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Advanced ceramics exhibit brittle behavior. The lack

of ductility and the presence of flaws and defects of

different sizes and orientations lead to scatter in failure

strength. This variability depends also on the specimen

size, stress distribution and stress state. The Weibull

theory explains correctly this dependence [1], so the

fracture strength of ceramic materials has been studied

using the Weibull statistic [2–5] as recommended by

ASTM Standards for reporting uniaxial strength data

of these materials [6]. The Weibull statistic is also ap-

plicable to describe the scatter of the fracture toughness

of steels in the ductile-brittle transition region, where

failure occurs by cleavage [7–10].

The two-parameter Weibull distribution function is

given by:

F(σ )= 1− exp[−(σ/σ0)
m] (1)

where F is the probability of rupture under an applied

uniaxial tensile stress σ , m is the shape parameter or

Weibull modulus and σ0 is the scale parameter.

A subject of great interest in this field is the determi-

nation of the σ value, σp, corresponding to a predefined

probability of failure p, i.e. the σp values such that

Pr(σ ≤ σp)= p (2)

These values coincide with the percentile of the distri-

bution and can be obtained as:

σp = σ0 [ln(1/(1− p))]1/m (3)

From the estimate values (σ̂0 and m̂) of the true values
of the Weibull parameters, σ0 and m, computed from
a set of tests, an estimation σ̂p of σp can be calculated

by:

σ̂p = σ̂0 [ln(1/(1− p))]1/m̂ (4)

For percentile points, combining Equations 3 and 4, the

following relation is obtained [11]:
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In a previous paper, Fernández-Sáez et al. [11] pointed
out that the (1− α) confidence intervals for σp have the

limits σ̂p exp(−c2/m̂) and σ̂p exp(−c1/m̂), i.e.

Pr[σ̂p exp(−c2/m̂) ≤ σp ≤ σ̂p exp(−c1/m̂)]= 1− α

(6)

where c1 and c2 fulfils the following relationships:

Pr[m̂ ln(σ̂p/σp)≤ c1]= α/2 (7a)

and

Pr[m̂ ln(σ̂p/σp)≤ c2]= 1− α/2 (7b)

These equations show the importance of the vari-

able m̂ ln(σ̂p/σp) in determining the percentiles of the

Weibull distribution and it may be estimated from esti-

mations of the distribution parameters m and σ0.

The aim of this work is to select the best procedure

to estimate the percentage points of this variable.

Several procedures for the determination of Weibull

parameters have been proposed in the literature. The

most commonly used are:

(1) The maximum-likelihood method, according to

which the estimation of parameters should satisfy the

following equation:
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McCool [12] showed that the maximum likelihood

equation (Equation 8) has a unique positive solution

and can be solved by the iterative Newton-Raphson

procedure.

(2) The general linear regression method. Equation 1
becomes a straight line when a double logarithmic

transformation is made. That is:

ln

[

ln

(

1

1− F(σ )

)]

=m ln σ −m ln σ0 (10)

F-values are assigned on the basis of the position i th of
an observation among the n ordered σ -values forming
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the sample. The most commonly used estimations of F
are:

Fi =
(i − 0.3)

(n+ 0.4)
(11a)

Fi =
i

(n+ 1)
(11b)

Several authors [13, 14] have indicated the convenience

of using weight functions in performing the linear re-

gression. Bergman [13] proposed the weight factor

given by

Wi = [(1− Fi ) ln(1− Fi )]
2 (12)

The weight factor proposed by Faucher and Tyson [14]

can be approximated by:

Wi = 3.3Fi − 27.5[1− (1− Fi )
0.025] (13)

The procedure to estimate the Weibull parameters by

the weighted linear regression method can be seen in

Ref. [11].

(3) The moments method, in which the sample mo-

ments are identified with those of the distributions.

Thoman et al. [15] showed that when the maxi-

mum likelihood method is used, the variables m̂/m and

m̂ ln(σ̂0/σ0) are distributed independently of m and σ0,

and have the same distribution as m̂11 and m̂11 ln(σ̂0)11,

respectively, which correspond to m= 1 and σ0 = 1.

These properties are also valid when weighted linear

regression is used [11]. However, these properties do

not hold for the estimation obtained by the moments

method.

TABLE I Estimation methods investigated

Equation Equation

Method Type for Fi for Wi

1 Linear regression 11a

2 Weighted linear regression 11a 12

3 Weighted linear regression 11a 13

4 Maximum likelihood

5 Linear regression 11b

6 Weighted linear regression 11b 12

7 Weighted linear regression 11b 13

TABLE I I Average ± standard deviation of variable m̂ ln(σ̂p/σp) for the seven methods and different sample sizes (20000 samples for each size;

p= 0.01)

Method

n 1 2 3 4 5 6 7

5 0.256± 2.958 −0.047± 2.767 0.047± 2.802 1.970± 3.745 −0.408± 2.533 −0.585± 2.402 −0.527± 2.432

6 0.064± 2.300 −0.193± 2.141 −0.126± 2.153 1.498± 2.988 −0.519± 2.000 −0.664± 1.882 −0.625± 1.899

7 −0.004± 2.011 −0.238± 1.880 −0.186± 1.871 1.205± 2.457 −0.537± 1.769 −0.661± 1.666 −0.634± 1.670

8 −0.061± 1.806 −0.253± 1.697 −0.221± 1.676 1.010± 2.148 −0.553± 1.605 −0.642± 1.515 −0.633± 1.510

9 −0.089± 1.685 −0.256± 1.580 −0.236± 1.544 0.858± 1.911 −0.549± 1.510 −0.615± 1.418 −0.617± 1.402

10 −0.112± 1.597 −0.256± 1.502 −0.246± 1.465 0.758± 1.741 −0.544± 1.441 −0.589± 1.357 −0.602± 1.340

20 −0.168± 1.063 −0.183± 1.014 −0.205± 0.944 0.336± 1.042 −0.459± 0.995 −0.372± 0.947 −0.427± 0.891

30 −0.150± 0.877 −0.128± 0.838 −0.154± 0.770 0.222± 0.813 −0.381± 0.834 −0.258± 0.798 −0.317± 0.736

40 −0.142± 0.763 −0.103± 0.724 −0.125± 0.662 0.163± 0.684 −0.337± 0.733 −0.201± 0.697 −0.253± 0.638

50 −0.132± 0.678 −0.082± 0.647 −0.103± 0.592 0.127± 0.601 −0.302± 0.656 −0.161± 0.628 −0.209± 0.573

Because the variables m̂/m and m̂ ln(σ̂0/σ0) are dis-

tributed independently of the real values of m and σ0,

when maximum likelihood or weighted linear regres-

sion methods are used, the variable sample size, per-

centage point, p, and confidence level, α, but they

are not on the real values of Weibull parameters. This

m̂ ln(σ̂p/σp) is distributed independently of the true

values of the Weibull distribution, therefore, the co-

efficients c1 and c2 of Equation 6 only depend on the

sample size, percentage point, p, and confidence level,
α, but they are not on the real values of Weibull pa-

rameters. This property permits the use of simulation

procedures based on the Monte Carlo method to ana-

lyze the cited variable. Thus, in this work, a set of n
values from a Weibull distribution with parameters σ0
and m (in this paper σ0 = 1 and m= 1) were generated

as:

σi = σ0[ln(1/r )]
1/m (14)

where r is a random number uniformly distributed in

the range 0≤ r ≤ 1. From this sample, estimations of

Weibull parameters can be obtained, using the different

methods summarized in Table I, and from Equation 5,

the value of variable m̂ ln(σ̂p/σp) may be calculated.

Repeated application of this procedure provides a set

of values of this variable and can be characterized sta-

tistically. In this work we repeated the above procedure

20000 times for each sample size for each method. The

sample size was increased progressively from 5 to 50.

Tables II and III give average and standard deviation

of variable m̂ ln(σ̂p/σp) for p= 0.01 and 0.05, respec-

tively, from the 20000 values calculated in each case.

The Tables show that the bias of the variable studied de-

pends on the method used, and the standard deviation

decreases as the sample size n increases.
Langlois [16] selected the best method to obtain nor-

malized estimation of m, based on the smallest coeffi-
cients of variation. From this point of view the proce-

dure to be used for estimating the Weibull modulus is

the maximum likelihood method.

In order to establish the best estimation method of

the variable m̂ ln(σ̂p/σp), the criterion considered here

is that of smallest standard deviation. In fact, the stan-

dard deviation is directly related to the precision of the

estimation obtained. On the other hand, the bias of the
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TABLE I I I Average ± standard deviation of variable m̂ ln(σ̂p/σp) for the seven methods and different sample sizes (20000 samples for each size;

p= 0.05)

Method

n 1 2 3 4 5 6 7

5 0.173± 1.966 −0.029± 1.840 0.027± 1.865 1.249± 2.494 −0.243± 1.683 −0.363± 1.597 −0.329± 1.618

6 0.051± 1.542 −0.121± 1.440 −0.083± 1.449 0.950± 2.013 −0.315± 1.341 −0.414± 1.266 −0.392± 1.278

7 0.008± 1.356 −0.149± 1.272 −0.120± 1.269 0.768± 1.668 −0.325± 1.193 −0.412± 1.128 −0.398± 1.132

8 −0.029± 1.220 −0.158± 1.151 −0.142± 1.140 0.643± 1.463 −0.337± 1.083 −0.401± 1.028 −0.398± 1.026

9 −0.047± 1.140 −0.161± 1.074 −0.152± 1.053 0.545± 1.303 −0.335± 1.021 −0.384± 0.965 −0.389± 0.956

10 −0.061± 1.079 −0.161± 1.020 −0.158± 0.999 0.483± 1.193 −0.333± 0.973 −0.368± 0.923 −0.380± 0.913

20 −0.100± 0.719 −0.115± 0.692 −0.131± 0.650 0.215± 0.722 −0.283± 0.673 −0.233± 0.648 −0.270± 0.614

30 −0.090± 0.593 −0.081± 0.572 −0.099± 0.532 0.142± 0.564 −0.234± 0.563 −0.161± 0.546 −0.201± 0.509.

40 −0.085± 0.515 −0.065± 0.494 −0.080± 0.458 0.104± 0.475 −0.207± 0.494 −0.126± 0.477 −0.160± 0.442

50 −0.080± 0.458 −0.052± 0.442 −0.066± 0.410 0.081± 0.419 −0.186± 0.442 −0.101± 0.430 −0.132± 0.397

pivotal variable analyzed can be removed by adding

or subtracting the corresponding value from Tables II

and III, without modification of the standard deviation

calculated.

In accordancewith this criterion, itmay be seen, from

results of Tables II and III, corresponding to the two

values of p considered in this work, that for sample

sizes greater than 7, the best method of estimation is

the number 7 (see Table I) corresponding to a weighted

linear regression procedure.

For sample sizes less than 7 the best method is

number 6, corresponding also to a weighted linear

regression procedure. In all the cases studied, re-

sults from the cited weighted linear regression meth-

ods are better than those of the maximum likelihood

method for the estimation of parameters c1 and c2 in

Equation 6.
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