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a b s t r a c t

In this work the dynamic behaviour of symmetrical laminated beams was studied, taking into account

the effect of bending torsion coupling by a one dimensional model. This model includes the influence

of the shear force and rotatory inertia. To solve the equations of motion, the Flexibility Influence

Function Method (FIFM) was used. The dynamic displacements (deflection, bending rotation, and

torsional rotation) were calculated for a beam in which the deflection and torsional rotation were

restricted at its both ends, allowing the bending rotation. The accuracy of this method was determined

by using a Three Dimensional Finite Element Method (FEM3D) model to compare the dynamic

displacements. The need was shown to incorporate coupling in the one dimensional model in order to

calculate the dynamic deflection and bending rotation of a composite beam.

1. Introduction

The design of structural elements such as beams manufactured

with composite laminates requires the use of models that

consider the specific characteristics of these materials, such as

their high anisotropy, their sensitivity to interlaminar shear stress,

and possible elastic coupling effects (bending torsion, extension

torsion, extension bending, etc.) [1]. In addition, these types of

elements may be subjected to dynamic loads, which require

effects of inertia to be introduced into the models in order to

ensure proper design.

The existence of coupling phenomena increases the complexity

of formulating the equations of motion and of the procedures

to resolve the problem [2]. The coupling can be controlled

by laminate parameters (ply orientation and stacking sequence),

modifying the global response of the structure [3]. Thus,

for example, in helicopter rotors, it is possible to control the

aeroelastic response of the blades by the elastic coupling; the

vibrations of the rotor could be reduced and the aerodynamic

stability could be improved by modifying the laminates parameter

[4]. Some of these couplings, such as the bending torsion, may be

present even in symmetrical laminates. Because of this latter

coupling, beams subjected to transverse load may undergo not

only bending moments but also torsional moments or rotations.

Bending torsion coupling can appear in a beam for two main

reasons: due to the geometry of the section, when the shear centre

does not coincide with the centroid [5,6], or due to the anisotropy

of the material, as in the case of composite laminates. In the

laminates, the bending torsion coupling can appear regardless of

the geometry of the beam cross section, when there are laminas

with orientations other than 01 or 901, even if the stacking

sequence is symmetrical. This coupling is controlled by a stiffness

parameter, which needs to be calculated from the elastic

constants of the lamina [3,7]. Many authors have studied the

bending torsion coupling of laminated beams, both in solid cross

sections and in thin walled cross sections.

The study of laminated beams with thin walled cross sections

has focussed on calculating natural frequencies or mode shapes,

both in closed sections [2] and open ones [8], as well as on

calculating displacements [7,9,10]. Dancila and Armanios [2] used

an analytical model, considering the bending torsion and tensile

torsion couplings in a closed section, and validated the results

with a finite element model. Lee and Kim [8] used a one

dimensional finite element model applicable to open thin walled

cross sections. Chandra et al. [7] calculated static displacements of

a carbon/epoxy beamwith a box section, comparing experimental

results with those found by a finite element model and an

analytical model. Jung et al. [11] studied the bending torsion

coupling effect in closed cross section beams, analysing their

response to static loads by calculating of the bending and torsional

stiffness as functions of the stacking sequence of the laminate. Li

et al. [9] analysed the dynamic response of thin walled Timoshenko

beams, considering concentrated and distributed dynamic loads,

and bending torsion coupling.

Studies on solid cross section beams have dealt primarily with

the analysis of vibrations of laminated cantilever beams. Banarjee
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and Williams [12] determined the frequencies of solid section

cantilever beams manufactured using unidirectional laminate

with fibres oriented to 151, without explaining the choice of this

orientation. Later, Banarjee [13] completed that work by deter

mining the exact expressions for frequencies and mode shapes

of the same composite beam. Teh and Huang [14] evaluated

the effect of the orientation of the fibres on the frequencies and

mode shapes of cantilever graphite/epoxy beams, stating that the

maximum coupling effect varies from 241 to 251 for the first five

natural frequencies. Jun and Xianding [3] used modal analysis to

study the flexural behaviour of composite beams, determining the

displacement and flexure rotation of a cantilever beam subjected

to concentrated and distributed random excitations.

In addition to considering the effect of bending torsion

coupling to predict the dynamic response of a beam, it is

necessary to include in the models the effect of shear deformation

and rotary inertia. In isotropic beams, it is possible in some cases

to disregard the effects of shear deformation and rotary inertia [1].

However, the effects of interlaminar shear stress need to be taken

into account in the study of laminated beams due to their

low interlaminar shear modulus [16]. High order shear theories

have been developed [17 20] but usually the First Order Shear

Deformation Laminate Theory is used, as it provides a result

similar to that of higher order theories but with lower computa

tional cost [21].

To analyse the behaviour of laminated beams, some authors

use numerical techniques such as the Finite Element Method, the

Galerkin Method or the Boundary Element Method [8,22 24],

whereas others use analytical models [3,13,15,25,26]. The latter is

useful in the optimisation processes because they offer a simple

way to evaluate the influence of the different parameters in the

overall response of the structure.

To solve the equations of motion of the beam by simplified

methods, most researchers use Modal Analysis [3,12 14,27,28].

However, if the beam has a variable bending stiffness and the

boundary conditions are hyperstatic, the equations of motion are

complex to solve by Modal Analysis. Different methods have been

used in this case, such as the Boundary Integral Equation Method

[5], the Transfer Matrix Method [16], the Differential Quadrature

Method [29], the Green Function [30], or the Flexibility Influence

Function Method (FIFM) [31].

The FIFM is a technique that does not require the calculation

of the natural frequencies or vibration modes of the beam [32].

This method is especially useful for solving hyperstatic problems

in dynamic conditions because the influence of the boundary

conditions in this method is restricted to the solution of equations

Nomenclature

1 2 3 axis principal material coordinate system

x y z axis global beam coordinate system

x0 y0 z0 axis global laminate coordinate system

A beam cross sectional area

[A] extensional stiffness matrix

[As] shear stiffness matrix

[as] shear flexibility matrix

b beam width

[C] flexibility influence functions matrix

[C*] flexibility influence functions matrix calculated in n

Gauss points

[D] bending stiffness matrix

[d] bending flexibility matrix

E1 lamina longitudinal modulus in direction 1

E2 lamina transverse modulus in direction 2

E3 lamina transverse modulus in direction 3
~f ðx; tÞ exterior loads vector

G12 lamina shear modulus in plane 1 2

G13 lamina shear modulus in plane 1 3

G23 lamina shear modulus in plane 2 3

h beam thickness

Iyy moment of inertia of the beam cross section about the

y axis

J polar moment of inertia

K shear correction factor

L support span of the beam

[M] generalized mass matrix

[M*] generalized mass matrix calculated in n Gauss points

Mxx, Myy bending moments per unit width

Mxy torsional moments per unit width

[m(x)] mass matrix

Nxx, Nyy in plane forces per unit width

Nxy in plane shear force per unit width
~pðx; tÞ dynamic forces function

Qxx, Qyy interlaminar shear forces per unit width

Q
ðkÞ

ij components of lamina stiffness matrix

q1 (x,t) transverse distributed force per unit width of the

beam

q2 (x,t) applied bending moment per unit width of the beam

q3 (x,t) applied torsional moment per unit width of the beam

[R] diagonal matrix depending on the integration algo

rithm

[R*] diagonal matrix depending on the integration algo

rithm calculated in n Gauss points

t time (s)

tc beam first natural period of vibration calculated by

FEM3D

u, v, w displacement components along x, y, z coordinate

directions, respectively

u0, v0, w0displacement components of a point on the midplane

zk, zk+1 k lamina bottom and top surface z coordinate.

dðx xÞ Dirac Delta function
~dðx; tÞ generalized displacement of a point over the time on a

beam
~d
�
ðtÞ generalized displacement vector calculated in n Gauss

points
~dstðx; tÞ generalized displacement vector in static conditions
~d
�

stðtÞ generalized displacement vector in static conditions

calculated in n Gauss points

exx, eyy, ezz longitudinal strains in the x, y, z coordinate

directions, respectively

�0xx; �0yy; g0xy membrane strains

�1xx; �1yy; g1xy flexural strains (curvatures)

fx bending rotation (rotation of a transverse normal

about the y axis)

fo
x bending rotation calculated by FEM3D under static

conditions

fy torsional rotation (rotation of a transverse normal

about the x axis)

fo
y torsional rotation calculated by FEM3D under static

conditions

gxz, gyz interlaminar shear strains

gxy in plane shear strain

n21 major Poisson ratio in plane 1 2

n31 major Poisson ratio in plane 1 3

n32 major Poisson ratio in plane 2 3

r material density
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for static conditions. After having solved the hyperstatic problem

for static conditions, the dynamic equations can be solved by a

single technique, independently of the boundary conditions. On

the contrary, other methods (e.g. modal analysis) require different

dynamic equations to be solved for each boundary condition. The

FIFM was validated in a previous work [31] by comparisons with

Modal Analysis and Finite Elements Method in the calculation

of the deflection and bending rotation in composite beams with a

stacking sequence of 0/90. However, bending torsion coupling

was not present in those beams.

Most studies deal with cantilever beams, as they are

representative of many structural components with bending

torsion coupling effect. However, these beams are isostatic and,

due to bending torsion coupling, only a torsional rotation occurs.

On the contrary, in a hyperstatic beam this coupling produces

both torsional rotation and torsional moment, and, at the same

time, this torsional moment produces deflection and bending

rotation in the beam.

The present work analyses the behaviour of a bending

torsional coupled laminate beam with hyperstatic boundary

conditions, subjected to an impulsive load by an analytical model

in which the equations were solved by FIFM. Both the deflection

and torsional rotation were restricted at its ends, the bending

rotation being totally free. Two analytical models were used: the

first one includes the bending torsion coupling effect (FIFM) and

the second one does not consider this coupling (FIFM non

coupled). The deflection, bending rotation, and torsional rotation

of this beam were calculated by the analytical models and

compared with those determined by a FEM3D model.

2. Derivation of equations of motion

2.1. Kinematics

Considering bending torsional coupling effect and First order

Shear Deformation Theory, the dynamic behaviour of a beam can

be defined by calculating three variables: deflection, bending

rotation, and torsional rotation.

In the First order Shear Deformation laminated plate Theory,

two hypotheses are assumed: the straight lines perpendicular to

the midsurface (i.e., transverse normals) remain straight after

deformation and do not elongate. However, it is not assumed that

transverse normals remain perpendicular to the midsurface after

deformation. The displacement field is of the form [1]:

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zfxðx; y; tÞ

vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zfyðx; y; tÞ

wðx; y; z; tÞ ¼ w0ðx; y; tÞ

8
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gxz, gyz are constants through the thickness of the laminate and ezz
is zero.

The governing equations in this model have been derived using

the dynamic version of the principle of virtual displacements. As a

result the displacements can be expressed as a function of the

forces as

qNxx

qx
þ
qNxy

qy
¼ I0

q2u0

qt2
þ I1

q2fx

qt2

qNxy

qx
þ
qNyy

qy
¼ I0

q2v0

qt2
þ I1

q2fy

qt2

qQ xx

qx
þ
qQyy

qy
þ

q

qx
Nxx

qw0

qx
þ Nxy

qw0

qy

� �

þ
q

qy
Nxy

qw0

qx
þ Nyy

qw0

qy

� �

þ q1ðx; tÞ ¼ I0
q2w0

qt2

qMxx

qx
þ
qMxy

qy
Qxx þ q2ðx; tÞ ¼ I2

q2fx

qt2
þ I1

q2u0

qt2

qMxy

qx
þ
qMyy

qy
Qyy þ q3ðx; tÞ ¼ I2

q2fy

qt2
þ I1

q2v0

qt2
(3)

where

Ii ¼

Z h=2

ÿh=2
zirdz; i ¼ 0;1;2 (4)

I1 is zero for a symmetrical laminated beam.

2.2. Constitutive equations

Integration of the stresses through the thickness of laminate

provides the constitutive equations, where the force and the

moment resultants are related to the strains. In a symmetrical

laminate the constitutive equations are of the form:

Nxx

Nyy

Nxy
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Qyy

Q xx

( )

¼ K
As
44 As

45

As
54 As

55

" #

gyz
gxz

( )

(7)

For a general laminate, the shear correction factor K depends on

lamina properties and the stacking sequence. In this work, K ¼ 5/6

was used, as in a rectangular section of a homogeneous beam

because the differences between this shear correction factor and

specifics composite shear correction factors [33,34] are not im

portant in the studied beam, as demonstrated in Santiuste [35].

The laminate stiffness matrices ([A], [D] and [As]) are defined

in terms of the components of the lamina stiffness matrix, Q
ðkÞ

ij , as

Aij ¼
P

N

k 1

Q
ðkÞ

ij ðzkþ1 zkÞ i; j ¼ 1;2;6

Dij ¼
1
3

P

N

k 1

Q
ðkÞ

ij ðz
3
kþ1 z3k Þ

As
mn ¼

P

N

k 1

Q
ðkÞ

mnðzkþ1 zkÞ m;n ¼ 4;5

(8)

In the present study, a laminate beam subjected to transverse

loads was studied. If a bending torsion coupled beam has

hyperstatic boundary conditions, when it is subjected to trans

verse loads, besides bending rotation and displacements, torsional

rotations and torsional moments appear.
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When only Qxx, Mxx and Mxy are considered:

Nxx ¼ Nyy ¼ Nxy ¼ 0

Myy ¼ 0

Qyy ¼ 0 (9)

Assuming that q/qy ¼ 0, the constitutive equations are

reduced to

qfx

qx
¼ d11Mxx þ d16Mxy

qw0

qx
þ fx ¼

as55
K

Q xx

qfy

qx
¼ d16Mxx þ d66Mxy (10)

where a55
s , d11, d16 and d66 are terms of the flexibility matrices [as]

and [d]. a55
s indicates the shear flexibility of the laminate, d11 the

bending flexibility, d16 the bending torsion coupling flexibility,

and d66 the torsional flexibility. In a symmetrical laminate the

matrices [as] and [d] are the inverses of [As] and [D], and it is

possible to express the terms as55, d11, d16, and d66 as

d11 ¼
D22D66 D2

26

D11ðD22D66 D2
26Þ D12ðD12D66 D26D16Þ þ D16ðD12D26 D22D16Þ

d16 ¼
D12D26 D22D16

D11ðD22D66 D2
26Þ D12ðD12D66 D26D16Þ þ D16ðD12D26 D22D16Þ

d66 ¼
D11D22 D2

12

D11ðD22D66 D2
26Þ D12ðD12D66 D26D16Þ þ D16ðD12D26 D22D16Þ

as55 ¼
As
44

As
44A

s
55 As2

45

(11)

Substituting strains and forces, assuming that q/qy ¼ 0, in terms

of the displacements yield three second order coupled differential

equations:

K

as55

q
2w0

qx2
þ
qfx

qx

 !

þ q1ðx; tÞ ¼ I0
q
2w0

qt2
,

1

d11d66 d216
d66

q2fx

qx2
d16

q
2
fy

qx2

 !

K

as55

qw0

qx
þfx

� �

þ q2ðx; tÞ ¼ I2
q2fx

qt2
,

1

d11d66 d216
d16

q2fx

qx2
þ d11

q2fy

qx2

 !

þ q3ðx; tÞ ¼ I2
q2fy

qt2
(12)

These equations must be solved according to the boundary and

initial conditions. In this works it is assumed that the beam is at

rest initially.

2.3. Flexibility influence functions method

The FIFM was used to solve Eq. (12), enabling the calculation of

the displacements occurring in a one dimensional continuous

system by the solution of an integral equation. The generalized

displacement of a point over time, ~dðx; tÞ, in a beam of length L

subjected to a generic dynamic force, ~pðx; tÞ, can be calculated by

the following expression:

~dðx; tÞ ¼

Z L

0
½Cðx;xÞ�~pðx; tÞdx (13)

The displacements are expressed in a generalized displacement

vector with three variables: deflection, bending rotation, and

torsional rotation:

~dðx; tÞ ¼

wðx; tÞ

fxðx; tÞ

fyðx; tÞ

0

B

B

@

1

C

C

A

(14)

The matrix [C(x,x)] contains the influence functions:

½Cðx; xÞ� ¼

Cwwðx; xÞ Cwbðx; xÞ Cwtðx; xÞ

Cbwðx; xÞ Cbbðx;xÞ Cbtðx; xÞ

Ctw
ðx; xÞ Ctb

ðx; xÞ Ctt
ðx; xÞ

0

B

B

@

1

C

C

A

(15)

In the influence functions matrix, each component has a

physical meaning, for example the function Cwb(x,x) is defined

as the vertical deflection of a section located at distance x from the

left end due to a unit static bending moment applied at the point x

(Fig. 1). This function was calculated by integration of Eq. (10),

considering the shear force, bending and torsional moments

corresponding to

q2ðx; tÞ ¼ dðx xÞ (16)

where d(x x) is the Dirac Delta function.

The Cwb(x,x) could be calculated as

Cwb
ðx; xÞ ¼ wst

o ð0Þ þ xfst
x ð0Þ þ

Z x

0
d11Mxxðs; xÞsds

þ

Z x

0
d16Mxyðs; xÞsdsþ

Z x

0
a55Q xxðs; xÞsds (17)

In this equation, Mxx(s,x), Mxy(s,x) and Qxx(s,x) are the bending

moment, the torsional moment and shear force of the problem

depicted in Fig. 1, while wst
o ð0Þ and fst

x ð0Þ are the vertical deflection

and bending rotation in the left support (x ¼ 0).

The other elements of the matrix [C(x,x)] can be calculated in a

similar way.

The influence of the Boundary conditions in FIFM is restricted

to the solution of equations under static conditions, as in Eq. (17).

After having solved these static equations, the dynamic equations

which are detailed as follows can be solved by a single technique,

regardless of the boundary conditions. On the contrary, other

methods (e.g. modal analysis) require different dynamic equations

to be solved for each boundary condition.

In Eq. (13) the function ~pðx; tÞ contains the dynamic forces:

exterior loads and inertia forces:

~pðx; tÞ ¼ ½mðxÞ�
q2~dðx; tÞ

qt2
þ~f ðx; tÞ (18)

Fig. 1. Physical meaning of the Cwb(x,x) function.
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where

~f ðx; tÞ ¼

q1ðx; tÞ

q2ðx; tÞ

q3ðx; tÞ

0

B

@

1

C

A
½mðxÞ� ¼

rA 0 0

0 rIyy 0

0 0 rJ

0

B

@

1

C

A
(19)

Substituting in Eq. (13) yields

Z L

0
½Cðx; xÞ�½mðxÞ�

q
2~dðx; tÞ

qt2
dxþ~dðx; tÞ ¼ ~dstðx; tÞ (20)

where

~dstðx; tÞ ¼

Z L

0
½Cðx; xÞ�~f ðx; tÞdx (21)

Eq. (20) was transformed into a system of second order

differential equations by a numerical integration using the Gauss

method:

½C�
�½R��½M��

q2~d
�
ðtÞ

qt2
þ~d

�
ðtÞ ¼ ~d

�

stðtÞ (22)

where [C*], [R*] and [M*] matrix sizes are 3n�3n, while ~d
�
ðtÞ and

~d
�

stðtÞ are vectors of 3n components.

Eq. (22) can be transformed into

q2~d
�
ðtÞ

qt2
¼ ð½C�

�½R��½M��Þÿ1ð~d
�

stðtÞ
~d
�
ðtÞÞ (23)

The problem is reduced to solving a system of 3n second

order differential equations. In this work, the Stoerm rule [36] was

used to solve the system. For this method to be applied, the first

derivates of the unknown functions cannot appear in the

equation.

3. Analysis of bending–torsional coupling effect

For the analysis of the dynamic behaviour of a laminate with

bending torsion coupling, a beam with a point load at its

midpoint was considered. The bending torsional coupling of

laminates with different stacking sequences was studied, select

ing the sequence that produces the maximum coupling. For that

laminate the dynamic displacements of the beam were calculated

by solving Eq. (23), considering the bending torsion coupling

(FIFM) and they were compared with those determined when the

coupling is not included in the equations of motion (the equations

of the FIFM for the case without coupling are detailed in Santiuste

et al. [31]). The accuracy of this method was assessed by

comparing the displacements to those calculated by a three

dimensional finite elements model (FEM3D).

3.1. Material and geometry

The geometry of the beam studied was: thickness 1.6mm,

width 3.2mm and support span 24mm. The selected span to

thickness ratio, 15, was low enough for the transverse shear

stresses to influence the behaviour of this orthotropic laminate

[35]. The composite used was a carbon/epoxy laminate, for which

the lamina elastic properties are shown in Table 1.

3.2. Stacking sequence

The bending torsion coupling was studied in three laminates

with different stacking sequences: laminate [0]8, laminate [0/90]2S
and laminate [30/ 30]2S. For each laminate, the variation of

the coupling was analysed, calculating the d16 term when the

laminate rotation angle (y) rotates from 01 to 1801. The laminate

rotation angle (y) is the angle formed between the longitudinal

direction of the beam (x axis) and the x0 axis of the laminate.

In Fig. 2, the variation of the bending torsional coupling

flexibility (d16) versus the laminate rotation angle (y) was shown

for the three laminates studied. In laminate [0]8 the maximum

coupling effect was greater than in the other laminates, while in

laminate [0/90]2S, the maximum coupling was the lowest because

the coupling caused by some plies is opposite to that caused

by the perpendicular plies. Laminate [30/ 30]2S presented an

intermediate behaviour, as the sign of the coupling of all the plies

could have been the same, but all the plies were never in the

position of maximum coupling. In Fig. 2, it can also be seen that in

laminates [0/90]2S and [30/ 30]2S there are rotation angles for

which the factor d16 is nil, and thus no bending torsion coupling

exists in these cases. The greatest coupling occurs in laminate [0]8,

for which the x0 axis forms an angle of 49.481 with the

longitudinal direction of the beam (x axis). Therefore, a laminate

with a stacking sequence of [50]8 was selected to analyse its

dynamic behaviour by the FIFM and FEM3D.

3.3. Boundary conditions and load

The boundary conditions and the applied load were selected to

reproduce the conditions of a three point bending test (Fig. 4). In

this type of tests the beam is supported on two cylinders so that

the bending rotation is completely free, while the displacement

and torsional rotation in both supports are restricted. As the

torsional rotation is restricted, a torsional moment of reaction

appears, producing a torsional rotation and a bending rotation due

to coupling in the beam. In the FIFM these boundary conditions

are represented as

x ¼ 0

woð0; tÞ ¼ 0

fyð0; tÞ ¼ 0

qfxð0; tÞ

qx
¼ 0

8

>

>

>

<

>

>

>

:

x ¼ L

woðL; tÞ ¼ 0

fyðL; tÞ ¼ 0

qfxðL; tÞ

qx
¼ 0

8

>

>

>

<

>

>

>

:

(24)

Table 1

Elastic properties of the lamina.

E1 (GPa) E2 (GPa) E3 (GPa) G12 (GPa) G13 (GPa) G23 (GPa) n21 n31 n32

114 10 10 6.2 6.2 6.2 0.28 0.4 0.4
Fig. 2. Bending–torsion coupling flexibility versus ply rotation.
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Two three dimensional numerical simulations were made to

verify that the boundary conditions represented by Eq. (24) were

similar to the experimental ones. In the first simulation, the

boundary conditions shown in Fig. 4 were modelled, including

the contact surfaces with the impactor and the supports. In the

second, the problem was simplified with the boundary conditions

used in the FIFM, Eq. (24) and the force was applied along the

middle cross section of the test beam. Fig. 5 shows the torsional

rotation caused in both models over the longitudinal coordinate

from one of the supports to the central section.

The two results are quite similar, although two differences are

evident. First, the point of contact with the supports, under real

conditions cause a minor torsional rotation which is restricted

under ideal conditions; that is, in the three point bending test the

torsional rotation is not completely restricted at the supports. The

second difference concerns the contact point with the impactor,

x/L ¼ 0.5, which under real conditions causes an abrupt change

in slope in the contact zone of the percutor, because this contact

impedes to a certain degree the torsional rotation. As the dif

ferences are minor, the boundary conditions used in the simplified

model are considered valid.

An impulsive load (Eq. (25)) was applied on the beam in the

middle cross section. The load time was selected to be equal to

the first natural period of vibration of the beam, tc ¼ 259ms,
calculated by FEM3D. The maximum load applied, F0, has a

unitary value:

FðtÞ ¼ F0 sin
3=2 p

t

tC

� �

(25)

3.4. Numerical model

A FEM3D model implemented in ABAQUS/Explicit [37] was

used to verify the accuracy of the FIFM. The mesh was formed by

16000 elements which were eight nodes linear reduced integra

tion brick elements (Fig. 3). The beam is composed of eight plies in

which the elastic properties of the lamina were applied according

to each ply orientation and the boundary conditions were applied

at their ends. In the numerical model, the beam deflection was

estimated as the vertical displacement of the centre of mass of the

middle cross section.

In the FEM3D, the cross section did not remain plane after

deformation, and therefore it was not possible to define a section

rotation. For this reason, the bending and torsional rotations were

calculated as an average rotation, as shown in Eq. (26), estimated

by the displacements of two points (Fig. 3):

fxðx; tÞ ¼
uaðx; tÞ ucðx; tÞ

h

fyðx; tÞ ¼
wbðx; tÞ wdðx; tÞ

b
(26)

4. Results

To ascertain the dynamic response of the beam subjected to a

load in its middle cross section, the deflection, bending rotation,

and torsional rotation were calculated with the FIFM model at

different points along the beam. With these values, a three

dimensional representation of the beam was prepared at the

moment of maximum deformation and this was compared with

the image provided by the FEM3Dmodel (Fig. 6). Qualitatively, the

response by the analytical model is similar to that found with the

numerical model.

In order to assess the accuracy of the analytical model (FIFM),

the deflection, the bending and torsional rotations, were calcu

lated and compared to those found by the three dimensional

finite elements model (FEM3D). These values have been deter

mined in a section situated at a quarter of the length of the beam,

a section sufficiently far from the application point of the load and

of supports to avoid effects of local compression in the results

of the three dimensional numerical model. In the determination

of the effect of the bending torsion coupling in the displacements

Fig. 3. FEM3D model mesh.

Fig. 4. Experimental three-points bending test configuration.

Fig. 5. Torsional rotation along longitudinal coordinate.
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calculated, they were also calculated by an analytical model in

which this coupling was not considered (FIFM non coupled).

Fig. 7 shows the dynamic deflection, bending rotation, and

torsional rotation divided by the corresponding static results

determined with the FEM3D.

The results found with both models (analytical and numerical)

varied in a similar way over time, being practically the same when

the bending torsion coupling in the FIFM model was considered.

Table 2 shows the differences in the maximum deflection and

rotations (bending and torsional) calculated by FIFM, FIFM non

coupled and FEM3D. The differences in the maximum deflection

and bending rotation calculated by FEM3D and FIFM were less

than 7.5% and decreased significantly when the bending torsion

coupling was taken into account in the analytical model, being

lower than 1.25%.

Fig. 7c shows that the FIFM can reproduce the variation of the

torsional rotation with time and that the differences between the

maximum results do not exceed 6%. This difference is slightly

greater than the deflection and bending rotation differences

because the one dimensional model does not consider the

warping caused in a rectangular cross section subjected to torsion,

which is considered by the numerical model.

Fig. 7. Displacements in the section situated at a quarter of the length of the beam: (a) deflection, (b) bending rotation and (c) torsional rotation.

Fig. 6. Three-dimensional representation of the beam during maximum deforma-

tion: (a) FEM3D and (b) FIFM.

Table 2

Differences between the maximum deflection, bending rotation, and torsional

rotation, calculated by FIFM and FEM3D.

Deflection (%) Bending rotation (%) Torsional rotation (%)

FIFM (non-coupled) 4.71 7.27 –

FIFM 1.17 1.21 5.81
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Despite the simplification implicit in the one dimensional

model, the FIFM model succeeds in calculating the deflection as

well as bending and torsional rotations of a laminated beam. The

accuracy of FIFM model is reasonable and the computational cost

is lower than for the FEM3D model.

5. Conclusions

In this study, the dynamic behaviour of rectangular cross

section laminated beams has been analysed considering the

bending torsion coupling effect. An analytical model was em

ployed while using the Flexibility Influence Functions Method to

solve the equations of motion, and the results were compared

with those provided by a three dimensional numerical model.

The main conclusions reached are the following:

� The bending torsion coupling effect needs to be considered in

a one dimensional model in order to calculate the deflections

and rotations of a laminated beam, because this coupling can

have considerable effect on laminates with lamina orientations

other than 01 and 901.

� In beams with hyperstatic boundary conditions, the bend

ing torsion coupling effect influences the calculation of

deflection and bending rotation as well as torsional rotation.

� The Flexibility Influence Functions Method is capable of

solving the equations of motion of a beam, considering

bending torsion coupling and interlaminar shear stress, with

a lower computational cost than numerical methods and with

a reasonable precision.
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