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Abstract This article puts forward the results obtained
when using a neural network as an alternative to clas-
sical methods (simulation and experimental testing) in
the prediction of the behaviour of steel armours against
high-speed impacts. In a first phase, a number of impact
cases are randomly generated, varying the values of the
parameters which define the impact problem (radius,
length and velocity of the projectile; thickness of the
protection). After simulation of each case using a finite
element code, the above-mentioned parameters and the
results of the simulation (residual velocity and residual
mass of the projectile) are used as input and output data
to train and validate a neural network. In addition, the
number of training cases needed to arrive at a given
predictive error is studied. The results are satisfactory,
this alternative providing a highly recommended option
for armour design tasks, due to its simplicity of han-
dling, low computational cost and efficiency.
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1 Introduction

Over the last 50 years, scientists and engineers have
devoted more and more effort for solving problems
relating to the impact of solids. Until a couple of decades

ago, the analysis of these problems turned almost
exclusively to collisions of solids, of simple geometry
and low impact energy, with limited plastic deformation,
given the mathematical complexity of the equations in-
volved in these phenomena and the limited information
available on the mechanical behaviour of materials at
high-speed deformation [1]. The evolution of powerful
computers and instrumental techniques has provided
new test data which have helped to solve many problems
of impact. Models are now available to assist engineers
in the study of car crashes, impacts on turbine blades,
ballistic protection and impacts on structures or vehi-
cles.

Now focusing on the ballistic range, there are
numerous systems which, during their service, can suffer
the impact of objects moving at high speed (over 500 m/
s). The most characteristic examples are found in the
military field although over the last decades, this type of
problem has become of interest in civil applications, in
which structural elements are required to absorb the
projectile energy so that it does not damage critical parts
of the global system. Weight is a key factor in the design
of protections against impact—whether on vehicles, civil
or military aircraft, or personnel of the security and
defence corps. Hence the interest in developing high-
performance ballistic materials able to save weight [2, 3],
which, however, means higher costs that are prohibitive
in certain applications. When weight is not the primary
design concern and cost benefits are welcome, steel
would be one of the most adequate materials, due to its
high hardness, capacity of energy absorption by plastic
deformation and its low cost.

The design of structures subjected to impact was
traditionally carried out empirically, relying on real
impact tests, each using the given projectile/target. The
mathematical complexity of solving the equations that
rule the impact phenomenon and the relative ignorance
of the mechanical behaviour of the materials at high
strain rates discouraged any simulation of the problem.

Therefore, the experimental results, with a statistic
treatment, gave curves of probability of perforation
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depending on the velocity of impact (Fig. 1). These
curves defined different values of ballistic limit velocities,
VP, the critical value above which a probability of per-
foration P exists.

This method is reliable but the results are valid only
for the conformation tested, and they are not readily
extrapolated; any variation of the impact velocity or the
characteristics of the projectile or the target invalidates
the test data. It is also a costly procedure; testing in these
conditions requires sophisticated installations and
equipment. It becomes even more costly if the aim of the
tests goes beyond the discovery of the strength quality of
a target or the characteristics of the deformation of a
projectile capable of perforating an armour or destroy-
ing a structure. To obtain information on the deforma-
tion of the target or on the position of the projectile
during penetration, ultra-rapid photography—either
optical or X-ray—is required, and this again increases
the cost of the tests. With a view to extend the validity of
real-fire tests to other projectile–target conformations,
some so-called semi-empirical techniques were devel-
oped; these proposed algebraic equations, with a certain
theoretical base, calibrated from a large number of
experimental data and allowed an interpolation or even
extrapolation of results.

The need for design tools to simulate this process
triggered the development in recent years of a large
number of models of different types; all of them belong
to two families: those of analytical modelling and of
numerical modelling. Thus, the use of expensive experi-
mental tests has been relegated to the final stage of the
design. All the previous stages can be covered by the use
of simulation tools.

In analytical modelling, a series of simplifying
hypotheses is assumed in the physical mechanisms that
define the behaviour of the solids, to produce by means
of simple equations a model that enables each problem
to be solved in a few minutes or even seconds. These

methods are not so precise as the numerical methods,
but they are so rapid that a great number of calculations
can be made in a short time (see the classic references [4,
5]). Also known as engineering models, these tools are
useful in the design of armour plating; they are not only
quick and easy to use but also give detailed information
about the process of penetration. The representation of
the materials in these models is expressed in simple
equations using experimental parameters such as the
elastic modulus, stiffness or failure deformation. The
equations used in continuum mechanics are greatly
simplified by the introduction of hypotheses obtained
from the analysis of the global behaviour of the phe-
nomenon. The approximation obtained with this type of
model depends largely on its complexity. The introduc-
tion of a larger number of variables into the model gives
a more precise representation of the physical phenomena
involved in the impact although this complicates the
solution of the differential equations and delays the
operation. So a compromise has to be made between the
capacity of the model to predict the experimental results
and the need to avoid complexity in the calculations.

Using numerical simulation leads to a result of an
impact problem through the complete solution of the
differential equations of the mechanics of continuous
media, much more reliable than that obtained with the
analytical model. A number of commercial programmes
of finite elements or finite differences are available, and
these are very successful in simulating impact problems.
However, their capacity of close approximation to
reality depends more on the constitutive equations used
for the materials than on the errors inherent in the
numerical method itself [6]. The impact produces tem-
perature increase due to irreversible processes—plastic
flow, shock waves—and deformations at very high speed
that can be simulated correctly only by equations of
state and constitutive equations whose expression is of-
ten unknown. The main drawback is the amount of time
required to solve each impact problem, usually several
hours or even days of modelling. Its high cost and long
execution time required for the simulation of a single
case of impact hamper a wide number of calculations
during the process of design, which are needed for the
optimisation of the protection.

Taking account of these difficulties, a neural network
has been designed for the prediction of the response of
steel armours. The neural networks have become a
centre of intense activity in engineering during the past
years [7] due to their power of predicting results and the
easy handling at user’s level. In these networks, the
biological model of learning and computation is emu-
lated, permitting the network to modify its own struc-
ture (weight matrix) and adapt it for achieving an
algorithm of execution. This algorithm is built up from
the characteristics extracted from the cases whose solu-
tions are known. Training is done with these algorithms.
In the neural network it is necessary to select the
significant variables, in both the input network and
the output. The expected result must be related to the

Fig. 1 Probability of perforation versus impact velocity for a given
projectile/target set
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output variable and the input related to the variables
that are of value in the physical problem. In this way, the
network then predicts the response of a system to a
group of input data.

Among the different artificial neural networks, the
multilayer perceptron (MLP) is by far the most com-
monly applied in mechanics; even the radial basis func-
tion network (RBFN) has been used successfully in this
field. Both feed-forward networks are efficient tools for
classification and prediction in non-linear problems. The
main difference between both of them lies in the acti-
vation function of the hidden neurons. In MLPs, the
log-sigmoid or hyperbolic-tangent-sigmoid function is
used; this type of function divides the input variability
space into a lower half with low output and an upper
half with high output. In RBFNs, hidden neurons have a
Gaussian function, selective to a small range of the
variability space. Therefore, RBFNs effectively model a
large output gradient over a small region, and MLPs
capture the overall trend over the whole problem do-
main. There is also a consensus on the higher training
speed of RBFNs over MLPs.

In the problem dealt with, the input data include the
geometrical parameters of the solids involved (radius
and length of the projectile, thickness of the steel pro-
tection) and the impact velocity, while the response of
the system is the velocity and the residual mass of the
projectile after perforation. The computational cost re-
quired to train the network in the problem herein con-
sidered is small in any case. Moreover, based on
previous experience acquired through the analysis of this
type of problems, the output is expected to be a smooth
and monotonic function of each input data, without
oscillations or large local variations. Thus an MLP was
chosen as predictive tool. Since the tool is quick and easy
to use, it allows a simulation of a large number of impact
problems in the early stages of design and a great saving
of the time and money that would be spent if the earlier
methods were used.

2 Numerical simulation

Several impact problems were generated from which
some of them were used for the training and others for
the validation of the results obtained by the network
after learning. Modelling and simulation were done with
the commercial software ABAQUS/Explicit v6.4.1. [8], a
finite element explicit code widely used in highly non-
linear dynamic simulation.

A dynamic analysis was carried out with integration
times varying from 120 to 180 ls, enough to guarantee,
depending on the impact velocity and the geometry of
the target and projectile, the complete arrest of the
projectile or perforation of the steel plate.

The impact velocity V was generated randomly be-
tween 500 and 1,200 m/s, covering the usual range of
values for this kind of problem. The projectile was
modelled as a cylinder of radius R and height L and the

target as a square plate of thickness H and edge Y. The
values of these geometric parameters were also gener-
ated randomly with a uniform probability density
function keeping the following restrictions to maintain
reasonable geometrical proportions:

3mm � R � 8mm;

4R6L � 8R;

Y ¼ 2L;

L=6 � H � L=3:

The generation of the mesh is parametric, taking as
parameters the geometrical input data of the network
(L, R, H) in order to achieve a rapid generation of all the
cases, due to the vast number that have to been analy-
sed. Eight-node trilinear hexahedral elements with re-
duced integration to a single Gauss point and hourglass
control (C3D8R in ABAQUS notation) were used for
the regular mesh with a characteristical element length
LC=1.2 mm.

The boundary conditions of the target do not influ-
ence the problem, given the short duration of the pro-
cess, so a clamping condition was adopted on the target
sides to reduce the degree of freedom of the problem.

A pure master–slave contact algorithm (Fig. 2) was
used to model the contact between the projectile and
target during the impact. The master surface is formed
by the lower sides of the projectile elements while the
slave surface is formed by all the nodes of the target. A
friction coefficient of l=0.2 was fixed between the two
surfaces.

A 1006 SAE steel was chosen for both the projectile
and the target. For the numerical modelling of this
material, a thermoviscoplastic isotropic hardening
equation was considered, dependent on the plastic
equivalent strain �epl; plastic equivalent strain rate _�epl and
temperature T. These two last variables must be con-
sidered in this type of phenomena in which strain rates
are very high (104 sÿ1), and the plastic work generates a
notable adiabatic increase of the temperature in the
metallic material. A Johnson–Cook equation [9] was
used:

master
surface

slave nodes cannot penetrate
in master surface

master nodes can penetrate
in slave surface

slave
surface

Fig. 2 Contact algorithm: master and slave surfaces
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�rð�epl; _�epl; T Þ ¼ ðAþ B�eNplÞð1þ C Ln
_�epl

e0
Þð1ÿ h

_M

Þ; ð1Þ

h
_

being the homologous temperature defined as:

h
_

¼
T ÿ T0

TM ÿ T0
ð2Þ

where TM and T0 are the melting temperature of the
steel and a reference temperature (commonly taken as
the room temperature), respectively. A, B, N, C, e0 and
M are material constants determined experimentally.
The first and second factors introduce the material
hardening by plastic strain and plastic strain rate,
respectively, while the third factor introduces the mate-
rial softening by adiabatic heating. The values of the
parameters of the thermo-elastoplastic constitutive
equation for the steel, as well as the density, are given in
Table 1.

In impact problems, in which strains are very high,
the treatment of the excessive distortion of the elements
in Lagrangian meshes—the one adopted in this simula-
tion—is critical. Therefore an erosion criterion was
considered to delete each element when the equivalent
plastic strain at the integration point exceeds a threshold
value �efailure: This value was fixed at 1.5 for the projectile
and 2.5 for the target to obtain results consistent with
experimental observations. When elements in contact
between the target and projectile are deleted, new con-
tact surfaces are introduced in the contact algorithm to
guarantee the continuity between them (Fig. 3). This
avoids numerical problems resulting from this distor-
tion, and the mass loss in the projectile, a typical phe-
nomenon in impact problems, is properly modelled.

Figure 4 shows a projectile before and after the im-
pact as one of the 60 cases simulated. When perforation
of the target took place (Fig. 5), the projectile mesh was
post-processed to obtain the residual mass and velocity.
An application was developed to calculate these values
from the nodal coordinates and velocities of the pro-
jectile nodes at the end of the simulation.

3 Neural network approach

Many different neural networks have been established
over the past 20 years, with Perceptron, Hebbian,
Kohonen and Hopfield networks [10–13] being some of
the best known. These neural networks have been widely
applied in the field of mechanics of structures and
materials to predict solutions of problems such as
bending in elastoplastic beams, estimation of vibrations
in real buildings or damage detection in steel beams [14].
Neural networks have also been applied in fracture
mechanics to estimate fracture parameters in concrete
[15] and in non-destructive testing to detect cracks in
brittle materials [16]. In all these applications the input
data were obtained by either experimentation or
numerical simulation.

3.1 Input data

Before defining the topology of the neural network, the
number of inputs must be decided. In an impact problem
several parameters can be selected as input data: kinetic
energy, velocity, radius (R), length (L), mass or the ratio
L/R—all of them related to the projectile—and the
thickness of the target (H). Kinetic energy is correlated
with velocity and mass. The ratio L/R and mass are
correlated with R and L because the density is constant.
It is important therefore to choose the appropriate

Table 1 SAE 1006 steel properties

Property Value

Density 7,850 kg/m3

Young modulus 207 GPa
Poisson ratio 0.3
Specific heat 4.5 kJ/kg K
Thermal expansion coefficient 22.9·10ÿ6 Kÿ1

Quiney–Taylor coefficient 0.7
A 350 MPa
B 227 MPa
N 0.36
C 0.022
e0 1 sÿ1

M 1
T0 30°C
TM 1,400°C

Fig. 3 Contact surfaces evolution for element failure

Fig. 4 Projectile before (left) and after (right) the impact
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parameters: velocity of the projectile is a key parameter
in impact problems; on the other hand, the projectile
cross-section area influences the perforation process of
the target, so the radius will also be taken and conse-
quently the length of the projectile. Hence, the number
of inputs for the neural network will be limited to four:
three geometrical parameters (R, L, H) and the impact
velocity (V).

3.2 Multilayer perceptron network
with backpropagation

An MLP backpropagation (BP) network with one hid-
den layer was proposed for this work. It is a neural
network commonly used in mechanical problems such as
those described in [14], a supervised, continuously val-
ued, multi-input and multi-output feed-forward that
follows a gradient descent method, altering the weight
by an amount proportional to the partial derivative of
the error with respect to the weight in question. The
backpropagation phase of the neural network alters the
weights so that the error of the network is minimised.
This is achieved by taking a pair of input/output vectors
and feeding the input vector into the net which generates
an output vector (feed-forward process). The output
vector is then compared to the supplied output vector,
thus gaining an error value. The error is then passed
back through the network (backpropagation process),
modifying the weights. If the same set of input/output
vectors was presented to the network, the error would be
smaller than that previously found.

The perceptron topology is shown in Fig. 6, in which
the following neurons are used:

• Four input layer neurons associated with the four
input variables (R, L, H, V) with an identity transfer
function

• Four hidden layer neurons with hyperbolic tangent
transfer function

• Four output layer neurons, two associated with the
perforation output variable (two neurons whose out-
put is complementary were considered since this
practice helps the learning task) and the other two
associated with velocity and residual mass, respec-
tively, all of them with a sigmoidal transfer function

To estimate the number of the hidden layer neurons,
the guideline proposed by Tarassenko [17] has been
applied

J � IKð Þ0:5; ð3Þ

I, J and K being the number of neurons in the input,
hidden and output layers, respectively.

The error reported to the supervised learning proce-
dure is the squared Euclidean distance between the
network’s output and the desired response.

4 Results

The neural network was developed with the commercial
code Neurosolutions for Excel v4, a software that works
in an Excel environment. The number n of cases required
to train the network has been estimated using the
guideline proposed by Tarassenko [17]:

W6n610W ; ð4Þ

W being the network parameters that must be adjusted
in the training, which is obtained by

W ¼ ðI þ 1ÞJ þ ðJ þ 1ÞK ¼ 40: ð5Þ

Due to the high computational cost of the numerical
simulations, 50 randomly chosen cases were supplied to
the network, in order to train it through a supervised
learning process. Once the network was trained, it was
validated with 10 additional cases generated for this
purpose.

Fig. 5 Sequence of simulation
in case of perforation: front
views (left and centre) and final
rear view (right)

R

L

H

V

The plate has been
perforated

The plate has not been
perforated

Residual velocity

Residual mass

INPUT
layer

OUTPUT
layerHIDDEN

layer

Fig. 6 Topology of the perceptron used
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Table 2 depicts the input variables and the perfora-
tion results obtained by means of the network. It shows
how the predicted values adjust perfectly to the expected
ones, except cases 2 and 7. In case 7, a perforation value
of 0.7901 was obtained, intermediate between 0 (arrest)
and 1 (perforation), which does not allow the determi-
nation with accuracy of the impact result. To analyse
this result, in Fig. 7 one can see the ‘‘Perforation=YES’’
value, keeping the projectile and target geometry of case
7 and varying impact velocity in the range 350–850 m/s.
From an interpretation analogous to that used for the
probability curves of perforation (Fig. 1), which are
characteristic of the experimental tests, the ballistic limit
velocity would be found between 500 and 670 m/s.
Numerical simulations carried out afterwards confirm
that at 500 m/s the target arrests the projectile, while at
670 m/s the projectile perforates the target at a resid-
ual velocity of 362 m/s. Therefore, in cases close to
the ballistic limit velocity, the neural network would
anticipate values of ‘‘Perforation=YES’’ intermediate
between 0 and 1.

As for case 2, the neural network predicts perforation
whilst the numerical simulation confirms the opposite.
In this case, the network would provide a range between
600 and 830 m/s for the limit velocity of perforation,
and the finite element tool predicts the ballistic limit
velocity at around 830 m/s. The cause of this deviation
would have to be sought in the singularity of the
geometry not only of the projectile, but also of the tar-
get: R, L and H acquire in this case minimum values in
the group of the 50 cases considered for the network
training.

The results of the test for the other two output vari-
ables, velocity and residual mass, are presented in
Figs. 8 and 9 for the cases resulting in perforation. The
trends predicted by the network are seen to be conve-
niently close to the numerical simulation results.

4.1 Optimisation of the training

In a second phase, experiments were made to determine
the minimum number of patterns (and in consequence,
numerical simulations) to obtain a given error in the

predictions of the neural network. This serves to reduce
the high computational cost of the finite element simu-
lations performed to obtain training data.

To develop these experiments, an application was
developed which chose randomly a set of training and
testing patterns from the total of 60 cases from the
numerical simulation. For the first experiment (A in
Fig. 10), the application takes 50/10, 45/15, 40/20...
training/testing patterns, trains the network and calcu-
lates the error in the prediction of the output ‘‘Perfo-
ration=YES’’. This operation is repeated 100 times,
each point in Fig. 10 being the average error. The
experiment was performed twice with similar results,
confirming that the network does not exhibit over-
training.

To eliminate the influence of the number of testing
cases in the pattern, a second experiment was performed
(B in Fig. 10), now keeping the number of testing cases
to 10, independently of the number of training cases in
the pattern. Again, the results followed those obtained in
experiments A, this confirming the consistency of the
results. One can see a clear trend in the error obtained by
the neural network for the output ‘‘Perforation=YES’’,
which is independent of the number of patterns used to
validate the network. This trend can be fitted by the
exponential curve:

Error ¼ 28:31eÿ0:04X ; ð6Þ

X being the number of training patterns used for the
learning process (correlation coefficient=0.89).

5 Conclusions

As shown here, the MLP could be considered an alter-
native tool for the design of armours against impacts.
The network is reliable in predicting the projectile arrest,
outdoing finite element simulation tools in the lower
computational cost, once the training has been carried
out. With regard to the prediction of velocity and
residual mass, the achieved values are close enough, and
the network trend is clearly similar to that obtained by
numerical simulation.

Table 2 Results of ‘‘Perforation=YES’’

Case H (mm) R (mm) L (mm) V (msÿ1) Perforation=YES (1)

Numerical simulation Neural network

1 7 6 26 1,133 1 0.9990
2 4 3 14 804 0 0.9977
3 11 6 47 787 1 0.9957
4 13 6 44 1,094 1 0.9999
5 16 8 53 1,073 1 0.9998
6 10 8 53 420 0 0.0006
7 7 7 33 601 1 0.7901
8 11 7 35 613 0 0.0004
9 11 5 40 863 1 0.9918
10 5 3 21 769 1 0.9923
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It is important to note the small number of training
cases needed to get a low error in the predictions: with
40 training patterns (consequently 40 finite element
numerical simulations), the network obtains a mean
error less than 7%. In spite of this repetitive low number
of training data, the network does not exhibit over-
training. Since the chosen network (MLP) is one of the
simplest topologies, the results show the feasibility of
using neural networks in the prediction of the behaviour
of armours against high-speed impact of projectiles.
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