuUt−1 + (1− φu)U t + φ0zt + vut, (2.6f)

U t = U t−1 + ωut, (2.6g)

xt = βxxt−1 + (1− βx)xt + βy0zt + βy1zt−1 + vxt, (2.6h)

xt = xt−1 + ωxt, (2.6i)

where yt is the logarithm of the GDP , zt is the unobserved output gap which is assumed

to follow a cyclical AR(2) process in equation (2.6b) and, ypt is the logarithm of the

potential output represented by a random walk plus drift model in equation (2.6c). µ

captures the growth rate of the potential output. The noises ωzt and ωyt are assumed

to be mutually independent Gaussian white noises with zero mean and variances σ2
ωz

and σ2
ωy respectively. The following two equations, (2.6d) and (2.6e), describe the

dynamic evolution of inflation, πt and its relation with the output gap. πt is the core

inflation which follows a random walk. The noises vπt and ωπt are Gaussian white

noises with variances σ2
vπ and σ2

ωπ respectively. Both noises are mutually independent

and independent of ωzt and ωyt. Equations, (2.6f) and (2.6g) describe the Okun’s law

where Ut is the unemployment rate and U t is the NAIRU. Once more, the disturbances

associated with the unemployment, vut and ωut are Gaussian white noises with variances

σ2
vu and σ2

ωu, respectively. They are mutually independent and independent of the rest

of disturbances in the model. Finally, the last two equations, (2.6h) and (2.6i) describe
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the dynamic evolution of the investment rate, xt defined as xt ≡ investmentt/outputt,

and of the long run investment trend xt. The disturbances vxt and ωxt are Gaussian

white noises with zero mean variances σ2
vx and σ2

ωx and, once more, they are assumed

to be mutually independent and independent of all previous disturbances.

Model (2.6) can be casted into a state space framework as in model (1.1) with Yt =[
yt, Ut − φuUt−1, xt − βxxt−1, πt −

(∑4
i=1 µiπt−i

)]′
, αt =

[
ypt , U t, xt, πt, zt−2, zt−1, zt

]′
, εt =

[vut, vxt, vπt], ηt = [ωyt, ωut, ωxt, ωπt, ωzt], Ht = diag {σ2
vu, σ

2
vx, σ

2
vπ}, Qt =

diag
{
σ2
ωy, σ

2
ωu, σ

2
ωx, σ

2
ωπ, σ

2
ωz

}
,

T =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 −θ2
1 2θ1 cos θ2


,

Z =


1 0 0 0 0 0 0

0 1− φu 0 0 0 0 φ0

0 0 1− βx 0 0 βy1 βy0
0 0 0 1−

∑4
i=1 µi 0 0 ηy

 ,

R1 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1


, and R2 =


0 0 0

1 0 0

0 1 0

0 0 1

 .

The parameters of model (2.6) are estimated by QML by maximizing the one-

step-ahead error prediction decomposition of the Gaussian log-likelihood where the

innovations and their covariances matrices are obtained by running the Kalman filter.

The asymptotic distribution of the QML estimator can be found in, for example, Harvey

(1989). After estimating the parameters, the Kalman filter is run again to obtain

estimates of the underlying components and their corresponding PMSEs.
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In this chapter, we estimate model (2.6) using the same data as in Doménech and

Gómez (2006). It consists on quarterly observations of the log (GDP ), the inflation

rate, defined as the average inflation over the last four months, the unemployment rate

which is defined as the average of the unemployment rate over the last four months and,

finally, the nominal investment rate. The period analyzed is from 1948:Q1 to 2003:Q1.

Preliminary analysis of the data confirms the specification proposed by Doménech and

Gómez (2006). Table 2.3 reports the QML estimates of the parameters which are also

very close to those reported by Doménech and Gómez (2006). Note that in the output

column in Table 2.3, the estimated break in the output volatility is highly significant.

There is a decrease in the volatility after 1983:Q1. Moreover, the volatility in inflation

clearly has two significant breaks: a substantial increase in 1972:Q1 and, a decrease in

1983:Q1. Finally, the output gap is significant in both the investment equations and

the Phillips curve. In both cases, the sign of the coefficients is positive as expected.

Figure 2.7 plots the sample autocorrelations and the partial-autocorrelations of the

four one-step-ahead components of the innovations vector. They seem to have no pat-

tern, indicating no evidence of residual autocorrelation. On the other hand, Figure 2.8

shows estimated kernel densities for the innovations and, apparently, not all residuals

seem to be normally distributed. In particular, the unemployment and investment resid-

uals seem to have skewed distributions. Therefore, it could be expected that, in this

case, the parametric PMSEs based on the Gaussian assumption and the non-parametric

PMSEs may differ.

Using the estimated parameters we obtain the one-step-ahead estimates of the under-
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(a) (b)

(c) (d)

Figure 2.7: Sample Autocorrelations and Partial-Autocorrelations of stan-

dardized one-step-ahead errors of the (a) output, (b) unemployment, (c) in-

vestment and (d) inflation.

(a) (b)

(c) (d)

Figure 2.8: Histogram and estimated kernel density of the standardized one-

step ahead errors of the (a) output, (b) unemployment, (c) investment and (d)

inflation.
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Table 2.3: Parameter estimates of model (2.6).

Output NAIRU Investment Inflation
θ1 0.7710 φ0 -0.3107 βy0 0.6458 ηy 0.3123 σvπ 0.0044

(15.73) (-14.31) (16.24) (3.52) (2.94)
θ2 0.2359 φu 0.3653 βy1 -0.6102 µ1 0.1427 σωπ1 0.0096

(3.02) (6.27) (-12.89) (2.24) (8.69)
σωz1 0.0075 σvu 0.0009 βx 0.8253 µ2 -0.1332 σωπ2 0.0163

(10.81) (3.86) (15.05) (-2.67) (4.38)
σωz2 0.0069 σωu 0.0022 σvu 0.0033 µ3 0.2413 σωπ3 0.0047

(11.59) (6.41) (12.17) (3.13) (3.41)
σωy 0.0048 σωu 0.0023 µ4 -0.1679

(14.07) (3.17) (-2.35)

Note: Estimation were carried out with 221 quarterly observations from 1948:I to 2003:I.
In parenthesis is the t-statistic.

Figure 2.9: Estimated and 90% prediction intervals for the output gap.

lying components and their PMSE by running the Kalman filter2. The estimates of

2Alternatively, Doménech and Gómez (2006) implement a smoothing algorithm to estimate the un-
observed components together with their PMSEs. However, they report very large correlations between
smoothed and one-step-ahead estimates of the underlying components. Therefore, their estimates are
comparable with those obtained in this chapter.
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Figure 2.10: Estimated and 90% prediction intervals for the NAIRU.

the output gap, NAIRU, investment trend and the core inflation have been plotted

in Figures 2.9 to 2.12 together with the 90% intervals obtained by assuming a Nor-

mal distribution as follows ât|t−1 ± 1.64P̂t|t−1. We also estimate the PMSE by using

the asymptotic approximation proposed by Hamilton (1986), the parametric bootstrap

procedure of Pfeffermann and Tiller (2005) and the two new bootstrap procedures pro-

posed in this chapter. Table 2.4 reports the averages of the PMSEs estimated for each

of the underlying components by each of the five procedures. The PMSEs obtained by

the Kalman filter run with the estimated parameters and the procedure proposed by

Hamilton (1986) are very similar for the NAIRU, Investment and long-run inflation.

However, there is a large difference in the PMSE for output gap which is 0.0143 when

estimated by the Kalman filter with estimated parameters while it is 0.0214 when in-

corporating the parameter uncertainty using the asymptotic distribution of the QML

estimator. Furthermore, the PMSEs estimated using the bootstrap procedure proposed
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by Pfeffermann and Tiller (2005) assuming Gaussian errors are very similar to those

obtained by using the asymptotic procedure for all variables but the investment. In this

case, it is larger using the bootstrap procedure, 0.0093, while it is estimated as 0.0062

using the asymptotic approximation. Finally, the PMSEs obtained using the two boot-

strap procedures proposed in this chapter are significantly larger with respect to all

the alternative procedures for all four unobserved variables. Although the parametric

bootstrap is based on the assumption of Gaussian errors, which seems to be not satisfied

in all equations, the PMSEs estimated using the parametric and non-parametric boot-

strap procedures are very similar for all variables. Only in the case of the NAIRU the

PMSE estimated using the parametric bootstrap is 0.0063 while it is 0.0089 when the

non-parametric procedure is implemented. Also note that, for the investment trend, the

bootstrap PMSE is around five times the PMSE computed using the Kalman filter with

estimated parameters. The smallest difference between the bootstrap and Kalman filter

PMSE is about 30% for the core inflation. Consequently, the 90% prediction intervals

based on the PMSEs proposed by Hamilton (1986) and Pfeffermann and Tiller (2005)

will be wider than those based on the PMSEs of the Kalman filter with estimated pa-

rameters. Furthermore, when the bootstrap PMSEs proposed in this chapter are used

for constructing prediction intervals, the resulting intervals will be still wider than for

the previous procedures. Figures 2.9 to 2.12, that plot the 90% prediction intervals for

the PMSEs computed by all procedures considered in this chapter, show that for the

unobserved variables considered the intervals are very similar when obtained using the

Kalman filter, asymptotic and the parametric bootstrap PMSE as proposed by Pfef-

fermann and Tiller (2005). However, there are particular moments of time when the

prediction intervals of the output gap and NAIRU are clearly wider when the PMSE

are computed using the procedures proposed in this thesis. Furthermore, while the
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differences in the prediction intervals of the unobserved core inflation are very small,

the intervals corresponding to investment are much wider.

Therefore, we conclude that incorporating the parameter uncertainty may have em-

pirical implications. Consider, for example, the usefulness of the difference between

the NAIRU and the unemployment rate to identify expansions and recessions. Figure

2.13 plots the unemployment rate together with the 90% intervals of the NAIRU con-

structed with the Kalman filter and with the non-parametric bootstrap proposed in

this chapter. The unemployment is clearly out of the Kalman filter intervals in several

moments along the sample period which allows Doménech and Gómez (2006) to con-

clude that the NAIRU is an useful indicator of expansions and recessions. However,

when the parameter uncertainty is computed taking into account the parameter uncer-

tainty as proposed in this thesis, the unemployment is inside the prediction intervals

of the NAIRU supporting the conclusion of Staiger et al. (2001) that about doubt the

ability of the difference between the unemployment and the NAIRU as an indicator of

expectations and recessions useful for economy policy.

2.5 Conclusions

In this chapter, we propose two new bootstrap procedures to obtain the PMSE of

the Kalman filter estimator of the unobserved state in states space models which take



2.5. Conclusions 62

Figure 2.11: Estimated and 90% prediction intervals for the Investment

trend.

Figure 2.12: Estimated and 90% prediction intervals for the Core Inflation.



2.5. Conclusions 63

Table 2.4: Averages and standard deviations (in brackets) through time of

PMSEs computed using the Kalman filter with estimated parameters (KF2),

the asymptotic approximation of Hamilton (1986) (Asymptotic), the bootstrap

procedure of Pfeffermann and Tiller (2005) (PT), and the parametric (CB1)

and non-parametric (CB2) bootstrap procedures.

KF2 Asymptotic PT CB1 CB2

Output Gap 0.0143 0.0214 0.0217 0.0238 0.0283
[0.0012] [0.0013] [0.0016] [0.0078] [0.0095]

NAIRU 0.0050 0.0051 0.0051 0.0063 0.0089
[0.0004] [0.0004] [0.0004] [0.0021] [0.0074]

Investment 0.0059 0.0062 0.0093 0.0212 0.0223
[0.0019] [0.0021] [0.0048] [0.0066] [0.0097]

Inflation 0.0137 0.0140 0.0142 0.0179 0.0173
[0.0116] [0.0119] [0.0121] [0.0132] [0.0110]

Figure 2.13: Estimated of the NAIRU, the unemployment rate and 90%

prediction intervals.

into account the uncertainty attributable to parameter estimation. They have the

advantage of being as simple as the procedures based on the asymptotic distribution

of the parameters and, at the same time, have the good performance of alternative

bootstrap procedures even in small sample sizes.
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We show that our bootstrap procedures for estimating PMSE of the one-step-ahead

estimator of unobserved state for time-invariant and time-variant models have bet-

ter small sample properties than alternative bootstrap procedures previously proposed

in the literature. The two new bootstrap PMSEs are also more accurate than the

asymptotic procedures and than those obtained from the Kalman filter with estimated

parameters.

It is important to note that we also show that our bootstrap procedures for esti-

mating PMSE of the one-step-ahead estimator of the underlying components perform

very well when the conditional Normality assumption is not satisfied.

Finally, our proposed bootstrap procedures are implemented to estimate the PMSE

for the one-step-ahead estimator of the Output Gap, NAIRU, the trend investment

rate and the core inflation for the US economy. In this case, the PMSE estimated

by the new bootstrap procedures are larger than those obtained with the alternative

procedures and, consequently, the prediction intervals are wider. We show that these

differences may have consequences for policy makers. In particular, we put some doubts

on the usefulness of the difference between the unemployment rate and the NAIRU for

predicting the expansions and the recessions of the economy.



Chapter 3

Bootstrap Prediction Intervals in

State Space Models: A new

proposal

3.1 Introduction

In this chapter we deal with the contribution of prediction intervals of future obser-

vations that incorporate the parameter uncertainty. As mentioned in Chapter 1, Wall

and Stoffer (2002) propose to use bootstrap procedures with this goal. However, their

procedure requires the use of the backward representation of the model. Furthermore,

its implementation is complicated by the fact that the bootstrap density of the pre-

diction errors is obtained in two steps. First, they obtain the density that takes into

account the parameter estimation uncertainty and then the density that takes into in

account the variability of future innovations. Finally, these two densities are combined

in the overall density of the prediction errors that is itself used to obtain the density

of future observations. In this chapter we propose a bootstrap procedure to obtain di-

rectly prediction densities and, consequently, prediction intervals of future observations

in state space models that incorporate the parameter uncertainty and that does not rely

on the Gaussianity assumption. Furthermore, the proposed procedure does not require

65
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the backward representation. As in Wall and Stoffer (2002), our proposed bootstrap

procedure is based on the innovation form of state space models. We show that the new

procedure has the advantage of being much simpler than the Wall and Stoffer (2002),

(WS), procedure without loosing the good behavior of bootstrap procedures. The finite

sample behavior of the new intervals is compared with intervals based on the standard

Kalman filter and on the WS procedure in the context of Gaussian and non-Gaussian

linear state space models.

The rest of the chapter is organized as follows. Section 2 describes the new bootstrap

procedure proposed for the construction of bootstrap prediction intervals in state space

models. Section 3 analyzes the finite sample properties of the new procedure by means

of Monte Carlo experiments. They are then compared with those of the standard

and WS prediction intervals. Section 4 presents an application of the new bootstrap

procedure to a real time series of the US standardized quarterly mortgages change in

home equity debt outstanding, unscheduled payments. Section 5 concludes the paper

with our conclusions and some suggestions for future research.

3.2 Bootstrap Prediction Intervals in State Space

Models

In this section we describe the new bootstrap procedure for constructing prediction

densities of the future values of the series of interest. Consider the state space model

in (1.1) with constant system matrices, our proposal is to construct bootstrap predic-

tion intervals approximating the conditional distribution of YT+k by the distribution of

bootstrap replicates that incorporate simultaneously the variability due to parameter

estimation and the uncertainty due to unknown future innovations without using the
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backward filter.

The proposed procedure consists on the following steps:

Step 1: Estimate the parameters of model (1.1) by QML, θ̂, and obtain the standardized

innovations
{
V̂ s
t ; 1 ≤ t ≤ T

}
.

Step 2: Construct a sequence of bootstrap standardized innovations
{
V̂ s∗
t ; 1 ≤ t ≤ T +K

}
via random draws with replacement from the standardized innovations, V̂ s

t .

Step 3: Compute a bootstrap replicate
{
Ŷ ∗t ; 1 ≤ t ≤ T

}
by means of the IF using V̂ s∗

t

and the estimated parameters, θ̂ as follows

â∗t+1|t = T̂ â∗t|t−1 + ĉ+ T̂ P̂ Ẑ ′F̂
−1

V ∗t ,

Ŷ ∗t = Ẑta
∗
t|t−1 + d̂+ V ∗t ,

with â∗0 = â1. Estimate the corresponding bootstrap parameters, θ̂∗, and run

the Kalman filter with θ̂∗ in order to obtain bootstrap replicates of the state

vector at time T which incorporate the uncertainty due to parameter estima-

tion, â∗T |T−1.

Step 4: Obtain the conditional bootstrap predictions
{
Ŷ ∗T+k|T ; 1 ≤ k ≤ K

}
by the fol-

lowing expressions

â∗T+k|T = T̂ ∗kâ∗T |T−1 + kĉ∗ +
k−1∑
j=0

T̂ ∗k−1−jP̂
∗
Ẑ∗
′
F̂
∗−1

V̂ ∗T+j,

Ŷ ∗T+k|T = Ẑ∗T̂ ∗kâ∗T |T−1 + Ẑ∗kĉ∗ + d̂∗

+ Ẑ∗
k−1∑
j=0

T̂ ∗k−1−jP̂
∗
Ẑ∗
′
F̂
∗−1

V̂ ∗T+j + V̂ ∗T+k, k = 1, . . . ,

where V̂ ∗T = YT − Ẑ∗â∗T |T−1 − Ẑ∗kĉ∗.

Steps 2 to 4 are repeated B times.
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The empirical distribution of Ŷ ∗T+k|T incorporates both the variability due to un-

known future innovations and the variability due to parameter estimation in just one

Step. The procedure above, denoted as state space Bootstrap (SSB), has three advan-

tages over the WS procedure. First, it does not require to use the backward representa-

tion. Second, it is simpler as a unique set of bootstrap replicates of future observations

is required instead of two as in the WS procedure. Third, unlike the WS procedure,

in Step 5, we do not fix â∗T |T−1 = âT |T−1 because this value depends on the estimated

parameters, and therefore it should be allowed to vary among bootstrap replicates in

order to incorporate the uncertainty due to parameter estimation.

Finally, bootstrap prediction intervals are constructed directly by the percentile

method1. Hence, bootstrap prediction intervals are given by[
Q∗
α/2,Ŷ ∗

T+k|T
, Q∗

1−α/2,Ŷ ∗
T+k|T

]
(3.1)

where Q∗
α/2,Ŷ ∗

T+k|T
is the α

2
-percentile of the empirical bootstrap distribution of the k-step

ahead prediction of YT+k.

3.3 Finite sample properties

In this section, we analyze the finite sample properties of the SSB prediction intervals

and compare them with those of the ST and WS intervals2. We consider three different

Monte Carlo designs based on the RWN model in (2.4) with different assumptions about

the distribution of the disturbance associated with the measurement equation εt. In

particular, we consider a Gaussian white noise with unit variance, a centered and re-

1We try alternative methods as the bias-corrected and the acceleration bias-corrected with similar
results; see Efron (1987) for a definition of these intervals.

2All programs for maximizing the log-likelihood and subsequent estimation of the unobserved com-
ponents and PMSEs were written in MATLAB.
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scaled Chi-square with 1 degree of freedom and a Student-t distribution with 5 degrees

of freedom. For the three cases, simulation results are based on R = 1000 replicates of

series of sizes T = 50, 100 and 500. The parameters of the model have been chosen to

cover a wide range of different situations from cases in which the noise is large relative

to the signal, i.e. q is small, to cases in which q is large. In particular, we consider

q = {0.1, 1, 2}. For each simulated series, {yr1, . . . , yrT}, r = 1, 2, . . . , R, we first generate

B = 1000 observations of yrT+k for prediction horizons k = 1, 5 and 15, and then obtain,

95% prediction intervals computed using, the ST intervals in (1.12), the WS intervals

in (1.17) and the SSB intervals in (3.1). Finally, we compute the coverage of each of

these intervals as well as the length and the percentage of observations left out on the

right size and on the left size of the limits of the prediction intervals.

Table 3.1 reports the Monte Carlo averages of these quantities when both disturbances

are Gaussian, and the predictions are calculated for k = 1, 5 and 15 prediction hori-

zons. The table shows that, as expected given the Gaussianity of the model, the three

procedures are very similar. However, The SSB procedure seems to be slightly better

specially when the sample size is small and the prediction horizon increases. This im-

provement in the coverage seems to be due to that our procedure is incorporating the

parameter uncertainty. This result is illustrated in Figures 3.1 to 3.3 that plot kernel es-

timates of the ST, WS and SSB densities for the 1, 5 and 15-steps ahead predictions for

one particular series generated by each of the three models considered with T = 50, 100

and 500 together with the empirical density. Note that when the signal to noise ratio

is small, i.e. q = 0.1, the density of the SSB procedure seems to be more similar to the
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Table 3.1: Monte Carlo Average coverages, length and percentage of obser-

vations left out on the right and on the left of the 95% prediction intervals

constructed using ST, WS and SSB when εt is N (0, 1), ηt is N (0, q).

k

Mean coverage Mean coverage in tails Mean length

ST WS SSB
ST WS SSB

ST WS SSB
Below/Above Below/Above Below/Above

T = 50

q = 0.1
1 0.927 0.935 0.936 0.036/0.037 0.030/0.035 0.031/0.033 4.530 4.597 4.774

5 0.927 0.940 0.943 0.036/0.037 0.029/0.031 0.028/0.029 5.182 5.285 5.539

15 0.915 0.928 0.940 0.042/0.042 0.035/0.037 0.030/0.031 6.460 6.633 7.052

q = 1
1 0.936 0.923 0.928 0.029/0.035 0.036/0.041 0.036/0.035 6.157 6.250 6.280

5 0.927 0.921 0.938 0.035/0.039 0.037/0.042 0.032/0.031 9.722 9.718 10.274

15 0.914 0.909 0.934 0.041/0.045 0.043/0.047 0.033/0.033 15.258 15.194 16.469

q = 2
1 0.938 0.930 0.930 0.032/0.029 0.036/0.034 0.036/0.034 7.424 7.56 7.433

5 0.926 0.924 0.931 0.037/0.036 0.038/0.038 0.034/0.034 12.849 12.880 13.088

15 0.918 0.915 0.930 0.041/0.041 0.042/0.042 0.035/0.035 20.889 20.830 21.632

T = 100

q = 0.1
1 0.945 0.941 0.943 0.025/0.030 0.031/0.028 0.026/0.031 4.569 4.576 4.618

5 0.945 0.942 0.948 0.025/0.030 0.030/0.028 0.024/0.029 5.206 5.238 5.334

15 0.938 0.938 0.945 0.029/0.033 0.032/0.030 0.026/0.030 6.498 6.575 6.743

q = 1
1 0.944 0.940 0.939 0.028/0.028 0.030/0.029 0.030/0.031 6.271 6.314 6.278

5 0.939 0.937 0.942 0.031/0.030 0.032/0.031 0.029/0.029 9.874 9.873 10.120

15 0.934 0.932 0.940 0.033/0.033 0.034/0.034 0.030/0.030 15.547 15.521 16.165

q = 2
1 0.945 0.937 0.939 0.028/0.027 0.032/0.030 0.031/0.030 7.476 7.537 7.460

5 0.939 0.938 0.939 0.030/0.030 0.031/0.031 0.031/0.031 13.137 13.155 13.210

15 0.935 0.935 0.937 0.032/0.032 0.032/0.033 0.031/0.031 21.509 21.539 21.758

T = 500

q = 0.1
1 0.946 0.948 0.945 0.027/0.027 0.025/0.028 0.028/0.027 4.592 4.577 4.582

5 0.946 0.947 0.946 0.026/0.028 0.025/0.028 0.027/0.027 5.217 5.206 5.223

15 0.946 0.945 0.945 0.026/0.029 0.026/0.029 0.027/0.028 6.515 6.477 6.511

q = 1
1 0.948 0.948 0.947 0.029/0.023 0.027/0.025 0.027/0.025 6.339 6.335 6.314

5 0.948 0.947 0.947 0.027/0.025 0.027/0.026 0.028/0.025 10.075 10.049 10.073

15 0.947 0.946 0.947 0.027/0.026 0.027/0.027 0.027/0.026 15.956 15.919 15.944

q = 2
1 0.947 0.945 0.947 0.027/0.026 0.029/0.026 0.027/0.026 7.563 7.546 7.540

5 0.948 0.948 0.948 0.027/0.027 0.027/0.025 0.027/0.027 13.418 13.446 13.387

15 0.947 0.948 0.947 0.027/0.026 0.026/0.026 0.026/0.027 22.066 22.112 22.051
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Table 3.2: Monte Carlo Average coverages, length and percentage of obser-

vations left out on the right and on the left of the 95% prediction intervals

constructed using ST, WS and SSB when εt is χ2
(1), ηt is N (0, q).

Case k

Mean coverage Mean coverage in tails Mean length

ST WS SSB
ST WS SSB

ST WS SSB
Below/Above Below/Above Below/Above

T = 50

q = 0.1
1 0.941 0.940 0.942 0.010/0.049 0.030/0.030 0.027/0.031 4.513 4.909 4.734

5 0.943 0.934 0.946 0.013/0.044 0.039/0.027 0.027/0.026 5.221 5.507 5.596

15 0.930 0.919 0.950 0.025/0.045 0.053/0.029 0.027/0.023 6.572 6.665 7.329

q = 1
1 0.935 0.932 0.934 0.026/0.039 0.034/0.034 0.034/0.032 6.200 6.514 6.459

5 0.926 0.926 0.930 0.034/0.040 0.040/0.034 0.038/0.032 9.682 9.803 9.919

15 0.913 0.914 0.923 0.042/0.045 0.041/0.036 0.045/0.041 15.126 15.176 15.597

q = 2
1 0.937 0.933 0.932 0.028/0.035 0.034/0.034 0.035/0.033 7.378 7.714 7.575

5 0.927 0.924 0.927 0.035/0.038 0.040/0.036 0.038/0.035 12.805 12.897 12.957

15 0.919 0.917 0.923 0.040/0.041 0.043/0.040 0.040/0.037 20.839 20.880 21.236

T = 100

q = 0.1
1 0.947 0.939 0.943 0.006/0.048 0.033/0.028 0.027/0.029 4.552 4.773 4.710

5 0.946 0.937 0.942 0.010/0.043 0.037/0.026 0.031/0.027 5.196 5.356 5.414

15 0.939 0.929 0.944 0.021/0.040 0.045/0.026 0.032/0.024 6.491 6.597 6.912

q = 1
1 0.942 0.939 0.943 0.021/0.037 0.030/0.030 0.030/0.027 6.244 6.483 6.501

5 0.937 0.936 0.939 0.028/0.034 0.035/0.029 0.022/0.035 9.813 9.919 10.017

15 0.932 0.930 0.935 0.033/0.035 0.037/0.033 0.028/0.032 15.438 15.445 15.742

q = 2
1 0.947 0.944 0.945 0.022/0.031 0.028/0.028 0.027/0.028 7.507 7.685 7.686

5 0.942 0.941 0.943 0.028/0.030 0.031/0.028 0.030/0.027 13.220 13.307 13.399

15 0.938 0.937 0.940 0.030/0.031 0.033/0.030 0.032/0.028 21.659 21.752 21.941

T = 500

q = 0.1
1 0.948 0.940 0.950 0.006/0.045 0.033/0.026 0.023/0.027 4.575 4.697 4.707

5 0.948 0.939 0.947 0.011/0.041 0.036/0.025 0.028/0.025 5.184 5.272 5.314

15 0.946 0.937 0.946 0.019/0.035 0.039/0.024 0.031/0.024 6.455 6.507 6.631

q = 1
1 0.947 0.947 0.948 0.020/0.033 0.020/0.033 0.027/0.026 6.338 6.492 6.472

5 0.948 0.948 0.948 0.024/0.028 0.029/0.023 0.027/0.025 10.073 10.181 10.137

15 0.947 0.946 0.947 0.025/0.027 0.029/0.024 0.028/0.025 15.952 15.983 15.957

q = 2
1 0.944 0.945 0.944 0.026/0.030 0.027/0.028 0.029/0.026 7.554 7.648 7.636

5 0.947 0.947 0.948 0.026/0.027 0.028/0.025 0.028/0.024 13.369 13.447 13.466

15 0.947 0.947 0.948 0.026/0.027 0.028/0.025 0.027/0.025 21.968 21.992 22.085
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Table 3.3: Monte Carlo Average coverages, length and percentage of obser-

vations left out on the right and on the left of the 95% prediction intervals

constructed using ST, WS and SSB when εt is Student-t with 5 degree of

freedom, ηt is N (0, q).

Case k

Mean coverage Mean coverage in tails Mean length

ST WS SSB
ST WS SSB

ST WS SSB
Below/Above Below/Above Below/Above

T = 50

q = 0.1
1 0.942 0.939 0.945 0.027/0.031 0.030/0.031 0.026/0.029 4.522 4.499 4.799

5 0.941 0.938 0.946 0.029/0.029 0.031/0.031 0.028/0.026 5.195 5.013 5.629

15 0.929 0.931 0.951 0.029/0.045 0.033/0.034 0.027/0.022 6.491 6.951 7.351

q = 1
1 0.933 0.930 0.938 0.028/0.038 0.037/0.033 0.028/0.034 6.216 6.641 6.531

5 0.930 0.927 0.932 0.032/0.038 0.040/0.033 0.034/0.034 9.741 9.900 9.971

15 0.920 0.917 0.926 0.038/0.042 0.044/0.039 0.037/0.036 15.252 15.269 15.651

q = 2
1 0.931 0.929 0.935 0.033/0.036 0.038/0.033 0.033/0.032 7.402 7.851 7.727

5 0.930 0.926 0.934 0.034/0.037 0.039/0.035 0.033/0.033 12.902 13.048 13.004

15 0.921 0.919 0.926 0.039/0.040 0.042/0.039 0.037/0.037 21.026 21.010 21.253

T = 100

q = 0.1
1 0.946 0.940 0.946 0.023/0.031 0.032/0.028 0.026/0.028 4.548 4.758 4.780

5 0.945 0.934 0.945 0.027/0.028 0.038/0.027 0.030/0.025 5.191 5.308 5.489

15 0.938 0.927 0.945 0.022/0.040 0.046/0.027 0.032/0.023 6.485 6.519 6.969

q = 1
1 0.938 0.937 0.940 0.026/0.037 0.035/0.028 0.030/0.030 6.296 6.677 6.548

5 0.939 0.938 0.938 0.028/0.033 0.035/0.027 0.034/0.028 9.965 10.114 10.089

15 0.936 0.934 0.934 0.031/0.033 0.036/0.030 0.035/0.031 15.721 15.714 15.845

q = 2
1 0.943 0.945 0.941 0.022/0.035 0.025/0.030 0.030/0.029 7.503 7.937 7.821

5 0.939 0.938 0.937 0.029/0.032 0.032/0.029 0.033/0.030 13.158 13.321 13.325

15 0.935 0.934 0.935 0.032/0.033 0.034/0.032 0.034/0.031 21.529 21.585 21.728

T = 500

q = 0.1
1 0.942 0.935 0.947 0.028/0.030 0.039/0.026 0.026/0.027 4.549 4.720 4.717

5 0.942 0.932 0.943 0.029/0.030 0.042/0.026 0.032/0.025 5.169 5.255 5.329

15 0.941 0.933 0.944 0.022/0.037 0.042/0.025 0.033/0.023 6.456 6.516 6.672

q = 1
1 0.942 0.945 0.947 0.022/0.036 0.027/0.027 0.027/0.026 6.324 6.591 6.570

5 0.946 0.946 0.945 0.024/0.030 0.030/0.024 0.030/0.025 10.055 10.185 10.122

15 0.946 0.945 0.944 0.026/0.028 0.030/0.025 0.030/0.025 15.926 15.990 15.896

q = 2
1 0.944 0.948 0.948 0.025/0.032 0.026/0.026 0.026/0.026 7.542 7.856 7.827

5 0.947 0.948 0.947 0.026/0.027 0.026/0.026 0.026/0.026 13.372 13.675 13.555

15 0.946 0.949 0.945 0.027/0.027 0.026/0.025 0.029/0.026 21.984 22.186 22.091
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empirical densities than those of the other procedures. For a larger signal-to-noise ratio

the kernel for the three procedures are similar each other and similar to the empirical

densities. Therefore, it seems that the parameter uncertainty is more important when

the signal-to-noise ratio is small, the sample size is small and the horizon is large.

Table 3.2, that reports the results when εt is χ2
(1) and ηt is Gaussian, shows that the

mean coverage of the ST intervals is close to the nominal. However, they are not able of

dealing with the asymmetry in the distribution of εt. The average coverage in the left

tail is smaller than in the right tail. The difference between the coverage in both tails is

larger in the model with q = 0.1 where the signal is relatively small with respect to the

noise which has a non-Gaussian distribution. Note that the lack of capability of the ST

intervals to deal with the asymmetry in the distribution of εt is larger when the sample

size increases. On the other hand, the coverages of the WS and SSB intervals are rather

similar with SSB being slightly closer to the nominal, for almost all models and sample

sizes considered. Both bootstrap intervals are able to cope with the asymmetry of the

distribution of εt. Consequently, according to the results reported in Table 3.2, using

the much simpler SSB method does not imply a worse performance of the prediction

intervals. Figures 3.4 to 3.6 illustrate these results plotting the kernel density of the

simulated yT+1, yT+5 and yT+15 together with the ST, WS and SSB densities obtained

with a particular series generated by each of the models and sample sizes considered.

These figures also illustrate the lack of fit of the ST density when q = 0.1 and 1. On

the other hand, the shapes of the WS and SSB densities are similar, with SSB being

always closer to the empirical. When the horizon of prediction increases, the shape of

the empirical densities are clearly non-Normal and both bootstrap procedures are still

able of capturing this feature.
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Finally, Table 3.3 reports the results when εt is Student-t and ηt is Gaussian. Note

that these results are very similar to those obtained for the Gaussian case. The three

procedures have similar behavior in all sample size considered. However, SSB procedure

seems to have slightly better performance than the alternatives considered specially in

the small sample size.
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3.4 Empirical Application

We illustrate the performance of the proposed procedure to construct bootstrap pre-

diction intervals by implementing it on the standardized quarterly mortgages change

in home equity debt outstanding, unscheduled payments, observed from 1st quarter of

1991 to the 2nd quarter of 2007 (Mortgages). The series, plotted in panel (a) of Fig-

ure 3.7, is clearly not stationary. Its first differences are plotted in panel (b) together

with its correlogram and partial correlogram, in panel (c). The pattern of the sample

correlations and the partial correlations suggests that a moving average process of or-

der one may represent adequately the dependence of the first differences of the series.

Consequently, the RWN model in (2.4) could be adequate to represent the dynamic de-

pendence of the series of Mortgages. Table 3.4, that reports several descriptive statistics

for the first differences of Mortgages, shows that the series has excess kurtosis and pos-

itive asymmetry. The non-Gaussian distribution is reflected in the small p-values for

the Jarque-Bera and the Lilliefors tests for Normality.

Table 3.4: Descriptive statistics

Series ∆ (Mortgage)
(USD billions)

Sample Size 65
Mean 0.02
Standard Dev. 0.65
Skewness 0.38
Kurtosis 4.16
Jarque-Bera (p-value) 0.008
Lillilifors (p-value) 0.004

The parameters of the RWN are estimated by using the observations from the 1st

quarter of 1991 up to the 1st quarter of 2001, T = 61, leaving the rest of them for
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(a)

(b) (c)

Figure 3.7: (a) The Mortgages series. (b) First difference of Mortgages. (c)

Sample Autocorrelation and Partial-Autocorrelation of the first difference of

the Mortgages data.

evaluating the forecast performance of the procedure.

(a) (b)

Figure 3.8: (a) Sample Autocorrelation and Partial-Autocorrelation of stan-

dardized one-step-ahead error. (b) Empirical density and histogram for the

standardized one-step-ahead error.
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The QML estimates of the parameters are given by σ̂2
ε = 0.126 and q̂ = 0.671. These

estimates are used for running the Kalman filter, to obtain estimates the innovations

and their variances. Figure 3.8 plots the correlogram and partial correlogram and a

kernel estimate of the density of the within sample standardized one-step ahead errors.

The correlations and partial correlations are not any longer significant. However, the

density of the errors suggests that they are obviously far from Normality. Therefore, the

RWN model seems appropriate to represent the dependencies in the conditional mean

of the Mortgages series. However, the prediction of future values should be carried

out by a procedure that takes into in account the non-Normality of the errors. We

construct prediction intervals up to 5 steps ahead using the ST, WS and SSB procedures.

The resulting intervals are plotted in Figure 3.9 together with the observed values

of the Mortgages series. First, observe that the two bootstrap procedures generate

very similar intervals which are wider than the ST intervals, as expected given that

they incorporate the uncertainty due to parameter estimation. For two prediction

horizons, the observations corresponding to the 2nd quarter of 2006 and the 1st quarter

of 2007, fall outside the ST prediction interval. However, both bootstrap procedures still

contain these two values. It is important to note that although bootstrap procedures

are computational intensive, in this application with B = 2000 bootstrap replicates, the

BSS procedure requires 110 seconds using a MATLAB algorithm in an AMD Athlon

2.00GHz processor of a PC desktop with 2.00Gb of RAM. However, the Wall and Stoffer

(2002) bootstrap procedure requires 160 seconds. There is a reduction of 31% in the

computer time required.
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Figure 3.9: Bootstrap and standard prediction intervals for the out of sample

forecasting evaluation for Mortgage series.

3.5 Conclusion

This chapter proposes a new procedure to obtain bootstrap prediction intervals in the

context of state space models. Bootstrap intervals are of great interest when predicting

future values of a series of interest as they are able to incorporate parameter uncertainty

and do not rely on any particular assumption on the error distribution.

The procedure proposed in this chapter has three advantages over previous proce-

dures available in the literature. First, it is based on obtaining directly the density

of future observations instead of the density of the errors. Furthermore, this density

is obtained in one single step and incorporates simultaneously the uncertainty due to

the parameters estimation and the uncertainty due to the error distribution. Finally

and more important, the bootstrap procedure proposed in this chapter does not rely on

the backward representation. As a consequence, our procedure is much simpler from

a computational point of view and can be extended to models without a backward
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representation.

We analyze the small sample behavior of the proposed bootstrap intervals and com-

pare it with those of the intervals proposed by Wall and Stoffer (2002) and the intervals

based on assuming known parameters and a Normal distribution of the errors. We

show that our procedure, although much simpler, has slightly better properties than

the bootstrap intervals of Wall and Stoffer (2002). As expected, we also show that

bootstrap intervals are more adequate than standard intervals mainly in the presence

of non-Normal errors. In general, the standard intervals are thinner than expected to

have the nominal coverage and cannot deal with asymmetries.

Finally, our proposed bootstrap procedure to obtain prediction intervals in state

space models is illustrated by implementing it to obtain intervals for future values of a

series of Mortgages modelled by the RWN model. We show that there is an important

improvement in terms of computer time when implementing our proposed procedure

with respect to implementing the procedure proposed by Wall and Stoffer (2002).



Chapter 4

Summary of Conclusions and

Future Research

The uncertainty associated with parameter estimation is present in almost all empirical

work. In particular, it is an important component associated with the uncertainty of

forecasts of future values of a variable of interest. In this thesis, we focus on unobserved

component models and consider bootstrap methods to incorporate the parameter un-

certainty on the prediction intervals of future values of the variables of interest and of

the unobserved components of the model. Furthermore, bootstrap procedures not only

incorporate the parameter uncertainty but they are also attractive because, in general,

they do not rely on particular assumptions of the error distribution. Through this the-

sis, we use simulated and real time series data to illustrate the main results. Next, we

describe the main contribution of the thesis.

In Chapter 2 we propose a parametric and a non-parametric bootstrap procedures for

incorporating the uncertainty associated with parameter estimation into the prediction

mean squared errors of the estimates of the unobserved components. By distinguishing

between unconditional and conditional prediction mean squared errors, the proposed

procedures are computationally easier than alternative bootstrap procedures previously

86
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available in the literature. Furthermore, we also carry out Monte Carlo experiments

to compare the new procedures proposed in this thesis with the standard PMSE gen-

erated by the Kalman filter, with methods based in the asymptotic distribution of the

parameter estimator and with alternative bootstrap procedures. We show that in the

cases considered in the simulations (a random walk plus noise model with homoscedas-

tic Gaussian, heteroscedastic and non-Gaussian errors), our procedures have better

small sample properties. In addition, we show in an empirical application that when

the uncertainty associated with parameter estimation is not taken into account, the

conclusions about economic policy can change significantly.

In Chapter 3 we propose a new bootstrap procedure for incorporating the param-

eter estimation uncertainty into the prediction densities and, consequently, into the

prediction intervals for future values of the series of interest. The proposed procedure

is simpler than alternative bootstrap procedures because it avoids using the backward

representation and incorporates the parameter and noise uncertainties in a single step.

In addition, by carrying out Monte Carlo experiments, we analyze the finite sample

performance of the proposed bootstrap prediction intervals and compared them with

the standard intervals and alternative bootstrap intervals previously proposed in the lit-

erature. These experiments show that our bootstrap procedure has better small sample

size performance when it is implemented in a random walk plus noise model. Moreover,

it seems to have good properties for non-Gaussian disturbances, in particular for a χ2
1

disturbance. The main results of Chapter 3 have been published in Rodriguez and Ruiz

(2009).

Different topics, that have arisen while working on this thesis, are part of the future

research agenda. We list the most relevant ones below.
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• When dealing with the PMSE of the estimates of the unobserved states, we have

seen that the bootstrap procedures proposed in this thesis have adequate proper-

ties even in non-Gaussian models. However, decomposition given in equation (1.5)

is approximated by assuming that the cross-product E
t−1

[(
ât|t−1 − at|t−1

) (
at|t−1 − αt

)′]
is zero, and this result is only valid under Normality. Therefore, we want to an-

alyze whether it is possible to obtain a better bootstrap approximation to the

PMSE of the unobserved components in non-Gaussian models by incorporating

an additional term taking into account the above expectation. Furthermore, al-

though we propose PMSE which are robust in the presence of non-Gaussian errors,

the intervals for the unobserved components are finally constructed by using the

Normal quantile. Therefore, a natural extension is to extend the bootstrap pro-

cedures to obtain prediction intervals of the unobserved components that do not

rely in any way on the Gaussianity of the errors.

• In Chapter 3, when we propose a bootstrap procedure to incorporate the pa-

rameter uncertainty into the prediction densities of future values of the series of

interest, we assume that the system matrices are time-invariant. It could be of

interest to study how to deal with time-variant systems. In this case, we could

extend our procedures to models in which the disturbances are, for example, con-

ditionally heteroscedastic. Furthermore, we have considered only prediction of

future values of univariate time series, consequently, a natural extension is to

consider the multivariate models.

• We want to consider the application of the bootstrap procedures proposed in this

thesis for constructing densities and prediction intervals for returns and volatilities

in stochastic volatility models.
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• Finally, it is important to analyze the theoretical behavior of the procedures

proposed in this thesis. Deriving their asymptotic properties is also in our further

research agenda.
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