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a b s t r a c t

This paper presents an engineering approach for analysing the longitudinal behaviour of

tunnels subjected to earthquakes. The tunnel is modelled as a Timoshenko beam connected to the

far soil by means of continuous elastic support (Winkler model). Seismic free field inputs, such as

those caused by surface waves travelling parallel to the tunnel axis, were imposed at the base

of the springs of the Winkler model, generating bending moments and shear forces on the

cross sections of the tunnel. Closed form expressions of the tunnel displacements, shear forces, and

bending moments were determined at any tunnel section in terms of the seismic excitation,

tunnel geometry and material properties, and subgrade reaction modulus of the soil. A dimensional

analysis was carried out to ascertain directly the maximum tunnel displacement, bending moment, and

shear force.

1. Introduction

Seismic tunnel soil interaction is often minor because of the

high damping in buried structures. One preliminary analysis

of the seismic longitudinal response of tunnels may be performed

while ignoring the physical presence of the tunnel and assuming

that it undergoes exactly the same strains as the surrounding

ground in free field conditions (absence of structures) for the

different wave types that appear in a seismic event. However,

this analysis method may overestimate or underestimate struc

ture deformations, depending on the rigidity of the structure

relative to the ground, and some field data indicate that stiff

tunnels in soft soils rarely undergo strains equal to those of the

soil [1].

Seismic input for shallow tunnel analysis at sites far from

the seismic source is caused mainly by surface seismic

waves (Rayleigh and Love waves) [2]. Although surface

waves propagate in a random direction relative to the tunnel

axis, the most penalising hypothesis, in relation to tunnel

curvature, is the one in which surface waves travel parallel to

tunnel axis [3].

One engineering alternative for complete tunnel seismic

analysis is to carry out 3 D full numerical analysis of the problem

[4,5]. Alternatively, simplified models for seismic longitudinal

lined tunnel analysis have been widely used. Constantopoulos

et al. [6] developed a simple methodology in which the tunnel of

finite length was modelled as a Winkler type beam, and soil free

field motion caused by surface waves was imposed at the base of

the springs that represented the tunnel soil interaction. These

researchers solved the problem using the finite differences

method. Using this methodology, Navarro and Samartı́n [7]

obtained closed form expressions for the internal forces and

bending moments in the tunnel. The most important feature of

both papers is that seismic input was introduced at the base of

springs approaching the peak part of the accelerogram by means

of a parabola, and thus no assumptions about frequencies needed

to be considered. St. John and Zahrah [8] also developed a

Winkler type model to analyse long tunnels subjected to

harmonic seismic waves, which gave closed form expression for

the maxima axial and shear forces as well as bending moments

acting on a tunnel section, and also the values of the spring

constant to be used in the model, which were a function of the

wave length, tunnel diameter, and elastic soil constants. In these

last three references, the tunnel was assumed to behave as a

Euler Bernoulli beam and thus shear deformation effects on

tunnel structural response were not accounted for. Karadeniz [9]

presented an interface 3 D element for the linear dynamic

analysis of buried or pile structures, under a seismic ground

motion represented by Rayleigh waves, and assuming a viscoe

lastic soil behaviour. In his formulation of the problem, he took

into account the effects of shear deformation and a constant axial

force. Also, he established the stiffness matrix and the load vector

in the interface element, the latter being a function of the ground

deformation, which leads to a matrix formulation of the problem.
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In this paper, a simplified longitudinal seismic analysis of a

segmented tunnel is given. Because inertial response of tunnels is

small due to the high radiation damping that appear in these

kinds of problems, the analysis was carried out statically, greatly

simplifying the problem solution. Closed form expressions for the

tunnel displacements, shear forces and bending moments at any

tunnel section (in terms of the seismic excitation), tunnel

geometry, and material properties were determined and the

results are shown in a dimensionless form, which allows the

engineer to deduce the values of such magnitudes very easily.

The tunnel is modelled as a finite Timoshenko beam to account

properly for the shear deformation effects on the structural

response of concrete lined tunnels, built in different phases and

thus having construction joints, in which these effects become

relevant because the diameter length ratios are relatively small.

Additionally, the seismic accelerogram input is approximated by a

parabola, which eliminates the need to treat the problem by

Fourier analysis of different harmonic surface waves propagating

along the tunnel axis. Because soil tunnel interaction changes the

structural tunnel response regarding that determined when free

field soil seismic strains are directly imposed to the tunnel, the

problem is analysed taking into account this phenomenon in an

approximate way.

2. Statement and solution of the problem

When a Rayleigh surface wave (polarised in a vertical plane) or

a Love wave (polarised in a horizontal plane) travels parallel to the

tunnel axis, the latter undergoes deformations. To determine the

bending moment and shear force acting on the tunnel cross

section, let us consider a tunnel of length L modelled as a

Timoshenko beam and connected to the far soil by a Winkler type

model. The subgrade stiffness may be represented by k per

unit tunnel length and the far soil is subjected to a known

displacement ws(x), where the x axis has the direction of the axis

beam with its origin at the tunnel mid span section. As a

consequence of soil movements, the tunnel will undergo the

displacements w(x).

To simplify the calculations, we assume that the part of the site

accelerogram corresponding to the peak acceleration amax may be

approximated by a parabolic curve as

d2wsðxÞ

dt2
¼ amax 1

t

DT=2

� �2
" #

(1)

where the time scale now refers to the instant at which peak

acceleration occurs at the tunnel mid span section and DT is the

minimum value of DT1 and DT2 that are given, respectively,

by DT1 ¼ L/V and DT2 ¼ T/2, with V being the seismic wave

velocity and T the predominant earthquake period, as suggested

by Constantopoulos et al. [6]. Because of surface waves

show a dispersive character in layered soil systems, their

low frequency wave velocities, such as the ones predominant

in earthquakes (1 5Hz), travel at speeds quite similar to those

of the deeper layers that are, in general, much stiffer. This fact

implies that expected surface wave lengths are usually of

several hundred metres, whereas typical tunnel segment lengths

are only a few metres long, and thus DT1 is usually much lower

than DT2.

If we denote x ¼ V� t as the abscissa of a generic tunnel

section from its mid span section, the peak zone of the

accelerogram may be expressed as

d2wsðxÞ

dx2
¼

amax

V2
1

2x

L

� �2
" #

(2)

After integration twice, the seismic soil displacement may be

calculated, resulting in

wsðxÞ ¼
amax

V2

x2

2
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L2
x4

3

5

48
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(3)

Assuming that the tunnel behaves as a Timoshenko beam

(neglecting the tunnel inertial forces) the deformed tunnel slope,

dw(x)/dx, depends not only on the rotation of the tunnel cross

section jy(x) but also on the shear strain gxz(x), so that magnitude

may be expressed as

dwðxÞ

dx
¼ jyðxÞ þ gxzðxÞ (6)

The bending moment M and the shear force Q at any tunnel

section are given by

M ¼ EI
djyðxÞ

dx
; Q ¼ AcgxzG ¼ AcG

dw

dx
þjyðxÞ

� �

(7)

where E and G are, respectively, the Young and Shear moduli of

the beammaterial, I is the inertia moment of the section regarding

the neutral axis, and Ac the effective cross sectional area of the

beam, related to the cross section area, A, by Ac ¼ kef A, where kef
the cross section shear coefficient (see, for instance, [10]).

The tunnel slide equilibrium conditions give two differential

equations:

EI
d2jyðxÞ

dx2
AcG

dwðxÞ

dx
þjyðxÞ

� �

¼ 0,

AcG
d2w

dx2
þ

djyðxÞ

dx

 !

¼ pðxÞ (8)

From these two equations, the following differential equation, in

terms of the variable jy(x), may be stated:

d4jyðxÞ

dx4
k

AcG

d2jyðxÞ

dx2
þ

k

EI
jyðxÞ ¼

k

EI

dwsðxÞ

dx
(9)

This equation should fulfil four boundary conditions. Because of

the symmetry of the problem, jy(x) should be an odd function in

x, becoming zero at x ¼ 0. On the other hand, because the bending

moment and shear forces are zero at both tunnel edges sections,

the first and second derivatives of jy(x) should also become zero

at x ¼7L/2.

Solving Eq. (9) and imposing the boundary conditions, the

bending moment and shear force at any section in the tunnel may

be written as

M ¼ EI
djyðxÞ

dx
¼ EI 2C½ b sin bx sinh axþ a cos bx cosh ax�

�

þ2D½b cos bx cosh axþ a sin bx sinh ax� þ pþ 3rx2
�

(10)

Q ¼
dM

dx
¼ EI 2C½ða2 b

2
Þ cos bx sinh ax 2ab sin bx cosh ax�

h

þ2D ða2 b
2
Þ sin bx cosh axþ 2ab cos bx sinh ax

h i

þ 6rx
i

(11)

in which the new parameters a and b are

a ¼
k

4EI

r

þ
k

4AcG

s

and b ¼
k

4EI

r

k

4AcG

s

(12)

for values of k that verifying koð4A2
cG

2Þ=EI. In most practical

cases, this last condition is fulfilled because the tunnel stiffness is

greater than that of the soil, as suggested by Yin [11]. Although the

value of the parameter k depends on the soil layered system

stiffness and tunnel geometry, St. John and Zahrah [8] proposed an

expression of such a parameter.
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The rest of the parameters appearing in Eqs. (10) and (11) are

summarised in Appendix A.

Tunnel displacements could be calculated from this differential

equation:

d4wðxÞ

dx4
k

AcG

d2wðxÞ

dx2
þ

k

EI
wðxÞ ¼

k

EI
wsðxÞ

k

AcG

d2wsðxÞ

dx2
(13)

After solving this last equation, considering the corresponding

boundary conditions cited for jy(x), tunnel displacement at any

section is

wðxÞ ¼ 2Cw cos bx cosh axþ 2Dw sin bx sinh ax

þ pwx
4 þ qwx

2 þ rw (14)

The new coefficients that appear in this last equation are given in

Appendix B.

3. Dimensional analysis

After the analytical solution of the problem, the results may be

presented dimensionless. The maximal tunnel displacement,

wmax, bending moment, Mmax, and shear force, Qmax, may be

expressed, respectively, as:

wmax ¼
amaxL

2

V2
f

kL4

EI

 !

; Mmax ¼
amaxEI

V2
g

kL4

EI

 !

,

Qmax ¼
amaxEI

V2L
h

kL4

EI

 !

(15)

assuming that the tunnel behaves as a Euler Bernoulli beam,

and by

wmax ¼
amaxL

2

V2
f �

kL4

EI
; s

 !

; Mmax ¼
amaxEI

V2
g�

kL4

EI
; s

 !

,

Qmax ¼
amaxEI

V2L
h�

kL4

EI
; s

 !

(16)

when the tunnel behaves as a Timoshenko beam, with s being a

parameter defined as

s ¼
EI

GAcL
2
¼

2ð1þ nÞ

kef

k

L

� �2

(17)

where n is the Poisson ratio of the tunnel material and k the

radius of gyration of the tunnel cross section.

Figs. 1 3 show the functions f and f�, g and g�, and h and h�,

respectively. After inspection of these latter figures, absolute

values of the displacements, bending moments, and shear

forces increase as the ratio kL4/EI becomes greater. Regardless

of the type of the approach used for the tunnel behaviour or the

ratio s, the values of the maximum tunnel displacement (Fig. 1)

become equal for each value of the ratio kL4/EI greater than

8�103. For values of kL4/EI less than 8�103, Timoshenko’s

beam approach leads to higher maximum tunnel displacements

than those predicted by the Euler Bernoulli beam theory,

and the larger the s ratio the greater the maximum tunnel

displacement value.

For kL4/EI values of less than 40, the results concerning

maximum bending moment and shear force (Figs. 2 and 3)

are independent of the beam theory used, whereas for

values of such a ratio greater than 40, Euler Bernoulli beam

approach leads to higher values of the maximum bending

moment and shear force. In the last range of possible values of

that ratio and for the Timoshenko beam approach, the bending

moment and the shear force become greater as the ratio s

decreases.

4. Summary and conclusions

A procedure to solve the seismic longitudinal analysis of a

tunnel has been presented considering two different tunnel

behaviours (Euler Bernoulli or Timoshenko beams). Seismic input

consists of surface waves (Rayleigh distortional component and

Love waves). The closed form solutions of the differential

equations give the transverse tunnel displacement, the bending

moment, and the shear force at any section of the tunnel.

Dimensional analysis of the results was made to provide

engineers with a design tool. Timoshenko’s beam approach

predicts maximal values of tunnel displacements, bending mo

ments, and shear forces below those given by the Euler Bernoulli

Fig. 1. Functions f and f�.

Fig. 2. Functions g and g�.
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theory. These latter magnitudes decrease as the ratio kL4/EI

increases, although threshold values of this ratio have been found

from which the values of the considered magnitudes predicted

from these two beam theories do not significantly differ. In

Timoshenko’s beam approach, maximal bending moment and

shear force in the tunnel become greater as the ratio s decreases.
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Appendix A. Parameters appearing in Eqs. (10) and (11)

p ¼
amax

v2
8EI

AcGL
2

1

� �

; r ¼
4amax

3v2L2
,

C ¼
1

D
f 4

p

2
þ

3

2
r

L

2

� �2
 !

þ
1

D
f 2

3

2
rL; D ¼

1

D
f 3

p

2
þ

3

2
r

L

2

� �2
 !

1

D
f 1

3

2
rL

f 1 ¼ b sin bL
2 sinh aL

2 þ a cos bL
2 cosh aL

2

f 2 ¼ b cos bL
2 cosh aL

2 þ a sin bL
2 sinh aL

2

f 3 ¼ ða2 b2
Þ cos bL

2 sinh aL
2 2ab sin bL

2 cosh aL
2

f 4 ¼ ða2 b2
Þ sin bL

2 cosh aL
2 þ 2ab cos bL

2 sinh aL
2

D ¼ f 1f 4 f 2f 3

Appendix B. . Parameters appearing in Eq. (14)

p ¼
amax

3v2L2
; q ¼

amax

2v2
; r ¼

amax

v2
5L2

48
þ

8EI

L2k

" #

,

Cw ¼
1

aþ ðb2
=aÞ

Nw
b

a
Mw

� �

; Dw ¼
Nw

b

a

b
Cw

in which Mw and Nw are

Mw ¼
EI

AcG
ð 2Cabþ Dða2 b2

ÞÞ D

Nw ¼
EI

AcG
ðCða2 b2

Þ þ 2DabÞ C
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