
PLUGGING ACTIVE MECHANISMS TO CONTROL
DYNAMIC ASPECTS DERIVED FROM THE

MULTIPLICITY CONSTRAINT IN UML

Harith T. Al-Jumaily, Dolores Cuadra, Paloma Martínez

Computer Science Department, Universidad Carlos III de Madrid
{haljumai, dcuadra, pmf}@inf.uc3m.es

Abstract. Multiple efforts have been devoted to face the problems of database
modelling. One of them is the automatization of database design process using
CASE tools. Frequently, these tools do not completely support all phases of
database analysis and the design methodology that they propose. Therefore, we
propose to incorporate new features to these tools enhancing them and solving
some of the modelling problems. In this paper, we present an add-in module
that aims to generate triggers for preserving the multiplicity constraints of a
conceptual scheme in the transformation to a relational scheme. The module is
integrated into the RATIONAL ROSE case tool.

1 Introduction

In database design methodologies such as [1] and [2], there are processes devoted
to transform conceptual into logical schemata. In such processes, semantic losses are
produced because logical elements are not coincident with conceptual elements. A
correct transformation of constraints is necessary to preserve the semantics that
reflects the Universe of Discourse. The multiplicity constraint, also called cardinality
constraint [6], is one of these constraints that can be established in a conceptual
schema. It has dynamic aspects that are transformed into the logical model as certain
conditions to verify the insertion, deletion, and update operations. The verification of
these constraints is a serious and complex problem because currently database
systems are not able to preserve the multiplicity constraints of their objects.

The mechanism used to control this problem is the triggers/rules system. Because
of the execution model of triggers is more complicated than traditional system we
believe that automatic support to generate triggers is a good solution and can help the
database developers. In this work, we present a module to generate triggers for
multiplicity constraints verification that is integrated into RATIONAL ROSE case
tool. This module can automatically create a SQL trigger-based script for any target
DBMS; in this work, we consider only ORACLE DBMS.

In section (2) some active technology features are defined. Section (3) is devoted
to explain the UML multiplicity constraints and some cases of semantic losses. In
section (4) we discuss how the integration of the active technology into UML schema

1

Nota adhesiva
Contributed to: The 7th International Conference on the Unified Modeling Language-UML'2004 (Lisbon, Oct 11-15, 2004)

2 Harith T. Al-Jumaily, Dolores Cuadra, Paloma Martínez

is performed. In section (5), the add-in interface design is explained and finally some
conclusions are exposed.

2 ACTIVE MECHANISMS (TRIGGER-BASED SYSTEM)

Although triggers are available in most DBMS, unfortunately the execution models of
these triggers change from one DBMS to another. There are a number of common
components that are valid for all systems [7] and these components usually are not
changed. We explain the basic concepts according to the SQL 2003 standard which
makes revisions to all parts of SQL99 and adds new features [8]. A trigger in the SQL
standard is a named event-condition-action rule that is activated by a database state
transition. Every trigger is associated with a table and is activated whenever that table
is modified. Once a trigger is activated and its condition evaluated to true, the
trigger’s action is performed. The standard SQL syntax for the creation of a trigger is
shown in [9].
An event is a DML statement (INSERT/UPDATE/UPDATE) being issued against the
associated table. An activation time (BEFORE and AFTER) defines whether the
trigger is activated before or after the triggering event. Trigger granularity determines
how many times the trigger is activated. There are two levels of granularity; a
statement-level trigger that executes once for each triggering event and a row-level
trigger that executes for each row that belongs to the modified set. If the modified set
is empty then a row-level trigger does not execute, while a statement-level trigger
executes once. Referencing values are used to create a new alias to reference the old
and new values in a row being modified by triggering event. These values are
accessible to the condition and the action of the trigger. As many previous works [7]
[18], we used the triggering graph for detecting the non-termination state, and solving
this problem by disabling the trigger that is again activated in the same activation set.

3 UML multiplicity

Since its introduction by Chen [5], the cardinality constraint is the number of entity
instances that are associated in a relationship. Cardinality constraints are represented
by minimum and maximum bounds [3]. UML multiplicity follows the Chen’s style
because to verify the cardinality constraints of one class we have to fix an object of
the other class and to obtain how many objects are related to it [6]. Figure 1 shows an
example of multiplicity constraints over a binary association using UML notation
[12]. There are two associated classes (A and B) in the association R, if the association
type is one-to-one then each class becomes a table, and the foreign key of A uses the
primary key of B. Also, if the association type is one-to-many then each class
becomes a table, and the foreign key of A uses the primary key of B. But if the
association type is many-to-many then we need a new table R with primary keys of
both classes A and B. Nulls are allowed in optional multiplicity but are not allowed in
mandatory multiplicity.

2

PLUGGING ACTIVE MECHANISMS TO CONTROL DYNAMIC ASPECTS DERIVED
FROM THE MULTIPLICITY CONSTRAINT IN UML 3

In order to express the semantics of this scheme, rules are used in the logical
scheme. These rules are the definition of primary key, foreign key, and cascade delete
and update options. But, these options are not enough to control the minimum
multiplicity constraint. Therefore, we must take care that the database is not in an
inconsistent state every time that a DML statement modifies the database.

Fig. 1. Multiplicity Constraints using UML.

This task needs a big effort because the developers have to generate a big size of
programs and to solve the complex execution model of triggers [4]. Also, in database
design CASE tools such as Designer2000, ERwin, Rational Rose, the triggers
generation is supported only to enforce referential integrity rules. The verification of
the multiplicity constraints is not supported due to the complexity associated with the
referential integrity rules. For example, Designer2000 does not generate any trigger
for cardinality constraint validation, but it provides an editor (Trigger Definition),
which allows defining different triggers by the users. ERwin and Rational Rose are
able to create triggers to enforce the previous referential integrity rules, but not the
multiplicity constraints. Also, they have an editor of triggers that allows defining
triggers.

4 Description of the approach

In this section, we discuss how the integration of the active technology into UML
scheme was done. In order to make easier to the reader the understanding of this
approach, pseudocode is used to show the execution mechanisms and how the
verification is performed. Our add-in module is integrated into Rational Rose CASE
tool. The figure 2-Left shows an example of a simple database scheme using the UML
class diagram elements. The mapping of each class and each association into UML
Rational Rose Data Model (RRDM) (figure 2-Right) [15][16] and the integration of
active technology are given below.

4.1 One-to-many associations
As shown in figure 2, there is a one-to-many association between the two persistent

classes, Student and Department. This association defines that every student object
must to have an association to one department object, and a department object
requires an association to one or more student objects. The mapping to RRDM uses
two tables, tab_student, tab_department, and a non-identifying relationship. The
foreign key of tab_student (pk_dpt) uses the primary key of tab_department to build
the relationship. In this work, we consider that only the minimum multiplicity of the
class Department is mandatory. So, this foreign key has to be unique and not null.
Therefore, when an event is generated to delete or update the foreign key values in
tab_student we have to check that each department has an association with one or

A BR
1 1

3

4 Harith T. Al-Jumaily, Dolores Cuadra, Paloma Martínez

more students. The following trigger shows the mechanism used to verify this
constraint.

Create trigger trig_student_1
After delete or update(pk_dpt) on tab_student For each row
Begin
If estudent=true then Select count(*) from tab_student where pk_ dpt = :old.pk_dp;

If count(*)<Mmindepartmen then raise_error(‘cannot delete or update’);
End if;
End;
According to the execution model of triggers (section 2.), there are two events that

activate a trigger associated to a child table which has the foreign key:
(1) edepartment=[delete or update(pk_dpt) on tab_department .cascade. delete or

update(pk_dpt) on tab_student]
When the event edepartment is generated, the trigger trig_student_1 is consequently

activated to the referential integrity rules (On Delete Cascade or On Update
Cascade). In this case, it is not necessary to verify the semantics of the modified
department because we are modifying the parent table tab_department and all
related students in the child table tab_student. Therefore, whenever edepartment is
generated, the trigger trig_student_1 does not to verify anything.

(2) estudent=[delete or update(pk_dpt) on tab_student]
When the event estudent is generated, the trigger trig_student_1 is also activated.

But, in this case the verification is more important because we need to assure that
each department still has related students after the modification is performed. The
related students to be in tab_student must have a count greater than the minimum
multiplicity of Department Mmindepartment. If the count is less than Mmindepartment then
the trigger action rolls back the transaction and the database is restored to the state
before the modification.

Fig. 2. Mapping UML objects model to RRDM.

In this work, we do not need to use triggers to verify the insertion because the
maximum multiplicities of the classes that participate in the associations are unlimited
(n). But, when the maximum multiplicity is known, the verification of the multiplicity
is needed ever time that an insertion is done.

TAB_PERSON
PK_PSN : INTEGER
NAME : VARCHAR2

<<PK>> PK_T_PERSON13()

TAB_STUDENT
PK_PSN : INTEGER
PK_DPT : INTEGER

<<PK>> PK_T_STUDENT15()
<<FK>> FK_T_STUDENT15()
<<FK>> FK_T_STUDENT17()

0..1

1

0..1

1

<<Identif y ing>>

TAB_PROFESSOR
PK_PSN : INTEGER

<<PK>> PK_T_PROFESSOR14()
<<FK>> FK_T_PROFESSOR14()

0..1

1

0..1

1

<<Identify ing>>

TAB_TEACH_IN
PK_PSN : INTEGER
PK_DPT : INTEGER

<<PK>> PK_T_TEACHS18()
<<FK>> FK_T_TEACHS18()
<<FK>> FK_T_TEACHS19()

1..*

1

1..*

1

<<Identif y ing>>

TAB_DEPARTMENT
PK_DPT : INTEGER

<<PK>> PK_T_DEPARTMENT17()

1..*

1

1..*

1

<<Non-Identif y ing>>

1..* 11..* 1

<<Identif y ing>>

PERSON
PK_PSN : INTEGER
NAME : VARCHAR2

PROFESSOR
PK_PSN : INTEGER

DEPARTMENT
PK_DPT : INTEGER

1..n

1..n

1..n

1..n

teach_in

STUDENT
PK_PSN : INTEGER

1

1..n

1

1..n

4

PLUGGING ACTIVE MECHANISMS TO CONTROL DYNAMIC ASPECTS DERIVED
FROM THE MULTIPLICITY CONSTRAINT IN UML 5

4.2 Many-to-many associations
Figure 2 shows that teach_in is a many-to-many association that relates the two

persistent classes, Professor and Department. This association defines that every
professor object has to teach in one or more departments, and a department object
must to have an association to one or more professors. The mapping of this
association into the RRDM uses two tables tab_professor, tab_department, and an
identifying relationship that is mapped to a third table tab_teach_in. The foreign keys
of tab_teach_in (pk_prf, pk_dpt) use the primary keys of the previous two tables to
build the relationship. These foreign keys are not null, and the delete and update
options can be cascade.

In this relationship to avoid the semantic loss we must check three constraints:

(1) edepartment=[delete or update(pk_dpt) on tab_department .cascade. delete or
update(pk_dpt) on tab_teach-in]

(2) eprofessor=[delete or update(pk_prf) on tab_professor .cascade. delete or
update(pk_std) on tab_teach-in]

(3) eteach_in =[delete or update(pk_prf, pk_dpt) on tab_teach_in]

The following trigger is used to verify these constraints:

Create trigger trig_teach_in
Afterdelete or update(pk_prf, pk_dpt) on tab_teach -in For each row
Begin
If edepartment = false then Select count(*) from tab_teach-in where pk_prf = :old.pk_prf;

If count(*)<Mmindepartment then raise_error(‘cannot delete or update’);
End if;

If eprofessor = false then Select count(*) from tab_teach-in where pk_dpt = :old.pk_dpt;
If count(*)<Mminprofessor then raise_error(‘cannot delete or update’);

End if;
End;

In order to reduce the trigger body size and minimize the execution time, the
verification of the event eteach_in is included with the verification of the others events.

4.3 Generalization
The generalization is another type of relationship that has dynamic aspects to be

verified. We consider the dynamic aspects of the Disjoint-Total constraints. Our
example has one generalization that contains three persistent classes, Person,
Professor, and Student. A person can be only a student or a professor. The approach
that we use is to create one table per class. The tab_person contains all common
attributes and a not null attribute (is_a) is used for partitioning. The identification
(pk_psn) is used as primary key for the three tables. Also, it is assigned to be foreign
key in tab_professorand tab_student. The referential integrity rules in this relationship
are maintained by setting not null values for foreign keys and delete and update
options as cascade option.

In this case, we preserve the semantics deleting an object from tab_person when
tab_professor or tab_student is deleted. The following trigger is used to verify these
constraints:

5

6 Harith T. Al-Jumaily, Dolores Cuadra, Paloma Martínez

Create or replace trigger trig_student_2 After delete on tab_student
Begin
If estudent = true then Disable(trig_student_2);
Delete from tab_person where pk_psn =:old.pk_psn;
End if;
End;
Note: The trigger trig_professor is similar to the previous trigger.

The activation of this trigger produces the non-termination problem because the
trigger body contains an action that deletes from tab_person. When this action is
executed the trigger is again activated and so on. In order to solve this problem, we
have to disable trig_student_2 if it is again activated in the same set.

5 Add-in Module Design

We applied our approach on the Rational Rose CASE tool because it is able to
easily add-in software tools to support the development needs. Add-Ins can install
menus, help files, contents tab file, properties, executables, script files, and OLE
servers [13]. Our add-in module was developed using Basic Script Language [14],
and can be accessed from the Tools menu. As shown in the figure 3, the add-in
module has an interface that shows some options that we need to consider before
generating triggers.

Fig. 3. Add-in Interface Design.

The add-in module detects and presents all relationships that belong to the current
scheme. The list box “Current-Model Relationships” presents all relationships that
exist in the current scheme. According to the required semantics, the user can choose
those relationships that he needs to preserve. The list box “Selected Relationships”
shows the selected relationships to be controlled. The user can choose one or more
relationships to be controlled; as is shown in the figure we close all the relationships
that belong to our example. According to our example, the add-in interface represents
three type of relationships, one-to-many relationship (TAB_STU-->TAB_DEP) that
associates tab_student with tab_department, many-to-many relationship
(TAB_PRO<-->TAB_DEP) that associates tab_professor with tab_department, and
generalization relationships (TAB_PER<>--TAB_PRO, TAB_STU) that associates
the superclass tab_person with tab_student and tab_professor. The check boxes

6

PLUGGING ACTIVE MECHANISMS TO CONTROL DYNAMIC ASPECTS DERIVED
FROM THE MULTIPLICITY CONSTRAINT IN UML 7

“Relationship Types” show the relationship types that the add-in module considers.
The check boxes “Triggers Types” represent the types of triggers to be generated. The
generated code that we obtain is saved in a SQL file that contains triggers and
packages to define the global variables.

Because of ORACLE triggers system has not Old/New-Table referencing values,
and due to mutating table problem, we used two triggers for controlling each event.
Therefore, each trigger shown in the section 4 is transformed into two ORACLE
triggers. The first (Before/Row) is used to save the identification keys, and the second
(After/Statement) is used to verify the semantics.

The add-in module plugs these triggers into an UML schema as operations using:

Set theOperation = theClass.AddOperation (OperationName, OperationType)

Figure 4 shows the plugged operations that have been generated to control the
deleted events. Because of tab_student is associated to two relationships, it has four
triggers. Two of them (td1n_br_tab_student, td1n_as_tab_student) are used for
controlling the deletion of foreign keys that come from one-to-many relationship. The
triggers tdhy_br_tab_student, tdhy_as_tab_student are used for controlling the
constraints of the generalization relationship. The user could display and modify these
triggers by browsing the table specification dialog box, as is shown in figure 5.

6 Some preliminary conclusions

The main contribution of our work is to provide a prototype as an add-in module
for controlling dynamics aspects derived from the multiplicity constraint in Rational
Rose. The verification of these constraints is very difficult. Therefore, we believe that
incorporating add-in modules is a good solution to solve some of the modelling
problems, and to enhance the tasks performed by database designers.

Currently, we are testing the performance of this approach in a real database and in
the future, we will apply our work to preserve the multiplicity constraints in others
DBMS adding their properties.

TAB_PERSON
PK_PSN : INTEGER
NAME : VARCHAR2

<<PK>> PK_T_PERSON13()

TAB_PROFESSOR
PK_PSN : INTEGER

<<PK>> PK_T_PROFESSOR14()
<<FK>> FK_T_PROFESSOR14()
TDHY_BR_TAB_PROFESSOR() : Trigger
TDHY_AS_TAB_PROFESSOR() : Trigger

0..1

1

0..1

1
<<Identif y ing>>

TAB_STUDENT
PK_PSN : INTEGER
PK_DPT : INTEGER

<<PK>> PK_T_STUDENT15()
<<FK>> FK_T_STUDENT15()
<<FK>> FK_T_STUDENT17()
TD1N_BR_TAB_STUDENT() : Trigger
TD1N_AS_TAB_STUDENT() : Trigger
TDHY_BR_TAB_STUDENT() : Trigger
TDHY_AS_TAB_STUDENT() : Trigger

0..1

1

0..1

1

<<Identif y ing>>

TAB_TEACH_IN
PK_PSN : INTEGER
PK_DPT : INTEGER

<<PK>> PK_T_TEACHS18()
<<FK>> FK_T_TEACHS18()
<<FK>> FK_T_TEACHS19()
TDNM_BR_TAB_TEACH_IN() : Trigger
TDNM_AS_TAB_TEACH_IN() : Trigger

1..*

1

1..*

1

<<Identif y ing>>

TAB_DEPARTMENT
PK_DPT : INTEGER

<<PK>> PK_T_DEPARTMENT17()

1..*

1

1..*

1

<<Non-Identif y ing>>

1..* 11..* 1

<<Identif y ing>>

Fig. 4. Plugged operations into the schema Fig. 5. Table specification dialog box

7

8 Harith T. Al-Jumaily, Dolores Cuadra, Paloma Martínez

References

1. Elmasri, R. Navathe, S.: Fundamentals of Database Systems, Third Edition, Addison-
Wesley, 2000.

2. Toby J. Teorey: Database Modeling & Design, third edition, Morgan Kaufmann Series in
data management systems, 1999.

3. Teorey, T., Yang, D., Fry, J. A Logical Design Methodology for Relation Databases Using
the Extended Entity-Relationship Model. Computer Surveys, Vol. 18. No. 2. 1986.

4. H. T. Al-Jumaily, D. Cuadra, P. Martínez, Applying a fuzzy approach to relaxing cardinality
constraints. 15th International Conference on Database and Expert Systems Applications
DEXA’04, Zaragoza, Spain, 2004.

5. Chen, P.: The Entity-Relationship Model – Toward a Unified View of Data, ACM
Transactions on Database Systems, Vol. 1, N. 1. 1976.

6. D. Cuadra, C. Nieto, E. Castro, P. Martínez M. Velasco: Preserving relationship cardinality
constraints in relational schemata, Database Integrity: Challenges and Solutions, Ed: Idea
Group Publishing, 2002.

7. Norman W. P., Díez O., Active Database Systems, ACM Computing Surveys, Vol.31, No.1,
1999.

8. A. Eisenberg, J. Melton, K. Kulkarni, J. Michels, F. Zemke, SQL:2003 has been published,
ACM SIGMOD Record, Volume 33 , Issue 1 (March 2004).

9. Jim Melton, Alan R. Simon, "SQL: 1999 Understanding Relational Language Components",
Morgan Kaufmann Publishers, 2002.

10.Stefano Ceri, Roberta J. Cochrane, Jennifer Widom. "Practical Applications of Triggers and
Constraints: Successes and Lingering Issues". Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

11.Oracle9i Application Developer's Guide – Fundamentals,
http://otn.oracle.com/documentation/index html

12.Unified Modelling Language Specification, Version 1-3, Object Management Group.
13.Rational Web site http://www rational.com/support/documentation/
14.BasicScript 2.25 Language Reference, Summit Software.

http://www.cardiff.com/CSdownload/misc/t1057.pdf.
15.Timo Salo, Justin hill, Mapping Objects to Relational Databases, Journal of Object Oriented

Programming, Issue: 2000 - volume 13 - issue 1.
16. Vadaparty, Kumar, ODBMS - Bridging the Gap Between Objects and Tables: Object and

Data Models, Issue: 1999 - volume 12 - issue 2.
17. Gonzalo Génova, Juan Llorens, Paloma Martínez. The meaning of multiplicity of n-ary

associations in UML. Software and Systems Modeling, vol 1, number 2, December 2002.
18. Ceri S., Fraternalli, P., Designing database applications with objects and rules : the IDEA

Methodology, Addsion-Wesley,1997.

8

http://www.rational.com/support/documentation/

