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Abstract. A hybrid optimization algorithm using Differential Evolution (DE) and Genetic 

Algorithm (GA) is proposed in this study to address the problem of network parameters 

determination associated with the Nonlinear Autoregressive with eXogenous inputs Network 

(NARX-network). The proposed algorithm involves a two level optimization scheme to search 

for both optimal network architecture and weights. The DE at the upper level is formulated as 

combinatorial optimization to search for the network architecture while the associated network 

weights that minimize the prediction error is provided by the GA at the lower level. The 

performance of the algorithm is evaluated on identification of a laboratory   rotary motion 

system.  The system identification results show the effectiveness of the proposed algorithm for 

nonparametric model development.  

1.  Introduction 

Non parametric modeling approach based Nonlinear Autoregressive with eXogenous inputs Network 

(NARX-network) has been a successful technique for time series prediction, filtering, system 

modeling and identification in almost all fields of studies, [1], [2]. However, one of the major 

challenges in the application of this NARX network is in the choice of appropriate network 

architecture in terms of number of input and output tapped delays, TD, and number of hidden neurons 

(H) for a single hidden layer network, [3].  The decision has been based majorly on iterative 

experimentation (trial and error basis).  This problem has initiated the use of evolutionary optimization 

algorithm in neural network design for optimal/sub-optimal performances [3], [4], and by extension to 

NARX network. Many research works have been reported on network  (MLN)  architecture 

optimization using simulation annealing and tabu search, [5], using GA, [4],  and   DE, [6],and 

recently a multi-objective Differential Evolution (MODE) was proposed for  network architecture 

optimization, [7] 

In this paper, a hybrid optimization algorithm involving DE and GA is proposed to determine 

optimal NARX network architectures and weight.  The motivation is to explore the optimization 

strength of both DE and GA to search simultaneously for both model architecture and weight. 

The rest of the paper is organized as follows. A brief overview of both NARX network is given in 

Section 2 followed by the basic description of DE and GA algorithms in Section 3. The proposed 
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hybrid algorithm is presented in Section 4. The application to system identification of a practical 

system is reported in Section 5 while the results and discussion are given in Section 6. The paper is 

concluded in Section 7. 

2.  NARX network overview 

NARX network generally describes a discrete nonlinear system as linear combination of its 

past output values as well as those of the input, [8]:  

 
  )1mk(.,..),1k(),k();1nk(y.,..),2k(y),1k(yf)k(y 


      (1) 

 

where )k( and y(k) represent input and output of the system as time step k, n and m are the input and 

output orders respectively, while the function ][f  is a nonlinear mapping function which is given by 

the Multilayer Perceptron (MLP) network.  

As shown in Figure 1, the input-output mapping implemented with two layers MLP is expressed as: 

 

 )]y,(W[W[))k(y),k(u()k(y IL  


    (2) 

 

where )(  is mapping function implemented by the MLP, )(  is nonlinear activation function 

usually a sigmoid function presents in both hidden and output layers,   
IW  and  

LW  represent the 

connection weights for input and hidden layers respectively. 

 

 

 
Figure 1.

 
Architecture of series-parallel NARX-Network, [7] 

 

A general configuration of NARX network for multi-inputs and multi-outputs (MIMO) systems with 

two inputs, two outputs and one hidden layer with three nodes together with biases is shown in Figure 

2.  

 
Figure 2 A three layer, two inputs, two outputs NARX network [7] 
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Given n as number of inputs, m as number of outputs with O  nodes, assuming a single layer network 

with H hidden nodes, the network parameters consist of: (i) input states ].,.,.,[   21
 where 

  is total number of the states given as: 

 

    TDL*mTDI*nH       (3) 

 

TDI  and TDL  are number of input and out time delays ( 
1z ), respectively. 

 

(ii) input biases, ]b.,.,.b,b[b H21
H  ; (iii) input weights IW :connection weight between input 

state, j  and hidden layer nodes, i , expressed as j,iw .  Note that  total number of this weights is equal 

to  ;  (iv) layer weights, LW : connection weight between the hidden layer nodes i  and output nodes 

  expressed as  i,w .
 The total of this connection weight is given by O*H ; and  (v) output biases 

]b.,.,.b,b[b O21
O  . 

Thus, the total network parameters 
P

N  to be adjusted during identification process is given as sum of 

total input connection weights, input biases, total hidden layer connection weight and output biases: 

 

       OH

P
bbOHN                                   (4) 

The output of the hidden layer is given by: 

 









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
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H

ijjii bxwh
1

,      (5) 

while the estimated model output is:  

 









 



H

i

O

iii bhwy
1

,       (6) 

 

The network learning process generally involves determination of the network parameters IW  and  
LW   that minimizes the prediction error between the actual and predicted output given as: 

 





N

k

T

N
N

V
12

1
       (7) 

 

where    is prediction error expressed as )k(y)k(y


  

 Conventionally, the training process is carried out with back propagation learning algorithm with 

Levenberg-Marquardt learning function [10]. 

 

3.  Overview of GA and DE algorithm   

 GA and DE are among the prominent evolutionary optimization algorithms with vast practical 

applications as reported in the literatures, [10], [11]. The GA was originally proposed by John 

Holland, [12], and represents the pioneer evolutionary approach to practically optimization problem. It 

mimics biological process of natural selection mechanism in which stronger individuals have higher 

probability to win in a competing environment.  DE on the other hand, was latter proposed by Storn 

and Price, [13]. Unlike GA which uses genetic operator in evolving new solutions/generation, DE uses 

differential operator to evolve new solutions/generation. Also, DE uses real values to represent the 
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solution candidates while GA originally represents the parameters in form of chromosomes (a binary 

encoding of the actual parameters).  Generally, both are population based algorithm and shared similar 

major concepts of: population initialization, crossover, mutation and selection, [14].   

Initialization involves generation of initial population using a random process for the optimization 

process.  In GA, the individuals are encoded as a string of bits (0 & 1) using the process of encoding. 

While in DE the random generated real parameters values are used directly.    

Mutation and crossover are two consecutive operators for generation of new vector known as 

child/trial vector. The process begins by selecting two individuals from the current generation, 

then, crossover and mutation operators are applied to generate child vector.  In GA, a 

crossover point is randomly set and the portions of the two genes beyond this set point are 

swapped to form new vector (child). This process is controlled by a pre-specified probability 

rate known as crossover rate usually between 0.6 and 1.0. Then, mutation is applied to each 

child string to alter each bit randomly with a probability determined by the pre specified 

mutation rate which is usually between 0.1 and 0.001, [14].  

The DE mutation comes first and involves addition of weighted differential of two or more 

randomly selected vectors to another randomly selected based vector. Though there are 

several strategies of computing the weighted differential, the basic and common one is 

“DE/rand/1/bin”, [13]. Then a recombination process known as crossover is used to alter 

randomly the new vector. It ensures that each parameter of the differential mutant vector is 

accepted into the trial vector with some probability know as crossover constant which is 

usually between 0 and 1. It determines the fraction of parameter values that are copied from 

the mutant into the trial or child vector.  

Selection operator generally involves comparison of the objective values known as fitness 

function of both parent and child vector to determine who survives in the next generation 

Once the new population is generated, the process of mutation, crossover (recombination) and 

selection is repeated until the pre-specified termination criterion is satisfied. Based on this 

routine, the general flowchart of the DE and GA algorithms are shown in Figure 3 (a) and 

Figure 3(b), respectively. 
 

4.  Proposed hybrid DE-GA algorithm  

The proposed hybrid algorithm explores the optimization strength of both DE and GA sub 

optimization algorithms in determining the optimal parameters of NARX network.  The algorithm 

comprises two level optimization processes. The first level (upper level) comprises the DE sub 

algorithm which searches for the optimal NARX network architecture, while the second level involves 

GA sub algorithm searches for the optimal network weights that minimizes a given objective function. 

The flowchart of the proposed algorithm is shown in Figure 4. As shown in Figure 4, the GA sub 

algorithm is integrated into the DE algorithm to compute the overall objective function. 

The problem is formulated as follows: given a set of input and output data pairs (u(k),y(k)) of a system 

to be modeled, the objective of the DE upper level optimization is to search for set of network 

architecture parameters,  ,  

        ]H,TD[:                       (8) 

 that minimizes the objective function, )(f   as follows: 

     )p)W((*.)(f
cmin

  50                 (9) 

where  cp  is the percentage of network connection used, and )W(  is the objective function 

values returns by the GA sub-algorithm.  
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Figure 3 Flowchart of (a) DE algorithm, (b) GA Algorithm 

 

The GA sub-algorithm searches for a set of network weights, W, which minimizes the objective 

function, )W( ,  where )W(  is defined as prediction error between the actual response and 

predicted response for a given data, length, N: 

             


N

k

T

min
N

)W(
12

1
                         (10) 

 where   )k(y)k(y


  

 
Figure 4 Flowchart of the proposed hybrid DE-GA Optimization algorithm 
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The major algorithm procedures are summarized as follows: 

Step 1: Specifying the optimization parameters for both DE and GA sub algorithms: DE 

parameters are: crossover constant, CR, mutation Constant, F, population size, 
DE

 , and maximum 

generation 
DE

max
g  while GA main parameters are: probability crossover, pc , mutation rate, mc, 

population size, 
GA

  , and maximum generation size, 
GA

max
g  

 

Step 2: Initialize the DE population, Po, of size, 
DE

 , for 0DEg . The population comprises of 

individuals,
 DE

g

i
,...,i,i  1 , where 

DEgg  and . Given a specified lower, L, and upper, U, bound 

on the network parameters, an individual of the population is initialized using: 

g
i randint   U,L,,11      (11) 

where “randint” is a function that generates uniformly distributed random integers, within the 

range specified by the bounds L and U. 

 

Step 3: Compute vector of objective values, Fit, for all the individuals in the population. This is 

achieved by evaluating the objective function given in equation (1), hence, 

  

               iFit = )p)W((*.)(f
cii

g

imin
  50   

DE
,...,i,i 1                 (12) 

 

where  g

i
f   is the objective functions for a given parameter vector 

g

i . 

As earlier stated, the objective functions expressed in equation (5) comprises the accuracy and 

complexity of the NARX network. The accuracy is specified by the sub-objective values, )W(  

which is the optimal prediction error returns by the GA sub-algorithm. The GA sub-algorithm is called 

by the DE sub-algorithm at this point to search for optimal network weight, W that minimizes )W( .   

For a given network architecture,   produced by DE sub-algorithm, GA sub algorithm is called to 

search for corresponding optimal weights that minimizes prediction error given in equation (3).  A 

nested MATLAB function (m-files) incorporating the   MATLAB inbuilt GA algorithm, [15] is 

developed to integrate the GA into the DE process.  The total weight for the given,   is computed 

using equation (3), and this with other pre-specified parameters as stated in step 1 are passed into the 

GA sub algorithm.  

 

 Step 4: Begins DE optimization process 

           while g<
DE

max
g       

Step 5:  Starts DE operation to generate new population, Pnew  and update best   

 candidate 

For i= 1 to 
DE

  

1. Using the DE process of mutation and cross-over, generate new candidate, 
1g

iv 
 called 

child vector from a randomly selected three individuals, 321 r,r,r ,  from the previous 

population  such that 321 r,r,r   [1; pN ], where irrr 321   as follows: 

 i. Mutation: compute the mutant vector   using DE operation: 
   

 
)( rrri 123

  , 1F                                         (13) 

  ii. Perform crossover to generate child vector, 
1g

iv 
using: 

 Generate a random number     110  )d*,randfloorRand
j

 

for j=1: d 
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

 



otherwise

RandjorCR),(rand(if
v g

j,i

jj,ig
j,i 

 10
1

               (14) 

  EndFor 

2. Check for violation of the bounds L and U, and effect correction if needed 

For j=1: d 

If Uv\\Lv g
j,i

g
j,i   11  

1g
j,iv randint   U,L,,11  

  EndIf 

  EndFor 

3. Evaluate the objective function, 
1g

iFit of the child vector, )v(f g

i

1
 as described in step 

3. 

4. Selection process: let the generated child vector, 
1g

iv 
  compete with the  parent 

vector
g
i  as follows 












g

i

g

i

g

i

g

i

g

i

g

ig

i

winsnotvif:

winsvif:v






1

1

1  (27)    

            where: )(f)v(f:ifandonlyifwinsv g

i

g

i

g

i

g

i
 1

                 (15) 

 Update new population and Best candidate index: 

   Pnew(i)= 
1g

i  

       
oldnewnew

iBestFitiBestFitif:iiBest             

 EndFor  

Step 6: set g=g+1 , and go to Step 4 

EndWhileLoop   

Step 7: Report the solutions: Best Fit and Best parameters set:   and W 

 

This hybrid algorithm, subsequently refers to as DE-GA-NARX network algorithm, is written in 

MATLAB which facilitate the integration of the MATLAB inbuilt GA and NARX network algorithm 

in the hybrid optimization algorithm process. 

 

5.  Application to system identification   

The hybrid algorithm is used to identify model of a laboratory rotary motion control system shown in 

Figure 5. As shown in Figure 5, the DC motor driven rotary motion system represents a typical 

practical problem in system identification. It consists of servo motor driven by an amplifier and 

position encoder attached to the shaft as the feedback sensor. Although, an approximate lump 

mathematical model based on the physical laws of motion and Kirchhoff’s laws could be derived for 

the system as reported in [16], the actual model order and parameters of the complete system 

components are not always known a priori. In the absence of actual system model detailed physical 

parameters, the NARX network technique provides an effective approach for the system nonlinear 

model identification.  

The system is excited with Pseudo Random Binary Signal (PBRS) to obtain input-output data pairs 

requires for system identification process. Given this input and output data pair, the proposed 

algorithm is applied to identify NARX network parameters the optimally modeled the system.   

Two set of data were collected for training with data size, NT=503 and validation with data size, 

NV=120.  Sample of the input and measured output data is shown in Figure 6. 
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Figure 5 DC-Motor driven rotary motion systems [16]. 
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Figure 6 Experimental input and output data pair 

 

6.  Results and discussion 

The primary optimization parameters are: population size, 
DE

 =30; 
GA

 =20; maximum generation 

size, 
DE

max
g =100, 

GA

max
g =20; maximum network size, TD=10, H=10; DE mutation factor, 0.75 and cross 

over constant, 0.25; GA mutation rate, 0.01, probability cross over, 0.8.  Figure 7 shows the 

comparison of the actual and predicted output with validated data. The results of the optimal network 

produced by the algorithm are given in Table 1. As shown in Figure 7, and Table 1, the prediction error 

is considerable minimized for both training and validation data, and yet provides network with less 

than 50% (17 size) full connection. 
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Figure 7. Measures and predicted  plant responses with (a)  training and (b)  validation data 

 

Table 1: Results of Optimized NARX Network for the plant model 

1. Network size 2. % connection 3. Prediction error 

[1] Training data 

4. Prediction error 

5. Validation data 

6. [3,3,2] 7. 7.69 8. 0.0089 9. 0.0135 

 

7.  Conclusion 

This study has presented an hybrid algorithm for optimal determination of a NARX network 

parameters. The proposed hybrid algorithm explored the evolutionary optimization strength of both 

DE and GA to search for both the network architecture and weights which yield optimal model 

accuracy and least network complexity. 

The algorithm is applied to identify model of a rotary motion control system, the results shows the 

effectiveness of the proposed algorithm in terms of model accuracy with average prediction error of 

0.011, while utilizing only 50% of the full network size.  Generally, the proposed hybrid algorithm 

provides automatic network architecture and parameters determination for nonlinear, nonparametric 

NARX network model. This is expected to reduce the developmental time involves in autonomous 

helicopter project. 
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