

Applying a Fuzzy Approach

to Relaxing Cardinality Constraints

Harith T. Al-Jumaily, Dolores Cuadra, and Paloma Martínez

Dept. of Computer Sciences, University of Carlos III in Madrid
{haljumai,dcuadra,pmf}@inf.uc3m.es

Abstract. In database applications the verification of cardinality constraints is a

serious and complex problem that appears when the modifications operations

are performed in a large cascade. Many efforts have been devoted to solve this

problem, but some solutions lead to other problems such as the complex

execution model or an impact on the database performance. In this paper a

method to reducing and simplifying the complex verification of cardinality

constraints by relaxing these constraints using fuzzy concepts is proposed.

1 Introduction

In database design methodology such as [1] and [2], there are processes devoted to

transform conceptual into logical schemata. In such processes, semantic losses are

produced because logical constructs are not coincident with conceptual constructs.

The cardinality constraint is one of these constraints that can be established in a

conceptual schema. It has dynamic aspects that are transformed to the relational

model as certain conditions to verification the insertion, deletion, and update

operations which modify the database. This type of constraint is usually represented

by minimum and maximum bounds [3]; the minimum cardinality constraint (also

called participation constraint [4]) represents the minimum number that an entity

instance must participate in a relationship. There are two types of participation, partial

and total. The maximum cardinality constraint represents the maximum number that

an entity instance participates in the relationship [5]. A correct transformation of these

constraints into the relational model is necessary in order to preserve the semantics

that reflects the Universe of Discourse. Therefore, the relational model supports

mechanisms such as primary key, foreign key, etc. to express these constraints, but

these mechanisms are not sufficient to reflect all the required semantics, therefore it

can be enhanced by using triggers and stored procedures [6]. The main goal is to keep

the semantics inside the database and not in the applications accessing it.

In many database applications the verification of cardinality constraints is a

seriously and complex problem that appears when the modification operations are

performed in a large cascade. In such applications, may be it is difficult to address all

objects that could be affected by such operations as well as the verification of the

cardinality constraints of these objects. Therefore, many research efforts have

performed different and complex methods to solve this problem. In some solutions,

1

Nota adhesiva
Published in: Lecture Notes in Computer Science 3180/2004: Database and Expert Systems Applications, p. 654-662

the applications developers must intervene to verify the cardinality constraints in

more than one object at the same time. So, if the intervention is correct, other

problems such as the complex execution model or the impact on the database

performance may be produced.

We believe that there is a relationship among the database semantics, the complex

implementations to verify this semantics, and the database performance. These three

elements could be represented as three lines of a triangle (Figure 1), the vertexes (abc)

of this triangle can be moved only in two directions, vertical and horizontal. When the

vertex (a) is moved up the base of the triangle (bc) will be reduced, this means that,

when all the semantic constraints are verified, the final result will produce an impact

on the performance of this database.

Therefore, in this work we will propose a method to reduce the complex

verification of cardinality constraints. The method can be applied to any conceptual

model but in this work we will use the Extended Entity/Relationship (EER) as

reference. The rest of this work is organised as follows. In section (2) related work is

shown. Section (3) is devoted to explain the partial and total participations as well as

fuzzy participations. In section (4) our method to relaxing the cardinality constraints

will be presented. Finally, some conclusions are exposed.

Fig. 1. Relationship Triangle

2 Related Work

An approach to verifying cardinality constraints is explained in [7]. It provides

triggers to verify the cardinality constraints for each relationship object in the

relational model. These triggers are activated when the modification operations are

actually performed. When a constraint violation is produced the adopted action is

rolled back and the transaction is aborted. The experiments have shown that the

performance evaluations of triggers and stored procedure are equally well [8] [9]. The

work presented in [10] stablished that a modifying operation upon an entity affects

only the relationships that are connected to it while a modifying operation upon a

relationship affects only the entities participating in it. Three actions are adopted

when a constraint violation is produced, (a) the operation may be rejected, (b)

triggered another operation to satisfy the constraint, or (c) updating the adjacent

element by nullifying integrity type. While the contribution in [11] was in the

automatic creation of structured methods on top of a given EER schema, these

aab Semantic

bc Performance

ac Complex implementation

cb

2

methods are to prove cardinality faithful and terminating. For example, when an

entity is inserted, all associated binary relationships are studied to see whether their

cardinality constraints are not violated. So, asking the user for all relationships related

to the inserted entity is required and this process is repeated until constraints are

satisfied. In order to terminate propagation a null entity could be inserted.

Our work addresses the issue of insert operations because an inserted instance in

the database needs to satisfy the cardinality constraints with all associated elements,

and to insert more than one instance at a time could be required. Therefore, in this

paper a method to divide the relational schema of a database into several subschemata

is proposed. This solution will reduce the number of objects in each subschema and

consequently to reduce the number of objects that must be verified when an insert

operation is performed. The final objective is to simplify the complex implementation

of verifying cardinality constraints. We believe that an insertion operation could be

easier controlled if few associated elements are verified whatever approach is used.

We will do this by taking advantage of the definition of the optional and fuzzy

participations [12]. So, we consider that the optional and the fuzzy participation roles

are end points of verifying the cardinality constraints in a relational schema. The

fuzzy participation roles are used in many works such as [13] where several fuzzy

conditions on each instance have been defined and a trigger that checks the value of a

quantifier is used to verify these conditions. If this value is less than the minimum

percentage that constraints must satisfy in a database, then the DBMS must produce

an error message informing about the non-fulfilment of this constraint.

3 Total/Partial and Fuzzy Participations

Let R = (r1E1,…, rnEn, A1,…, As) be a n-ary relationship with s attributes, where each ri

is the role that plays an entity Ek in the relationship R (Figure 2).

We define Rt as a set of instances in R. An element rt in Rt is a vector of n

components, where each ri position in the n-vector represents a participation role, and

it contains an instance of the entity identifier which participates with that role. Thus, a

set of the instances Rt of R is a subset of the Cartesian product of the identifier

instances of the entities that participate in R and the attribute domains that belong to

it.

Rt
⊆ r1E1 x…x rn Ej x dom(A1)x…x dom(As) (1)

Therefore:

|Rt| = Number of instances that belong to R.

|E1| = Number of instances that belong to E1.

3

According to the definition of cardinalities in [3], we define the cardinality

constraints of an entity Ei as;

Card(Ei, R
t) = (n,m), IFF n ≤ | { a1,…, ai-1, ai+1,…,an ∈ E1,…,Ei-1, Ei+1, … En /

(a1,…, ai-1,ai ,ai+1,…,an) ∈ Rt }| ≤ m

(2)

r
1

E
1

E
2

E
n

R

E
n 1

r
1

r
2

r
n

r
n 1

a
11

a
12

...

...

a
21

a
22

...

...

a
23

...

a
n 11

a
n 12

...

...

a
n 13

...

a
n1

...

a
11

a
22

a
n 11

a
n1

E
1

E
2

E
n 1

E
n

R

...

...

r
2

r
n

r
n 1

a
11

a
22

a
n 13

a
n1

r1 r2 rn 11 rn1

r
1

E
1

E
2

E
n

R

E
n 1

r
1

r
2

r
n

r
n 1

a
11

a
12

...

...

a
21

a
22

...

...

a
23

...

a
n 11

a
n 12

...

...

a
n 13

...

a
n1

...

a
11

a
22

a
n 11

a
n1

E
1

E
2

E
n 1

E
n

R

...

...

r
2

r
n

r
n 1

a
11

a
22

a
n 13

a
11

a
22

a
n 13

a
n1

r1 r2 rn 11 rn1

Fig. 2. Representation of a n ary relationship R and the set of instances associated to it

A set of instances that fulfils the minimum and maximum cardinality constraints

(n, m), is defined as;

Ci = { a1,…, ai-1, ai+1,…,an ∈ E1,…,Ei-1…, Ei+1, … En / n ≤ | { (a1,…, ai-1,ai

,ai+1,…,an) ∈ Rt }| ≤ m}

(3)

Therefore:

|Ci| = Number of instances that fulfil the cardinality constraints of Ei.

|C’
i| = Number of instances that not fulfil the cardinality constraints of Ei.

We propose to use a relative quantifier Qri that shows the percentage of instances

that not fulfil the cardinality constraint in the role ri of the entity Ek in a relationship

R, as shown:

Qri = |C’
i| * |Rt|-1 (4)

The quantifier QR shows the percentage of semantic loss in a n-ary relationship R

and be calculated as shown:

 n

QR = Σ (|C’
i| * |Rt|-1)

 i 1

(5)

We can easily calculate this quantifier in a real database applying directly the

previous equation (4) on each element associated with a relationship. This will give us

an idea about the percentage of the instances that do not fulfil the cardinality

constraints in this role, and help us to decide improving the verification of the

cardinality constraints. It is possible to predefine a maximum limit to semantic loss,

4

but when this value increases significantly, the improvement mechanisms could be

enabled to recover the semantics. These mechanisms could be enabled or disabled

depending on the actual cardinality semantics. For example, in certain relationships if

the predefined limit is (QR<=0.002) then the improvement mechanisms should be

activated when (QR>0.002).

In the total participation it is necessary to ensure that all instances must fulfill the

cardinality constraints of the role ri, that is, (|C'i|=0), whenever an insertion operation

is performed, the semantic loss percentage in this role must be Qri=0.

Qri = |C'i| * |Rt|-1 = 0 * |Rt|-1 = 0

With the partial participation we could have instances that do not fulfil the

cardinality constraints of the role ri. Therefore, the cardinality constraint of ri could be

consistent when the value (|C'i|>0), whenever an insertion operation is performed, the

semantic loss percentage of this relationship could be Qri>0.

Qri = |C'i| * |Rt|-1 > 0

We define the fuzzy participation similarly to the partial participation i.e., let R be

a relationship and Ei, Ej are the entities involved in this relationship. If the role ri

corresponds to total participation in R and there is an instance in Ei which does not

satisfy the constraints then we define this case as fuzzy participation role. Therefore,

the cardinality constraint of ri could be consistent when the value (|C'i|>0), whenever

an insertion operation is performed, the semantic loss percentage of this relationship

could be Qri=[0,1].

Qri = |C'i| * |Rt|-1 ∈ [0, 1]

4 Relaxing Cardinality Constraints

Taking into account the designer’s point of view, there are two types of elements that

can be distinguished in a EER schema; first order elements are the most important in

the model and they always need mechanisms to verify its constraints, especially for

these objects, it would be very useful applying the fuzzy participation; and second

order elements, less important in the schema and which do not requiere to verify its

constraints at the same time when a modification is done, so it would be useful

applying a polling system and periodically verification.

Our method could be used on an actual database, where the developer or the

administrator of a database can periodically gathers statistics about each element in it,

these statistics are used to know exactly where the semantic losses are produced. A

quantifier Qri is calculated for each role in the schema, if the value of any quantifier is

greater than the predefined limit, a verification tool such as triggers system or others

could be activated. It is not a good way to increases the number of ends points

because this produces a high loss of cardinality semantics.

A partial view of a schema for a university is used to illustrate the approach of

verifying cardinality constraints, figure (3). The two relationships in the ER schema

are translated into relations containing as foreign keys the primary keys of the

5

associated entities. The foreign key options (On Delete Cascade and On Update

Cascade) are available to both relations.

Fig. 3. ER schema for the case study

The cardinality constraints are verified by using a trigger-based approach [5] when

deleting or updating the PKs, FKs are produced. But, the insertion operations need

more effort to verification. For example, when inserting a tuple into Course, it is very

necessary to satisfy the roles r2, r3 because each course belongs to at least one

department and one or several students have to be registered in each course. But, what

happen if we need to relate the inserted course to a new student or a new department?.

So, we must satisfy also the roles r1, r4. In such model, controlling the cardinality

constraints needs complex predefined systems, and this may be produce other

problems in the execution model of these systems or an impact on the database

performance.

So, we suggest here that achieving more precise verification is very important

whenever a high percentage of semantic loss is produced. In a real database, we can

calculate this percentage in each element. These percentages give us an image of the

semantic loss in the schema, as well as the elements that need to be verified. So, we

need to gather statistics at time t about the instances participating in each entity and

each role. In our example, at t there are 28 departments, 1244 courses, 16538 students,

3318 tuples in Belongs, and 114564 tuples in Register. From these, 4 courses in r2, 6

courses in r3, and 13 students in r4 are not participating in any relationships. The

semantic loss percentage in each relationship objects QBelongs and QRegister are

calculated from equation 5, as shown:

QBelongs = (|C’
r1| + |C’

r2|) * |Rt.Belongs|
-1

= (0* 3318-1 + 4* 3318-1)*100 ≅ 0.12%

QRegister = (|C’
r3| + |C’

r4|) * |Rt.Register
t|-1

= (6*114564-1 + 13*114564-1) * 100 ≅ 0.017%

The quantifier QBelongs shows the percentage of the instances that do not satisfy the

cardinality constraints in Belongs. While QBelongs shows the percentage of the

instances that do not satisfy the cardinality constraints in Register. Here, the database

designer would decide if the semantic loss percentages are high or not. According to

his decision, the cardinality constraints could be verified. Nevertheless, we think that

as priority, we must do the best in those elements which have high semantic loss such

as Belongs.

But yet, in large database schemata the verification needs to be more simply.

Moreover, we can consider only those roles that have high quantifier. The semantic

loss percentage in each participations roles r1, r2, r3 and r4 are calculated from

equation 4, as is shown below:

r1 r2 r3 r4
Student RegisterCourse Department Belongs

1,N 1,N 1,N 1,N

6

Qr1 = |C’
r1| * |Rt.Belongs|

-1 = 0 * 3318-1 *100 = 0

Qr2 = |C’
r2| * |Rt.Belongs|

-1 = 4 * 3318-1 *100 = 0,12%

Qr3 = |C’
r3| * |Rt.Register|

-1 = 6 * 114564-1 *100 = 0,005%

Qr4 = |C’
r4| * |Rt. Register|

-1 = 13 * 114564-1 *100 = 0,011%

When the previous results are compared, we find that r2 has the highest percentage

of semantic loss. Although the participation type in all roles is total, the developer

should give the priority to r2 when he wants to verify the constraints. In such a way,

we propose a method to select only those roles that need to be verified, saving much

effort and time, reducing the errors, and getting better results when we evaluate the

database performance.

Let the relation Department with 28 tuples and let each department associated to

the same number of Course, then this number (ni.r1) is calculated by dividing the total

number of the tuples in Belongs by the total number of departments in Department,

and let us do the same to find (ni.r2, ni.r3, ni.r4) as is shown below:

ni.r1 = |Rt.Belongs| * |EDEPRTS|-1 = 3318 * 28-1

 ≅ 118

 (each department is related to 118 Courses).

ni.r2 = |Rt.Belongs| * |ECOURSES|-1 = 3318 * 1244-1

 ≅ 3

 (each course is related to 3 departments).

ni.r3 = |Rt.Register| * |ECOURSES|-1 = 114564 * 1244-1

 ≅ 92

 (each course is related to 92 students).

ni.r4 = |Rt.Register| * |ESTUDENTS|-1 = 114564 * 16538-1

 ≅ 7

 (each student is related to 7 Courses).

This example shows clearly that the major semantic losses are produced in r2, r4,

therefore, more efforts are required to verify it than to verify r1, r3. But, in the case of

deletions or updates the verification of r1, r3 should be more important than r2, r4,

because if an old department is deleted without semantic verification many

relationships (≅118) may be deleted from Belongs because of the referential integrity

actions. This deletion may be lead to damage in cardinalities semantics more than if

an old student and his relationships (≅7) are deleted.

These results can be extended to database design phase, i.e., the designer of the

database who has the better knowledge about the Universe of Discourse, could

consider the following aspects during the database design:

• It is possible to leave without verification the roles that have total participation if

the associated elements to these roles have a fixed number of instances or the

insertion operations that are produced in these objects are very limited. But, in

this case we must carefully verify the remaining operations such as deleting and

updating. For example, Department has a fixed number of departments and

consequently the insertion operations on it are very limited.

7

• In a binary relationship if the entities have approximately the same number of

instances, then we can verify the entity, which gets more modifications (insert,

delete, and update) at t. For example, if the numbers of instances in E1, E2, R
t are

|E1| , |E2|, |R
t| respectively, and (|E1| ≅ |E2|). Let we suppose that 30% and 5% of

the instances are modified in E1, E2 respectively. The total instances in Rt that are

modified by the referential integrity rules are (ei.r1 = 0.3 * (|Rt| * |E1|
-1)) and (ei.r2 =

0.05 * (|Rt| * |E2|
-1)). Because of (E1| ≅ |E2|), we find that (ei.r1>ei.r2). So we can

say that E1 has more modifications at t and consequently its cardinality

constraints need more verification.

5 Conclusions

The cardinality constraint is one of the most important constraints that can be

established in a conceptual schema but the verification of these constraint is very

difficult, especially in the case of insertions due to logical model constructs are not

coincident with the conceptual model ones. Therefore, our work is addressed to the

issue of the insertion operations. Some research prototypes have performed different

and complex methods to solve this problem. Some solutions would lead to other

problems such as the complex execution model or the impact on the database

performance.

We propose a method to simplify the verification of cardinality constraints

although three aspects have to be considered; (1) a minimum threshold of temporarily

semantic loss in cardinality constraints could be allowed, it is measured periodically

as a relative quantifier, and calculated by dividing the total number of the instances

which do not fulfil the constraints by the total number of the instances in the

associated relationship; (2) the designer should trust in his own design, because he

must decide this threshold depending on the importance of each element; (3) the

database must be periodically submitted to a polling system to recover the losses of

cardinality constraints.

References

1. Elmasri, R. Navathe, S.: Fundamentals of Database Systems, Third Edition, Addison

Wesley, 2000.

2. Toby J. Teorey: Database Modeling & Design, third edition, Morgan Kaufmann Series in

data management systems, 1999.

3. Teorey, T., Yang, D., Fry, J. A Logical Design Methodology for Relation Databases Using

the Extended Entity Relationship Model. Computer Surveys, Vol. 18. No. 2. 1986.

4. II Yeol Song, Mary Evans, E.K. Park, A Comparative Analysis of Entity Relationship

Diagrams, Journal of Computer and Software Engineering, 3(4), 427 459, 1995.

5. Chen, P.: The Entity Relationship Model Toward a Unified View of Data, ACM

Transactions on Database Systems, Vol. 1, N. 1. 1976.

8

6. D. Cuadra, C. Nieto, E. Castro, P. Martínez M. Velasco: Preserving relationship cardinality

constraints in relational schemata, Database Integrity: Challenges and Solutions, Ed: Idea

Group Publishing, 2002.

7. H. Al Jumaily, D. Cuadra, P. Martínez. PANDORA CASE TOOL: Generating triggers for

cardinality constraints verification in RDBMS. IADIS International Conference, Portugal,

2003.

8. H Al Jumaily, D. Cuadra, P. Martínez. Incorporando Técnicas Activas para la

Conservación de Semántica en la Transformación de Esquemas. VIII Jornadas de

Ingeniería del Software y Bases de Datos 12 14 Noviembre 2003, Alicante.

9. Norman W. Paton, Active Rules in Database Systems, Springer Verlag, New York, 1998.

10. Lazarevic, B., and Misic. Extending the entity relationship model to capture dynamic

behaviour. European Journal Information Systems 1 (2) pp. 95 106. 1991.

11. Balaban, M., and Shoval, P. MEER An EER model enhanced with structure methods.

Information Systems 27, pp 245 275, 2002.

12. Guoqing Chen, Fuzzy Logic in Data Modeling; Semantic, Constraints, and Database

Design. Kluwer Academic Publishers, London 1998.

13. Galindo J., Urrutia A., Carrasco R., Piattini M.: Fuzzy Constraints using the Enhanced

Entity Relationship Model. XXI International Conference of the Chilean Computer Science

Society, (Chile). 2001.

9

