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Chapter 1

Introduction

During the last two decades, there has been an increasing interest in the academic and prac-
titioner world on modelling the volatility clustering observed in many economic and financial
series. This research was pioneered by Engle (1982) and Bollerslev (1986), with the introduc-
tion of GARCH models. It is also common to observe stochastic trends in many economic and
financial time series. In this case, a popular practice is to take differences in order to obtain
a stationary transformation. Then, an ARMA model is fitted to this transformation to repre-
sent the transitory dependence. Alternatively, the dynamic properties of series with stochastic
trends may be represented by unobserved component models. It is well known that both mod-
els are equivalent when the disturbances are Gaussian. In this case, the reduced form of an
unobserved component model is an ARIMA model with restrictions on the parameters; see,
for example, Harvey (1989). The main difference between both specifications is that while the
ARIMA model includes only one disturbance, the corresponding unobserved component model
incorporates several disturbances. Consequently, working with the ARIMA specification is usu-
ally simpler. However, using the unobserved components model may lead to discover features of
the series that are not apparent in the reduced form model because they arise when estimating
the components.

When combining both, stochastic trends and volatility clustering, the ARIMA and unob-
served component models are not in general Gaussian. This implies that they are no longer
equivalent when allowing for conditional heteroscedasticity in the noises. Among the large num-
ber of works devoted to studying and applying models that combine these features, almost
none of them made a comparative analysis between the two alternatives. This important issue
remains somewhat unexplored. Therefore, we think that more effort should be placed in this
respect, specially in what regards to forecasting performance. The study of this issue represents
the main goal of this thesis.

From an empirical point of view, the presence of conditional heteroscedasticity in both,
ARIMA and unobserved component models, has previously interested many authors. There is a
large literature that considers ARIMA models with either GARCH or Autoregressive Stochastic
Volatility (ARSV) processes in the disturbances; see Bollerslev et al. (1992), Bollerslev et al.
(1994), Diebold and Lopez (1995), and Diebold (2004) for detailed surveys. On the other

10
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hand, unobserved component models with GARCH disturbances have been receiving a lot of
attention as they allow to distinguish which components are heteroscedastic. One of the earliest
implementations of these models is Harvey et al. (1992), which consider latent factor models;
see also King et al. (1994), Sentana and Fiorentini (2001), Chang and Kim (2004) and Sentana
(2004) for other applications related with latent factor models. Chadha and Sarno (2002) and
Moore and Schaller (2002) fit unobserved component models with GARCH disturbances to price
volatility and term structure of interest rates, respectively. Additionally, unobserved component
models with ARSV processes in one or more disturbances have also been studied and fitted to
financial data; see for example, Koopman and Bos (2004) and Bos and Shephard (2006). With
respect to inflation rates, the presence of heteroscedasticity in the transitory and/or permanent
components is a broadly debated issue in the recent literature; see Broto and Ruiz (2009) for a
detailed survey. For example, Stock and Watson (2007) find that a simple unobserved component
model with conditionally heteroscedastic noises in the form of ARSV processes describe well the
dynamics of the US inflation.

We will first focus on the study of the statistical properties of a general class of unobserved
component model, the local linear trend model, which considers that the series of interest, yt,
is composed by a transitory component, εt, and a stochastic trend, µt, with a stochastic slope
βt, in the following way,

yt = µt + εt, (1.1a)

µt = µt−1 + βt−1 + ηt, (1.1b)

βt = βt−1 + ξt, (1.1c)

where εt, ηt and ξt are mutually independent and serially uncorrelated processes, with zero
means and variances σ2

ε , σ2
η and σ2

ξ , respectively. Throughout Chapters 2-4, we focus on two
particular cases of model (1.1), which are of interest from an empirical point of view. The first
one is obtained when σ2

ξ = 0. Under this set up, the slope is fixed and the trend reduces to a
random walk with a drift given by β0. If, without loss of generality, we also assume that β0 = 0,
then yt follows a local level model

yt = µt + εt, (1.2a)

µt = µt−1 + ηt, (1.2b)

see, for example, Durbin and Koopman (2001) for a detailed description and applications of this
model. In this case, taking first differences results in a stationary series given by

∆yt = ηt + ∆εt. (1.3)

On the other hand, when σ2
ξ > 0 but σ2

η = 0, the smooth trend model is obtained

yt = µt + εt, (1.4a)

µt = µt−1 + βt−1, (1.4b)

βt = βt−1 + ξt, (1.4c)
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see Harvey and Jaeger (1993) and Nyblom and Harvey (2001) for description and applications.
In this case, the trend is an integrated random walk and therefore two differences are necessary
to obtain the stationary transformation, that is

∆2yt = ξt−1 + ∆2εt. (1.5)

As our purpose is to study conditionally heteroscedastic models, we allow εt, ηt, and/or ξt to
be either GARCH(1,1) or ARSV(1) processes. In Chapter 2 we derive the population moments
of the stationary transformations given in (1.3) and (1.5). Given that conditional heteroscedastic
processes are characterized by having a positive excess kurtosis and a significant autocorrelation
function (acf) of squares, we focus on these two moments. Alternatively, we also derive the
properties of the corresponding reduced form ARIMA disturbance, denoted by at, in terms of
εt and ηt. We show that, in general, there is not a simple GARCH or ARSV model for at that
replicates the statistical properties of the conditionally heteroscedastic local linear trend model.
However, given that it is common to fit GARCH or ARSV processes to the ARIMA residuals
whenever they show evidence of conditional heteroscedasticity, we carry out several Monte Carlo
simulations and analyze at which level, these models are able to capture the dynamics of series
with conditionally heteroscedastic unobserved components. The chapter also has an empirical
illustration with a daily series of the Pound/Euro exchange rate.

Chapter 3 is devoted to study the comparative forecasting performance of the two alter-
native ways of modelling conditionally heteroscedastic series with stochastic trends. Using the
properties of the local level and smooth trend models developed in Chapter 2, the objective
of Chapter 3 is to compare the performance of prediction intervals obtained from these two
unobserved component models with the prediction intervals constructed from the corresponding
IMA models when the noises are GARCH. We first find the theoretical Mean Squared Forecast
Error (MSFE) of the two competing models and then construct the prediction intervals k steps
ahead, with k being the time horizon.

Because of the time-varying volatilities, the amplitudes of the intervals change depending
on whether the conditional variance at the moment of forecasting is larger or smaller than
the marginal variance. Denoting by excess volatility, the difference between both variances, in
Chapter 3 we show that if only the transitory component is heteroscedastic, the excess volatility
disappears as the prediction horizon increases. That is, the prediction intervals obtained with
the unobserved component models converge to the intervals of the corresponding homoscedastic
model. However, given that the reduced form IMA models always contain at least one unit root,
the corresponding prediction intervals depend on the excess volatility for all prediction horizons.
Consequently, when the excess volatility is positive (negative), the multi-step prediction intervals
based on the IMA models are too wide (too narrow), in terms of the nominal coverage when
compared with the intervals based on the corresponding unobserved component models. On
the other hand, when the heteroscedasticity affects the long-run stochastic level, the prediction
intervals constructed using both models are very similar. Chapter 3 also contains an empirical
exercise with the Pound/Euro exchange rate and US inflation rate in order to illustrate the main
findings.

As we mentioned above, it is by now rather popular to fit unobserved component models with
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conditionally heteroscedastic noises to describe and predict the dynamic evolution of seasonally
adjusted monthly prices; see, for example, Stock and Watson (2002, 2007) and Cecchetti et al.
(2007) for recent references. These models are very flexible and lead to predictions of future prices
with adequate properties. In line with the idea of approximating a nonlinear model by a linear
one, with time-varying parameters, Stock and Watson (2007) propose an IMA model with time-
varying parameters (TV-IMA) as an alternative to the conditionally heteroscedastic unobserved
component model. Despite that the two approaches have been utilized in many empirical works,
there is a lack of papers studying the implications of using a TV-IMA model to fit series with
conditionally heteroscedastic unobserved components. In Chapter 4 we focus on this issue
by comparing the conditionally heteroscedastic local level model with its reduced form IMA
counterpart with time-varying parameters. In particular, we analyze the evolution of the reduced
form MA parameter for different specifications of the local level noises. In particular, we consider
the cases in which the local level noises are i) homoscedastic, ii) conditionally heteroscedastic but
stationary, and have structural breaks in the marginal variances. We show that the evolution of
the MA parameter, θ, detected by Stock and Watson (2007) can be only attributed to breaks
and not to the evolution of the variances. However, given that the random walk model that they
assume for the log-volatilities of the components is well designed to deal with structural breaks,
they are able to explain changes in the MA parameters with the conditionally heteroscedastic
local level model.

Chapter 4 contains an exhaustive out-of-sample forecasting evaluation of several models
fitted to the monthly US inflation rate. Although these exercises have already been performed
by many authors, our contribution is that we measure the forecasting performance of unobserved
component and ARIMA models, considering not only the point but also the interval forecasts.
In this regard, we believe that predicting the uncertainty surrounding a given point forecast is
as important as the point forecast itself, specially for policy makers.

Another important topic on inflation forecasting that has been recently receiving lot of
attention, specially in the Euro Area, is the effect of disaggregation on the forecasts of index
series; see Espasa and Albacete (2004), Hubrich (2005) and Hendry and Hubrich (2006) for a
detailed study of this topic and applications for the Harmonized Consumer Price Index of the
Euro zone. Within the context of vector ARMA (VARMA) models, forecasting contemporaneous
and temporal aggregations of different series has been widely analyzed since the seminal work of
Lütkepohl (1987). On the other hand, aggregation in conditionally heteroscedastic models in the
form of GARCH processes has also been considered in the literature. For example, Drost and
Nijman (1993) and Nijman and Sentana (1996) analyzes the properties of GARCH processes
under temporal and contemporaneous aggregation, respectively. In general, the results show
that GARCH processes are not closed under these two types of aggregation. These results are
also supported by Zaffaroni (2007), who analyze the effects of aggregation on a large number of
GARCH processes under different assumptions about the relationship among these processes.
On the other hand, Meddahi and Renault (2004) propose a new model based on linear state space
modelling (or stochastic volatility modelling), that is closed under temporal aggregation. For
an exhaustive review on temporal aggregation of VARMA, and GARCH models, see Silvestrini
and Veredas (2008).
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Within the literature on this topic, there are almost no attempts to study the effects of
aggregating conditionally heteroscedastic noises on prediction intervals. In Chapter 5 we try to
add some light on this topic by studying the forecasting performance of using a disaggregation
approach when one or more components of the aggregate contain conditionally heteroscedastic
noises. In particular, we analyze whether the disaggregation produces better prediction intervals
than those constructed from the more common approach of fitting a model directly to the
aggregate index. Although preliminary, the results on simulated series seem to support the use
of a disaggregation approach in some particular cases because it yields more accurate prediction
intervals than the approach of working directly with the aggregate.

Finally, Chapter 6 contains the main conclusions and some lines of future research that
remain still open in what respect to prediction intervals for conditionally heteroscedastic unob-
served component models.



Chapter 2

Statistical properties of conditionally

heteroscedastic unobserved

component models

2.1 Introduction

In this chapter, we are interested in analyzing the local level and smooth trend models given
by (1.2) and (1.4) in the presence of conditionally heteroscedastic noises. In particular, we
consider the cases in which either or both disturbances, εt and ηt, are GARCH(1,1) or ARSV(1)
processes in the local level model, while in the smooth trend model we only allow for εt being
GARCH(1,1). Given that conditionally heteroscedastic noises are characterized by having excess
kurtosis and positive autocorrelations of squares, we derive these two moments for the stationary
transformation of both models.

Consider the reduced form of the local level model given by (1.3). It is well known that this
model has the same autocorrelation function (acf) as the following IMA(1,1) model

∆yt = at + θat−1, (2.1)

where, if ∆yt is invertible, then θ =
[
(q2

η + 4qη)1/2 − 2− qη

]
/2, with qη = σ2

η/σ2
ε being the

signal-to-noise ratio. Note that the parameter θ is restricted to be negative, i.e. −1 < θ < 0.
Finally, the reduced form disturbance at is an uncorrelated process with zero mean and positive

variance equal to σ2
a = −σ2

ε

θ
.

On the other hand, the reduced form of the smooth trend model given by (1.5) has the same
acf as the restricted IMA(2,2) given by

∆2yt = at + θ1 at−1 + θ2 at−2, (2.2)

15
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where the parameters θ1, θ2 and σ2
a are the solutions of the following system

σ2
a(1 + θ2

1 + θ2
2) = σ2

ε(6 + qξ), (2.3a)
θ1(1 + θ2)
1 + θ2

1 + θ2
2

= − 4
6 + qξ

, (2.3b)

θ2

1 + θ2
1 + θ2

2

=
1

6 + qξ
, (2.3c)

with qξ = σ2
ξ/σ2

ε . There are four solutions of system (2.3) but only one of them contains a pair
of real values for θ1 and θ2 that falls inside the invertibility region.

We also derive the properties of the reduced form IMA disturbance, at, in terms of εt, ηt and
ξt. We show that, in general, there is not a simple GARCH or ARSV model for at that replicates
exactly the statistical properties of the conditionally heteroscedastic unobserved component
models. However, simulations show that either the IMA-GARCH or IMA-ARSV models offer
a good alternative to approximate the dynamics of the conditionally heteroscedastic local level
models.

As a general conclusion, we show that if εt and ηt are assumed to follow GARCH or SV
processes, the conditional heteroscedasticity of the ARIMA noise at is weaker than the one
present in the unobserved disturbances. In some cases, at could even be seen as homoscedastic.
Therefore, the heteroscedasticity is more evident in the unobserved component model and can be
overlooked when working with the reduced form ARIMA model. This result could be expected
as the heteroscedasticity weakens under contemporaneous aggregation of volatility processes;
see, for example, Zaffaroni (2007).

The rest of this chapter is structured as follows. In Section 2.2, we derive the kurtosis
and autocorrelations of squares of the stationary transformation of the local level and smooth
trend models, when the disturbances are serially uncorrelated, with symmetric distributions
and finite fourth order moments. Then, we particularize these results for conditionally Normal
GARCH(1,1) and ARSV(1) disturbances. In Section 2.3, we derive the statistical properties of
the reduced form ARIMA noise, at, and show the effects of assuming GARCH or ARSV processes
on this noise by means of several Monte Carlo simulations. In Section 2.4, we illustrate the main
findings with an empirical application. Finally, Section 2.5 summarizes the main conclusions.

2.2 Properties of the local level and smooth trend models

In this section, we derive the excess kurtosis and the acf of squared observations for the general
case in which the noises of the local level and smooth trends models are assumed to be uncorre-
lated processes with symmetric densities and finite fourth order moments. We then particularize
these results for the case in which the disturbances are GARCH(1,1) or ARSV(1) processes.
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2.2.1 The local level model

Consider the local level model given by (1.2). Note first that if the noises have symmetric
distributions around zero then all odd moments of ∆yt are zero. It is also straightforward to
show that its variance and acf are given by

V ar[∆yt] = σ2
ε(qη + 2). (2.4)

ρ∆y
τ =


−1

qη + 2
τ = 1,

0 τ ≥ 2,

(2.5)

respectively. Furthermore, assuming finite fourth order moment of both noises, the following
expression of the excess kurtosis, of ∆yt is derived

κ̄∆y =
q2
ηκ̄η + 2κ̄ε + 6(κ̄ε + 2)ρε2

1

(qη + 2)2
, (2.6)

where κ̄ε and κ̄η are the excess kurtosis of εt and ηt, respectively, and ρε2

1 is the first order auto-
correlation of ε2

t . Note that the signal-to-noise ratio, qη, plays an important role in determining
the relative influence of the excess kurtosis of each noise on κ̄∆y. In the limiting cases, when
qη →∞, ∆yt = ηt (i.e. yt is a pure random walk process) so that κ̄∆y = κ̄η. On the other hand,
as qη → 0, ∆yt = ∆εt (i.e. yt is a white noise process), and consequently ∆yt is a non-invertible
MA(1) process whose excess kurtosis may be different from κ̄ε depending on the value of ρε2

1 .

Finally, the acf of (∆yt)2 is a function of the kurtosis and autocorrelations of the two noises,
which is given by

ρ(∆y)2

τ =
q2
η(κ̄η + 2)ρη2

τ + (κ̄ε + 2)(ρε2

τ−1 + 2ρε2

τ + ρε2

τ+1)
(κ̄∆y + 2)(qη + 2)2

, τ ≥ 1. (2.7)

Note that for Gaussian noises, ρ
(∆y)2

1 = (qη + 2)−2, which turns out to be the squared first
order autocorrelation of ∆yt; see Maravall (1983). However, when assuming that εt and ηt are
homoscedastic but not necessarily Gaussian, it is possible to see from (2.7) that ρ

(∆y)2

1 may
differ from (ρ∆y

1 )2, depending on the values of the excess kurtosis of each noise. The numerator
of (2.7) is defined as a weighted sum of two factors that depend on the lag τ . The first one, ρη2

τ ,
has a weight that is a function of qη and κ̄η, while the weight of the second, ρε2

τ−1 + 2ρε2

τ + ρε2

τ+1,
depends only on κ̄ε. As long as the acf of squares of both disturbances converges to zero, each
of these factors disappears as τ increases, and therefore the acf of (∆yt)2 also converges to zero.

The general expressions of the excess kurtosis and acf of squares in (2.6) and (2.7) can be
particularized when assuming particular specifications of the noises εt and ηt. Consider first
that they are assumed to be GARCH(1,1) models1 given by εt = ε†th

1/2
t and ηt = η†t q

1/2
t , where

1The general expression for the kurtosis and acf of (∆yt)
2 can be utilized in other specifications of the noises.

For instance, Broto and Ruiz (2006) derive these quantities for the particular case of a local level model with

GQARCH disturbances to account for asymmetries in volatility.
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ε†t and η†t are mutually and serially independent Normal processes with zero mean and unit
variance, and

ht = α0 + α1ε
2
t−1 + α2ht−1, (2.8a)

qt = γ0 + γ1η
2
t−1 + γ2qt−1, (2.8b)

where the parameters α0, α1, α2, γ0, γ1 and γ2 are assumed to satisfy the usual positivity
and stationarity conditions. Then, substituting κ̄ε, κ̄η and ρε2

1 in (2.6) by their corresponding
expressions for the GARCH(1,1) process given by κ̄ε = 2α2

1

1−3α2
1−2α1α2−α2

2
, κ̄η = 2γ2

1

1−3γ2
1−2γ1γ2−γ2

2

and ρε2

1 = α1(1−α1α2−α2
2)

1−2α1α2−α2
2

, we find that

κ̄∆y =
3

(qη + 2)2

[
q2
η

2γ2
1

1− 3γ2
1 − 2γ1γ2 − γ2

2

+ 4
α1(1 + α1 − α1α2 − α2

2)
1− 3α2

1 − 2α1α2 − α2
2

]
. (2.9)

As an illustration, Figure 2.1 plots the relationship between the kurtosis of ∆yt and the
persistence of the volatility of both noises, measured by α1 + α2 and γ1 + γ2, for different
values of the signal-to-noise ratio, when α1 = γ1 = 0.1. The values have been selected to
illustrate situations with high persistence and relatively small values of α1 and γ1, as commonly
encountered in empirical applications. Note that the slope with respect to the persistence of ηt

is steeper as qη increases, and also that varying qη significantly affects κ̄∆y.

Figure 2.1: Relationship between κ̄∆y and GARCH parameters in the local level model. The ARCH
coefficients, α1 and γ1, are fixed to 0.10.

On the other hand, when εt and ηt are GARCH(1,1) processes, the acf of (∆yt)2 given in
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(2.7) becomes

ρ(∆y)2

τ =


q2
ηρ

η2

1 (κ̄η + 2) + (κ̄ε + 2)(1 + ρε2

1 (2 + α1 + α2))
(qη + 2)2(κ̄∆y + 2)

, τ = 1

(α1 + α2)ρ
(∆y)2

τ−1 +
(γ1 + γ2 − α1 − α2)q2

η(γ1 + γ2)τ−2ρη2

1 (κ̄η + 2)
(qη + 2)2(κ̄∆y + 2)

, τ ≥ 2,

(2.10)

where ρη2

1 = γ1(1−γ1γ2−γ2
2)

1−2γ1γ2−γ2
2

. From (2.10) we can see that when the persistence of both noises is the
same, i.e. γ1 + γ2 = α1 + α2, the acf of squares has an exponential decay, as in a GARCH(p,q)
process. We can also observe an exponential decay when only one noise is heteroscedastic.
However, in general, the decay of the autocorrelations in (2.10) is not exponential. Consequently,
the behavior of ∆yt is not GARCH. As an illustration, Figure 2.2 plots the acf of squares
for different specifications of the disturbances, together with the corresponding rates of decay
from the second lag. The first row shows a model in which both disturbances follow the same
GARCH process, while in the second model both noises follow GARCH processes with a different
persistence. The last two rows consider models in which only one noise is heteroscedastic.
Note first that the cases in the first and the last two rows illustrate the situations mentioned
above where we obtain an exponential decay in the acf of (∆yt)2. Moreover, in the case where
γ1 +γ2 6= α1 +α2, although the rate is slightly increasing, it can be approximated by a constant.
Indeed, the rate of decay of ρ

(∆y)2

τ implicit in (2.10) converges to max(α1 + α2; γ1 + γ2) as τ

increases. In order to prove this statement, note that expression the rate of decay of ρ
(∆y)2

τ

resulting from (2.10) is given by

ρ
(∆y)2

τ

ρ
(∆y)2

τ−1

=
A (γ1 + γ2)

τ−1 + B (α1 + α2)
τ−2

A (γ1 + γ2)
τ−2 + B (α1 + α2)

τ−3

= (α1 + α2)


A

(
γ1 + γ2

α1 + α2

)τ−1

+ B (α1 + α2)−1

A

(
γ1 + γ2

α1 + α2

)τ−2

+ B (α1 + α2)−1

 , τ > 3, (2.11)

where A and B are positive constants that do not depend on τ . If we take limits to (2.11) as
τ goes to infinity, we obtain two possible solutions depending on whether γ1 + γ2 is greater or
smaller than α1 + α2. In the first case, both, the numerator and denominator of (2.11) goes to
infinity as τ increases. However, by means of the L’hopital rule, we find that the limit is equal
to γ1 + γ2. In the other case, when γ1 + γ2 ≤ α1 + α2, the limit of (2.11) is straightforwardly
obtained because many terms of the expression cancel out, yielding α1 +α2. Therefore, we show
that the level at which the rate of decay converges is max(α1 +α2; γ1 +γ2). This implies that in
the cases where the persistence of the GARCH processes are close to each other, the rate of decay
of ρ

(∆y)2

τ will be approximately constant for almost all values of τ . Consequently, exponential
structures such as the ones implied by GARCH processes can be a good approximation for the
acf of squares.

Consider now that the noises, εt and ηt, are ARSV(1) processes given by εt = ωε ε†t exp{ht/2}
and ηt = ωη η†t exp{qt/2}, with

ht = φh ht−1 + νh,t , (2.12a)

qt = φq qt−1 + νq,t , (2.12b)
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Figure 2.2: Autocorrelations of (∆yt)2 for several local level models with GARCH(1,1) disturbances (left
column) and rates of decay defined as the ratio ρ

(∆y)2

τ /ρ
(∆y)2

τ−1 from the second lag (right column).

where ε†t and η†t are defined as in the GARCH case, ωε > 0, ωη > 0, |φh| < 1, |φq| < 1, and
(νh,t, νq,t) are mutually and serially uncorrelated Normal processes, independent of (ε†t , η†t ), with
zero means and variances σ2

νh
and σ2

νq
, respectively. Thus, ht and qt are Normally distributed with

zero means and variances equal to σ2
h =

σ2
νh

1−φ2
h

and σ2
q =

σ2
νq

1−φ2
q
, respectively. By using the proper-

ties of the log-normal distribution, we find that σ2
ε = ω2

ε exp{σ2
h/2} and σ2

η = ω2
η exp{σ2

q/2}, so
that we can plug them into (2.4) to obtain the marginal variance of ∆yt. Also note that, using
the properties of the ARSV(1) model2, we know that κ̄ε = 3[exp{σ2

h} − 1], κ̄η = 3[exp{σ2
q} − 1]

and ρε2

1 = exp{σ2
hφh}−1

3 exp{σ2
h}−1

. Therefore, by plugging these moments into (2.6) we obtain the following
expression of the excess kurtosis of ∆yt

κ̄∆y =
3

(qη + 2)2
[
q2
η (exp{σ2

q} − 1) + 2 (exp{σ2
h} − 1) + 2 (exp{σ2

hφh} − 1)
]
. (2.13)

Note from (2.13) that the excess kurtosis can be positive even though φh = φq = 0, provided
that at least one of the variances of the processes given in (2.12) is positive. On the contrary,
σ2

νh
= σ2

νq
= 0 is sufficient to have κ̄∆y = 0. It is also worth noting that, as long as the processes

given in (2.12) are stationary, the kurtosis of ∆yt will be finite. This is not the case when
the noises are GARCH, because we need further restrictions in the parameter space to ensure
κ̄∆y < ∞. Figure 2.3 plots the excess kurtosis against the autoregressive parameters, φh and
φq, which may be seen as persistence measures in the ARSV models. We fix σ2

νh
= σ2

νq
= 0.05

2See, for example, Taylor (1986) for a detailed study of the statistical properties of the ARSV(1) model.
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and use the same values of qη as in the GARCH case to make a fair comparison between the two
types of volatility processes. As a general result, note that the behavior of κ̄∆y is very similar
to that of the GARCH case, increasing as φh and φq approach to 1, but at a rate that depends
on qη.

Figure 2.3: Relationship between κ̄∆y and the persistence of both noises measured by φh and φq in the
AR-SV(1) model. The variances of the log-volatility processes, σ2

νh
and σ2

νq
, are fixed to 0.05.

Given that, in the ARSV(1) model, ρε2

τ = exp{σ2
hφτ

h}−1

3 exp{σ2
h}−1

and ρη2

τ = exp{σ2
qφτ

q}−1

3 exp{σ2
q}−1

, the acf of

(∆yt)2 is given by

ρ(∆y)2

τ =


q2
η exp{σ2

qφq}+ 3 exp{σ2
h}+ 2 exp{σ2

hφh}+ exp{σ2
hφ2

h} − (q2
η + 4)

(qη + 2)2(κ̄∆y + 2)
, τ = 1

q2
η exp{σ2

qφ
τ
q}+ exp{σ2

hφτ−1
h }+ 2 exp{σ2

hφτ
h}+ exp{σ2

hφτ+1
h } − (q2

η + 4)
(qη + 2)2(κ̄∆y + 2)

, τ ≥ 2.

(2.14)
Note from (2.14) that σ2

νh
= σ2

νq
= 0 again leads to the Gaussian homoscedastic results where

ρ
(∆y)2

τ =
(
ρ∆y

τ

)2
. On the other hand, unlike the GARCH(1,1) process, the ARSV(1) does not

produce acf of squares with an exponential decay. Figure 2.4 plots the acf of (∆yt)2 and the
corresponding rates of decay from the second lag for four selected models. In all cases, the
rates of decay are increasing and have an asymptote that is a function of the autoregressive
parameters in the ARSV processes.
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Figure 2.4: Autocorrelations of (∆yt)2 for several local level models with ARSV(1) disturbances (left
column) and rates of decay defined as the ratio ρ

(∆y)2

τ /ρ
(∆y)2

τ−1 from the second lag (left column).

2.2.2 The smooth trend model

The variance and acf of the stationary transformation of the smooth trend model given in (1.5)
are given by

V ar[∆2yt] = σ2
ε(qξ + 6), (2.15)

ρ∆2y
τ =



−4
qξ + 6

τ = 1,

1
qξ + 6

τ = 2,

0 τ ≥ 3,

(2.16)

respectively. After some tedious but straightforward algebra we find the excess kurtosis given
by

κ̄∆2y =
q2
ξ κ̄ξ + 18κ̄ε + 6(κ̄ε + 2)(8ρε2

1 + ρε2

2 )
(qξ + 6)2

. (2.17)

Furthermore, the acf of (∆2y)2 is given by

ρ(∆2y)2

τ =


q2
ξ (κ̄ξ + 2)ρξ2

1 + (κ̄ε + 2)(8 + 35ρε2

1 + 8ρε2

2 + ρε2

3 )
(κ̄∆2y + 2)(qξ + 6)2

, τ = 1,

q2
ξ (κ̄ξ + 2)ρξ2

τ + (κ̄ε + 2)(ρε2

τ−2 + 8ρε2

τ−1 + 18ρε2

τ + 8ρε2

τ+1 + ρε2

τ+2)
(κ̄∆2y + 2)(qξ + 6)2

, τ ≥ 2.

(2.18)



2.2. Properties of the local level and smooth trend models 23

The smooth trend model assumes that the slope of the trend evolves smoothly. Therefore,
it seems sensible to assume that its noise is homoscedastic. Consequently, we only consider
the possibility of the transitory noise being conditionally heteroscedastic. Moreover, given that
the results above show that the conclusions for GARCH and ARSV noises are similar, in this
subsection, we only consider the GARCH(1,1) process as defined in (2.8a). In this case, the
excess kurtosis and acf of (∆2yt)2 are given by

κ̄∆2y =
18κ̄ε + 6(κ̄ε + 2)(8ρε2

1 + ρε2

2 )
(6 + qξ)2

, (2.19)

ρ(∆2y)2

τ =



(κ̄ε + 2)(8 + 35ρε2

1 + 8ρε2

2 + ρε2

3 )
(κ̄∆2y + 2)(qξ + 6)2

, τ = 1

(κ̄ε + 2)(ρε2

τ−2 + 8ρε2

τ−1 + 18ρε2

τ + 8ρε2

τ+1 + ρε2

τ+2)
(κ̄∆2y + 2)(qξ + 6)2

, τ = 2, 3

(α1 + α2)ρ
(∆2y)2

τ−1 , τ ≥ 4.

(2.20)

Expression (2.20) implies that models like the GARCH(p,q), which produce exponential
structures in the acf squares, could be suitable for the stationary transformation of the smooth
trend model with a GARCH(1,1) transitory component. As an illustration, Figure 2.5 plots the
acf of squares and its rate of decay for different GARCH parameters and different qξ. Note that
the rates are all constant from the third lag, as implied in (2.20).

Figure 2.5: Autocorrelations of (∆2yt)2 for several smooth trend models with conditionally Normal
GARCH(1,1) disturbances (left column) and rates of decay defined as the ratio ρ

(∆y)2

τ /ρ
(∆y)2

τ−1 from the
third lag (right column).
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2.3 Properties of the IMA noise

It is well known that εt and ηt being mutually and serially uncorrelated with finite positive
variances is sufficient to prove that the reduced forms of the local level and smooth trend models
are restricted IMA models, in the sense that both models share the same acf. Consequently, the
reduced form noise, at, is also serially uncorrelated. Furthermore, if the disturbances of the two
unobserved component models are fourth-moment stationary and have symmetric distributions,
then these properties are also shared by at. Taking this into account, the objective of this section
is twofold. First, we want to analyze the excess kurtosis and acf of squares of at when the
disturbances of the unobserved component models are conditionally heteroscedastic. Second, by
means of several Monte Carlo experiments, we study whether the GARCH and ARSV(1) models
fitted to at are able to replicate the dynamics of the conditionally heteroscedastic unobserved
component models considered here.

2.3.1 The reduced form IMA noise in the local level model

Consider the reduced form IMA(1,1) model given in (2.1). The variance and acf of ∆yt in this
case are given by

V ar[∆yt] = σ2
a(1 + θ2) (2.21)

ρ∆y
τ =


θ

1 + θ2
τ = 1.

0 τ ≥ 2.
(2.22)

The excess kurtosis of ∆yt is now given by

κ̄∆y =
κ̄a(1 + θ4) + 6θ2ρa2

1 (κ̄a + 2)
(1 + θ2)2

, (2.23)

where κ̄a and ρa2

1 are the excess kurtosis of at and the first order autocorrelation of a2
t , respec-

tively. On the other hand, it is easy to show that the acf of ∆y2
t is given by

ρ(∆y)2

τ =
κ̄a + 2

(1 + θ2)2(κ̄∆y + 2)

[
(1 + θ4)ρa2

τ + θ2(ρa2

τ−1 + ρa2

τ+1)
]
, τ ≥ 1. (2.24)

The expressions of κ̄a and ρa2

τ are related to those of the unobserved component noises,
but in a way that is not easy to derive analytically. However, we may find approximations
of these quantities by equalling the excess kurtosis of ∆yt given by (2.6) and (2.23), and the
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autocorrelations of order τ = 1, 2, . . . in (2.7) and (2.24). The following system is then obtained3

(κ̄a + 2)
(
1 + θ4 + 6θ2ρa2

1

)
≡ (1 + θ)4(κ̄η + 2)− 8θ(1 + θ)2

+ 2θ2(κ̄ε + 2)
(
1 + 3ρε2

1

)
, (2.25a)

(κ̄a + 2)
[
(1 + θ4)ρa2

τ + θ2
(
ρa2

τ−1 + ρa2

τ+1

)]
≡ θ2(κ̄ε + 2)

(
ρε2

τ−1 + 2ρε2

τ + ρε2

τ+1

)
+ (1 + θ)4(κ̄η + 2)ρη2

τ , τ ≥ 1. (2.25b)

From the system given in (2.25) we are able to obtain some information about the behavior
of at. First, consider the case of homoscedastic although non-Gaussian local level disturbances,
i.e. ρε2

τ = ρη2

τ = 0 ∀τ and κ̄ε and κ̄η different from zero. In this case, the autocorrelations of
(∆yt)2 differ from the squared autocorrelations of ∆yt. Therefore, at is still uncorrelated but
not independent; see Breidt and Davis (1992). As an illustration, Table 2.1 reports the acf of a2

t

for several values of qη, κ̄ε and κ̄η, obtained from the resolution of the system given by (2.25).
Observe that non-normality in either or both noises may generate non-zero autocorrelations of
squares (specially in the first order autocorrelation). Although these autocorrelations do not fol-
low any specific pattern and, consequently, they do not reflect the presence of GARCH or ARSV
effects in the series, it is possible to obtain values of some popular conditional homoscedastic-
ity statistics, e.g. the McLeod and Li (1983) test, that may wrongly lead to reject the null of
conditionally homoscedasticity. Note also that the pattern in which only the first order autocor-
relation of squares is different from zero may be confused with the effect of outliers; see Carnero
et al. (2006).

q κ̄ε κ̄η θ κ̄∆y ρ
(∆y)2

1 κ̄a ρa2

1 ρa2

2 ρa2

3 ρa2

4 ρa2

5

0.5 0 3 -0.5 0.120 0.151 0.273 -0.030 0.008 -0.002 0.001 0.000√
2 0 3 -0.324 0.515 0.068 0.665 -0.026 0.003 0.000 0.000 0.000

0.5 3 3 -0.5 1.080 0.260 0.818 0.194 -0.048 0.012 -0.003 0.001√
2 3 3 -0.324 1.029 0.142 1.120 0.063 -0.007 0.001 0.000 0.000

0.5 3 0 -0.5 0.960 0.270 0.546 0.241 -0.060 0.015 0.004 0.001
√

2 3 0 -0.324 0.515 0.171 0.456 0.109 -0.011 0.001 0.000 0.000

Table 2.1: Approximated moments of at resulting from local level models with either or both non-Gaussian
homoscedastic noises.

Consider now that either or both noises are heteroscedastic in the form of stationary GARCH
or ARSV processes as defined in the previous sections. Then, the right hand side of (2.25b)

3 To obtain (2.25), recall that θ can be defined in terms of qη, so that the following expressions result:

1 + θ2 = −θ(qη + 2),

1 + θ4 = θ2(q2
η + 4qη + 2).
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converges to zero as τ increases. This implies that there exists a value of τ , say τmax, large enough
to also make ρa2

τ ≈ 0 for τ > τmax. Taking this into account and solving the system backwards
we can find the kurtosis and acf of squares of at for different specifications of the unobserved
component noises. As an illustration, Figures 2.6 and 2.7 plot the acf of a2

t when the noises are
GARCH(1,1) and ARSV(1), respectively. In general, the magnitude of the autocorrelations of a2

t

is smaller than those of the disturbances of the local level model. This suggests that working with
the reduced form of an unobserved component model may hide part of the heteroscedasticity
of each component, by producing a reduced form disturbance, at, with less structure in its acf
of squares. For instance, it might be the case that if the permanent component, µt, presents
a significant heteroscedastic structure but the transitory component, εt, is homoscedastic; the
stationary transformation, ∆yt, may not provide significant evidence of heteroscedasticity at all.

Figure 2.6: Approximated values of the acf of a2
t resulting from different local level models with

GARCH(1,1) disturbances. The solid and dash-dotted lines draw the autocorrelations of ε2
t and η2

t ,
respectively.

2.3.2 The reduced form IMA noise in the smooth trend model

The reduced form of the smooth trend is an IMA(2,2) as given in (1.5) with the MA parameters
resulting from solving the system of equations given in (2.3). As Figure 2.8 shows, these param-
eters lay close to the non-invertibility frontier, specially for small values of qξ, which makes the
IMA model very restrictive. In any case, as in the local level model, we can work out the excess
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Figure 2.7: Approximated values of the acf of a2
t resulting from different local level models with ARSV(1)

disturbances. The solid and dash-dotted lines draw the autocorrelations of ε2
t and η2

t , respectively.

kurtosis and autocovariances of squares of the ∆2yt as follows

κ̄∆2y =
κ̄a (1 + θ4

1 + θ4
2) + 6(κ̄a + 2)

[
θ2
1 (1 + θ2

2) ρa2

1 + θ2
2 ρa2

2

]
(1 + θ2

1 + θ2
2)2

(2.26)

ρ(∆2y)2

τ =



κ̄a + 2
(1 + θ2

1 + θ2
2)2(κ̄∆2y + 2)

[
θ2
1 (1 + θ2

2) + (1 + θ4
1 + θ4

2 + θ2
2 + 4θ2

1 θ2) ρa2

1 +

θ2
1 (1 + θ2

2) ρa2

2 + θ2
2ρ

a2

3 + 4θ2
1 θ2

κ̄a+2

]
, τ = 1

κ̄a + 2
(1 + θ2

1 + θ2
2)2(κ̄∆2y + 2)

[
θ2
2 ρa2

τ−2 + θ2
1 (1 + θ2

2) ρa2

τ−1+

(1 + θ4
1 + θ4

2) ρa2

τ + θ2
1 (1 + θ2

2) ρa2

τ+1 + θ2
2ρ

a2

τ+2

]
, τ ≥ 2,

(2.27)

respectively. If εt is assumed to be GARCH(1,1), then the conditional heteroscedasticity should
be also present in the resulting at. In this case, finding the implied acf of a2

t in terms of qξ by
equating the expressions of the kurtosis in (2.17) and (2.26), and the expressions of the auto-
correlations of squares in (2.18) and (2.20), is very complicate. Consequently, Figure 2.9 shows
the mean estimates of the sample acf of simulated series. Looking at the plots we find the same
patterns as the ones derived analytically for the local level model. The autocorrelation structure
of the squared innovations is markedly weaker than that of the transitory component. As ex-
pected, the difference between these two autocorrelation functions is higher as qξ increases (σ2

ε
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Figure 2.8: MA(2) parameters, θ1 and θ2, as a function of the smooth-trend parameter qξ (thick line).
The triangular surface conforms the invertibility region of the MA(2) model.

decreases relative to σ2
ξ ). However, it seems to be invariant for different GARCH specifications.

Overall, we find the same results as in the local level model. That is, the ARCH effects in the
resulting ARIMA disturbance are less evident than in the unobserved components.

2.3.3 Heteroscedastic IMA models

In the previous subsection, we have seen that if the unobserved component disturbances follow
either GARCH or ARSV processes, the noise of the corresponding IMA model does not share all
the properties of these processes, but still shows an excess kurtosis and acf of squares different
from zero. On the other hand, when analyzing real time series, it is usual to fit GARCH or
ARSV processes to the residuals of an ARIMA model whenever they show evidence of conditional
heteroscedasticity; see Li et al. (2002) for a review on the properties and applications of ARMA
models with GARCH errors. Then, it may be relevant to study the effects of fitting IMA-GARCH
and IMA-ARSV models to a series with conditionally heteroscedastic stochastic levels.

Consider first that at is assumed to be a conditionally Normal GARCH(1,1) model. Then
at = a†t

√
st, where a†t is a Gaussian white noise process and

st = δ0 + δ1a
2
t−1 + δ2st−1. (2.28)

One way of approximating the parameters given in (2.28) as functions of the local level parame-
ters is by using the relationship between κa and ρa2

τ and δ1 and δ2 implied by the GARCH(1,1).
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Figure 2.9: Simulated autocorrelations of a2
t resulting from different smooth trend models with εt being

GARCH(1,1).

First, note that in the GARCH(1,1) model, κa and ρa2

τ are given by

κa =
3

[
1− (δ1 + δ2)2

]
1− 3δ2

1 − 2δ1δ2 − δ2
2

, (2.29)

ρa2

τ = (δ1 + δ2)τ−1 δ1(1− δ1δ2 − δ2
2)

1− 2δ1δ2 − δ2
2

, τ ≥ 1. (2.30)

From (2.29) and (2.30) it is possible to derive the following expression of δ1,

δ1 =
3(κa − 1)ρa2

τ − (δ1 + δ2)τ (κa − 3)
2κa(δ1 + δ2)τ−1

, (2.31)

for any τ ≥ 1. Thus, given that we can find approximations of κa and ρa2

τ , by means of (2.25),
then we can also find values of δ1 and δ2 for different values of the local level parameters. Table
2.2 shows some examples. For instance, consider the model where both noises are heteroscedastic
and q =

√
2. In this case, (2.25) yields κa = 4.45, ρa2

2 = 0.19, ρa2

3 = 0.18 and δ1 + δ2 = 0.95,
so that δ1 = 0.083 (the upper-left case of Figure 2.6). This value, which measures the level
of heteroscedasticity in a series, is clearly smaller than the corresponding values for εt and
ηt, α1 = γ1 = 0.15. If we now consider the model in which only the trend component is
heteroscedastic, the values are given by κa = 3.4, ρa2

2 = 0.094, ρa2

3 = 0.089 and δ1 + δ2 = 0.95,
thus obtaining δ1 = 0.05. In this case, the ARCH coefficient in the reduced form disturbance
is one-third the value of γ1 = 0.15. Furthermore, if in this case, we change the value of q from
0.5 to

√
2 keeping the rest unchanged, we see that δ1 = 0.014, that is one-tenth of γ1. Notice

from these examples that it is possible to reject heteroscedasticity although at least one of the
underlying noises is clearly heteroscedastic.
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q α1 α2 γ1 γ2 κε κη θ κa ρa2

1 ρa2

2 ρa2

3 δ1 δ2

0.5 0.15 0.80 0.15 0.80 5.57 5.57 -0.5 4.910 0.251 0.223 0.216 0.100 0.850√
2 0.15 0.80 0.15 0.80 5.57 5.57 -0.324 4.451 0.217 0.193 0.185 0.083 0.867

0.5 0 0 0.15 0.80 3 5.57 -0.5 3.083 0.023 0.026 0.024 0.014 0.936√
2 0 0 0.15 0.80 3 5.57 -0.324 3.396 0.092 0.094 0.089 0.049 0.901

0.5 0.15 0.80 0 0 5.57 3 -0.5 4.828 0.244 0.214 0.208 0.093 0.857
√

2 0.15 0.80 0 0 5.57 3 -0.324 4.055 0.174 0.144 0.139 0.051 0.899

Table 2.2: Approximated values of the GARCH parameters, δ1 and δ2, of the reduced form IMA noise,
at, corresponding to different local level models with GARCH noises.

In order to analyze the effects of fitting IMA models with GARCH noises to conditionally
heteroscedastic local level and smooth trend models, we carry out several Monte Carlo simula-
tions. For each specification of the conditionally heteroscedastic unobserved component models,
we generate 1000 series and fit the IMA-GARCH model to analyze the pattern of values of δ1

and δ2 that we can expect to obtain in practice. The series are generated with three different
sample sizes T = 200, 1000 and 5000. The parameters of the IMA-GARCH model are estimated
by QML in two steps, estimating first the MA parameter, θ, and then fitting the GARCH model
to the residuals. Furthermore, we also test for homoscedasticity in the residuals of the first step
using the test proposed by Rodriguez and Ruiz (2005) and given by

Q1(10) = T

9∑
k=1

[r̃(k) + r̃(k + 1)]2 ,

where r̃(k) =
√

(T + 2)/(T − k)r(k) is the standardized sample autocorrelation of order k.
This test is more powerful than the popular McLeod-Li test. Table 2.3 reports the Monte
Carlo means and standard deviations of the QML estimates, together with the percentage of
rejections of the homoscedasticity in the residuals, when the series are generated by a local level
model with both noises being GARCH(1,1) with strong ARCH effects. Additionally, Table 2.4
reports the same results when the series are generated by a local level model with only the
noise of the permanent component being GARCH(1,1). Note first that the estimates of the MA
parameter are unbiased even in moderate sample sizes. On the other hand, note that when
T = 200, we do not reject the null of homoscedasticity in the residuals in a large proportion
of cases, namely 47.6% for the case in which both noises are GARCH and 65% for the case
in which only ηt is GARCH. This result is also reflected in the fact that the estimates of the
ARCH effect in the reduced form noise are not significantly different from zero when T = 200.
Increasing the sample size leads to significant ARCH effects although the are clearly smaller
than those of the local level disturbances. This result supports the conclusions found in Table
2.2 with the approximated values of δ1 as functions of the local level parameters. It is also
important to observe that the average estimate of the ARCH parameter is the same regardless
of the sample size. However, the Monte Carlo average of the GARCH parameter increases
with the sample size. Thus, in large samples, the ARCH parameter is underestimated with
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respect to the ARCH parameters in the local level disturbances, while the GARCH parameter
is overestimated. Note that the average persistence of the reduced form GARCH model is the
same as the persistence observed in the local level disturbances. Tables 2.3 and 2.4 also report
the excess kurtosis and the autocorrelations of squares of ∆yt, together with the corresponding
average plug-in moments obtained when the estimated parameters are substituted in expressions
(2.23) and (2.24). Comparing the moments of ∆yt with the corresponding plug-in moments, we
observe that although the latter increase with the sample size, they are clearly smaller than the
population moments even when T = 5000.

Tables 2.5 and 2.6 report the same quantities as Tables 2.3 and 2.4, but considering that the
noises follow ARSV(1) processes. In general, the conclusions are similar. The MA parameter is
estimated unbiasedly and, in moderate samples, there is a large percentage of series in which the
homoscedasticity is rejected. In this case, the ARCH estimate even decreases with the sample
size while the GARCH estimate increases. In large samples, the average persistence is close to
this implied by the ARSV models. Finally, the plug-in kurtosis is much smaller than this in
the population while the plug-in autocorrelations of squares only slightly underestimate their
population counterparts.

In the last two exercises, we have also analyzed the properties of the reduced form IMA
model when its disturbance is assumed to be ARSV(1) given by at = a†t ωa exp{st/2}, where
a†t ∼ NID(0, 1) and

st = φast−1 + νa,t (2.32)

with νa,t ∼ NID(0, σ2
ν,a) and independent of a†t . Tables 2.3 and 2.5 report the average means and

standard deviations of the QML estimates of φa and σ2
ν,a as proposed by Harvey et al. (1994).

The average estimates of φa increase with the sample size, while those of σ2
ν,a are approximately

constant. Note that this result is in concordance with the result obtained when the GARCH
model is fitted to the MA residuals, in which the persistence converges to this in the local level
noises while the ARCH parameter is underestimated and roughly constant for all the sample
sizes. The estimates of σ2

ν,a are not significant for T = 1000. Finally, note that the plug-in
kurtosis is closer to the population kurtosis than this implied by the GARCH model, while the
plug-in autocorrelations of squares of both models are similar.

Finally, we have also carried out the exercise for the smooth trend model, when εt is GARCH.
Table 2.7 shows the results. In general, the conclusions are roughly the same as in the local
level model. Note that again, the null of homoscedasticity is not rejected in a larger proportion
of times, specially when T = 200. With respect to the plug-in moments for T = 5000, note
that both, the IMA-GARCH and IMA-ARSV models provide an implied excess kurtosis and
first order autocorrelation of squares substantially smaller than the population counterparts,
implying that using these two models may reduce the nonlinearity coming from the conditional
heteroscedastic transitory component.

It is possible to draw some general conclusions from the Monte Carlo experiments carried
out above. First, note that the conclusions are roughly the same across all conditionally het-
eroscedastic unobserved component models considered in the simulations. For example, the MA
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parameter is estimated accurately, even in small samples, regardless of the model used. This
result is expected given that the second marginal moments of the unobserved component models
do not change when imposing stationary GARCH or ARSV processes and therefore, the rela-
tionship between θ and these moments is preserved. Additionally, in relatively small samples, a
weak structure in the autocorrelations of a2

t may lead to under-reject the null of homoscedastic-
ity, even tough the test-statistic is more powerful than the usual McLeod-Li statistic. Moreover,
even in large samples, the parameters determining the level of these autocorrelations in the
GARCH and ARSV models, δ1 and σ2

ν,a, are typically underestimated when compared with α1

and γ1 or σ2
ν,h and σ2

ν,q, respectively. Finally, by looking at the excess kurtosis and autocorre-
lations of squares, it seems that the moments implied by the IMA-ARSV model adjusts better
the former and the moments implied by the IMA-GARCH the latter, for T = 5000.
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2.4 An empirical illustration

In this section we illustrate some of the main results found above with a real time series. In
particular, we analyze the daily Pound/Euro exchange rate defined as the daily closing price
of the Pound (£) per unit of Euro (e). The series has been downloaded from the EcoWin
database and the sample spans 6 years of data, from 01/03/2000 to 03/29/2006, with T = 1626
observations. Figure 2.10 plots the series, its first differences and the sample autocorrelations of
the level and squared observations. From the graphs we see that the exchange rates follow a non
stationary pattern while returns are stationary with periods of clustered volatility. Additionally,
the correlogram of the first difference suggests that it can be well represented by an MA(1)
model with θ < 0 and, consequently, the dynamic dependence of the series of exchange rates,
yt, can be explained by the local level model. Furthermore, the significant autocorrelations of
squares may indicate the presence of conditional heteroscedasticity.

Figure 2.10: The daily £/e exchange rate, from 01/03/2000 to 03/29/2006.

Following the procedure of Broto and Ruiz (2009), we first fit the homoscedastic unobserved
component model to the series to obtain information about which component is conditionally
heteroscedastic by analyzing the auxiliary residuals4. We also fit the IMA(1,1) model to the

4Prior to estimation, an intervention analysis of the series using auxiliary residuals, proposed by Harvey and

Koopman (1992), was carried out with the program STAMP 6.20 of Koopman et al. (2000). The program found

two outliers in the transitory component (εt) and three in the noise of the permanent component (ηt), representing

just a 0.3% of the observations.
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corresponding first differences5. Table 2.8 reports the estimates of the two homoscedastic models.
We can see that the permanent component has more weight in the series as q̂η > 1. Furthermore,
the estimate of θ (-0.247) is significant and almost identical to the one implied by q̂η (-0.248),
as expected given that the two models are still equivalent in terms of their conditional mean,
regardless of the possible presence of conditional heteroscedasticity in the noises. Table 2.8
also reports the sample mean, skewness (SK), excess kurtosis (κ̄), and autocorrelations of the
standardized one-step-ahead residuals, υ̂t in the local level model, and ât in the IMA model.
They are clearly uncorrelated suggesting that the two models seem to be appropriate to fit the
conditional mean. However, when we look at the sample autocorrelations of the squares, it is
clear the presence of a certain structure in the variance of the series that is not captured by
the homoscedastic models. This fact, in conjunction with a significant excess kurtosis, leads to
propose a GARCH process to account for this structure in the variance.

Table 2.8 also reports the sample moments and autocorrelations of the auxiliary residuals and
their squares in the LL model. These values are useful tools to identify which of the components
present evidence of conditional heteroscedasticity. Since by construction both auxiliary residuals
are serially correlated, we have to find the sample autocorrelations of squares adjusted by the
square of the sample acf to account for a significant nonlinear structure in the form of conditional
heteroscedasticity. Figure 2.11 shows both adjusted correlograms. From them we can conclude
that both components seem to have conditional heteroscedasticity. Then, in the selection of
the local level model that best captures the conditional heteroscedasticity, we should include a
GARCH specification in both noises.

On the other hand, for the reduced form model selection, the sample autocorrelations given
in Table 2.8 suggest that the IMA(1,1)-GARCH(1,1) could also be an adequate reduced form
model to fit the series. Therefore, we fit the two models to the daily £/e exchange rate. Table 2.9
reports the estimation results. The estimates of the LL-GARCH model imply that both noises
are conditionally heteroscedastic. Furthermore, as expected, the transitory component seems
to be more heteroscedastic than the permanent one as α̂1 > γ̂1, although both share almost
the same (high) persistence. On the other hand, compared to the homoscedastic specification,
the introduction of a GARCH process in each noise increases the Log-Likelihood from -1439 to
-1372. In addition to this, the residuals standardized by their estimated conditional variances
not only are uncorrelated but also present almost no evidence of conditional heteroscedasticity
(all the Q-statistics are insignificant at 1% and only one significant at 5%). We have to point
out, however, that a small structure in the conditional variances of both noises still remains
after fitting the GARCH process.

Fitting the conditionally heteroscedastic local level model allows us to obtain not only es-
timates of the parameters, but also of the unobserved components with their corresponding
volatility. Then, it is possible to decompose the volatility of the series into the sum of the
volatility of the transitory component, (ĥt) and the permanent component (q̂t). Figure 2.12
plots these two volatilities over time, as well as the volatility of the reduced form disturbance,

5According to both, the Akaike and Schwarz information criteria, the best fit for the Pound/Euro exchange

rate is obtained with the IMA(1,1) model.
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Local Level model IMA(1,1) model

σ̂2
ε = 0.084** σ̂2

a = 0.344**
σ̂2

η = 0.196** θ̂ = -0.247**
q̂ = 2.338

υ̂t ε̂t η̂t ât

Mean 0.016 0.000 0.019 Mean 0.016
SK 0.205 -0.002 0.240 SK 0.201
κ 3.981 3.486 4.056 κ 3.962
ρ1 0.012 -0.353** 0.244** ρ1 0.014
ρ2 -0.044 -0.148** 0.022 ρ2 -0.043
ρ3 0.017 0.007 0.024 ρ3 -0.017
ρ4 0.002 -0.017 0.015 ρ4 -0.002
ρ5 0.028 0.023 0.032 ρ5 0.028
ρ10 -0.031 -0.021 -0.036 ρ10 -0.031
Q(10) 15.434 247.2** 116.28** Q(10) 15.489

υ̂2
t ε̂2

t η̂2
t â2

t

ρ1 0.038 0.189** 0.092** ρ1 0.038
ρ2 0.029 0.078** 0.016 ρ2 0.029
ρ3 0.054* -0.094** 0.035 ρ3 -0.054*
ρ4 0.052* -0.080** 0.056* ρ4 -0.052*
ρ5 0.170** 0.151** 0.154** ρ5 0.171**
ρ10 0.065** 0.087** 0.079** ρ10 0.065**
Q1(10) 365.44** 352.30** 600.90** Q1(10) 369.99**

LogL -1439 LogL -1437

Table 2.8: Estimates and sample moments of the residuals of the homoscedastic LL and IMA(1,1) models
fitted to the £/e exchange rate. Q(10) and Q1(10) are the Ljung-Box and the Rodriguez and Ruiz (2005)
test statistics to test for the 10 first autocorrelations being jointly zero. *(**) Significant at 5% (1%)
level.

at. All these volatilities show a common pattern. First, at the beginning of the Euro as a
common currency, the uncertainty about its behavior leads to a highly volatile period. Then
it begins to decrease until the end of 2003, where there is a new increase of the uncertainty
surrounding the exchange rate. Finally, the last two years show a smooth decreasing pattern.
By construction, the information given by the reduced form disturbance, at, cannot provide any
extra information about the sources of these highly volatile and quiet periods. However, from
the volatility of both structural noises, we observe that the contribution of each component to
the total volatility has been different throughout the sample. While the first highly volatile pe-
riod is almost totally driven by the permanent component, the source of volatility in the second
period is shared by the two components. However, we can see that the decreasing behavior of
the last two years is accompanied by a gradual reduction in the contribution of the transitory
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Figure 2.11: Correlogram of squares of the auxiliary residuals, ε̂t and η̂t, corrected by the square of their
sample autocorrelations.

component.

In reference to the IMA-GARCH model, we can see that the overall fit is almost identical to
the LL-GARCH model. Furthermore, it is also clear that the nonlinear model improves the fit
in relation with the homoscedastic IMA model. However, as stated before, the estimated ARCH
coefficient, δ̂1 is smaller than both, α̂1 and γ̂1, suggesting that the level of heteroscedasticity of
the reduced form model is inferior compared to both components. Furthermore, the value of δ̂1

is roughly equal to the approximated value of δ1 = 0.029 obtained after plugging the estimates
of the local level parameters into the system of equations given in (2.25), considered in Section
2.3.

2.5 Conclusions

In this chapter we derive the kurtosis and acf of squares of the reduced forms of two partic-
ular unobserved component models that are of empirical interest, the local level and smooth
trend models. We particularize the expressions of these two moments to the cases in which
the unobserved component disturbances are conditionally heteroscedastic in the form of either
GARCH(1,1) or ARSV(1) processes. We also study the effects of fitting IMA-GARCH or IMA-
ARSV models to conditionally heteroscedastic local level series.

We first show that if the noises of two the unobserved component models considered are
mutually and serially uncorrelated with finite variances, the corresponding reduced form inno-
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Local Level - GARCH(1,1) IMA(1,1) - GARCH(1,1)

Estimates (t-stat) Estimates (t-stat)
α̂0 = 1.00E-04 (10.2) δ̂0 = 0.001 (9.18)
α̂1 = 0.072 (73.6) δ̂1 = 0.026 (4.27)
α̂2 = 0.920 (934.1) δ̂2 = 0.971 (158.6)
γ̂0 = 3.00E-04 (20.0)
γ̂1 = 0.036 (81.8)
γ̂2 = 0.961 (2023.8)

υ̂†
t â†t

Mean 0.018 Mean 0.019
SK 0.144 SK 0.129
κ 3.350 κ 3.333
ρ1 0.003 ρ1 0.009
ρ2 -0.033 ρ2 -0.027
ρ3 0.006 ρ3 0.005
ρ4 -0.012 ρ4 -0.012
ρ5 0.031 ρ5 0.035
ρ10 -0.025 ρ10 -0.025
Q(10) 11.160 Q(10) 10.930

υ̂† 2
t â† 2

t

ρ1 0.001 ρ1 0.006
ρ2 0.011 ρ2 0.006
ρ3 0.009 ρ3 0.013
ρ4 0.004 ρ4 0.002
ρ5 0.073** ρ5 0.069**
ρ10 0.001 ρ10 0.001
Q1(10) 18.78 Q1(10) 18.27

LogL -1372 LogL -1374

Table 2.9: Estimates of the local level model with both noises being GARCH(1,1) and of the IMA(1,1)-
GARCH(1,1) model, fitted to the £/e exchange rate. The sample moments and correlograms reported
refer to the residuals after being standardized by their estimated conditional variances. *(**) Significant
at 5% (1%) level.

vation is also uncorrelated. Even more, if the noises of the local level are serially independent
non-Gaussian processes, the reduced form noise is still uncorrelated although non-independent.
On the other hand, we show that taking differences in series with conditionally heteroscedastic
stochastic trends, weakens the strength of the heteroscedasticity. Consequently, when the sam-
ple size is small, often one cannot reject the null of homoscedasticity in series composed of one
or more conditionally heteroscedastic components. Finally, we illustrate these results by fitting
the two alternative models to the daily £/e exchange rate.
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Figure 2.12: Estimated volatility of the daily £/e exchange rate decomposed by its components.

Summarizing, in this chapter we show that although working with the ARIMA reduced form
model is simpler because there is only one disturbance, working with the unobserved component
model may lead to discover conditionally heteroscedastic structures that could not be apparent
in the reduced form noise. In this regard, next chapter will be devoted to study the effects
on prediction intervals of fitting ARIMA models to conditionally heteroscedastic series with
stochastic levels.



Chapter 3

Prediction intervals of conditionally

heteroscedastic unobserved

component models

3.1 Introduction

In the previous chapter, we study the statistical properties of the reduced form of unobserved
component models when they have conditionally heteroscedastic noises, and compare them to
conditionally heteroscedastic ARIMA models. In this chapter, we analyze and compare the
properties of prediction intervals constructed by each of these two alternative ways of modelling
series with stochastic trends and conditionally heteroscedastic components. Again, we focus
on the two models already considered in Chapter 2, namely, the local level and smooth trend
models given by (1.2) and (1.4), respectively. Given that, as observed in the previous chapter,
imposing either ARSV(1) or GARCH(1,1) processes in the unobserved component disturbances
does not significantly affect the results, we only consider the cases in which the unobserved
component disturbances are GARCH. For the reduced form ARIMA models, the evolution of
uncertainty over time can be incorporated by assuming that at is a GARCH(1,1) process, as we
also show in the previous chapter that the dependence in the second order moments of at can be
well approximated by this model with a somehow weaker structure than these of the unobserved
component noises.

In both alternatives, the amplitudes of the intervals change depending on whether the con-
ditional variance at the moment of forecasting is larger or smaller than the marginal variance.
Denoting by excess volatility, the difference between both variances, we show that in the unob-
served component models, if only the transitory component is heteroscedastic the excess volatil-
ity disappears as the prediction horizon increases. That is, the prediction intervals obtained
with the local level and smooth trend models converge to the intervals of the corresponding
homoscedastic model. However, given that the reduced form IMA model always contains at
least one unit root, the corresponding prediction intervals depend on the excess volatility for all
prediction horizons. Consequently, when the excess volatility is positive (negative), the multi-

44
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step prediction intervals based on the IMA models are too wide (too narrow), when compared
with the intervals based on the corresponding unobserved component model. On the other
hand, when the heteroscedasticity affects the long-run stochastic level, the prediction intervals
constructed using both approaches are very similar.

The rest of this chapter is structured as follows. Section 3.2 derives the prediction intervals for
the local level and smooth trend models with GARCH disturbances and for their corresponding
IMA-GARCH models. Section 3.3 reports the results of several Monte Carlo experiments carried
out to analyze the performance of the prediction intervals constructed from both approaches.
Section 3.4 contains an empirical application. Finally, Section 3.5 concludes by summarizing
the main findings.

3.2 Prediction intervals

In this section, we derive expressions of the prediction intervals obtained when the local level and
smooth trend models with GARCH disturbances are fitted to represent the dynamic evolution of
a heteroscedastic series with stochastic levels. Additionally, we also derive the intervals obtained
when fitting the corresponding IMA-GARCH models. We will see that when the conditional
heteroscedasticity affects only the transitory component there may be crucial differences between
both prediction intervals.

3.2.1 The local level model

Consider first that yt is given by the local level model in (1.2) with GARCH errors (henceforth
LL-GARCH) as defined in (2.8) and that the objective is to forecast yT+k given {y1, y2, ..., yT }.
It is well known that if the criterium is to minimize the mean squared forecast error (MSFE),
then the optimal point predictor of yT+k, denoted by ŷT+k, is its conditional mean, i.e. ŷT+k =

E
T

(yT+k), where the T under the expectation means that it is conditional on the information

available at time T . Note that from (1.2), it is easy to see that E
T

(yT+k) = E
T

(µT+k) = E
T

(µT ) ≡
µ̂T . Furthermore, using (2.8) it is possible to derive the variances of εT+k and ηT+k conditional
on {y1, y2, ..., yT } as follows

E
T

(ε2
T+k) = E

T

[
(ε†T+k)

2
]
E
T

(hT+k)

= α0 + (α1 + α2) E
T

(hT+k−1)

= α0

[
1− (α1 + α2)k−1

1− α1 − α2

]
+ (α1 + α2)k−1

E
T

(hT+1)

= σ2
ε + (α1 + α2)k−1(ĥT+1 − σ2

ε), k ≥ 1, (3.1a)

where ĥT+1 = E
T

(hT+1) and σ2
ε =

α0

1− α1 − α2
. By analogy, it is straightforward to show that

E
T

(η2
T+k) = σ2

η + (γ1 + γ2)k−1(q̂T+1 − σ2
η), k ≥ 1, (3.1b)
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where q̂T+1 = E
T

(qT+1) and σ2
η =

γ0

1− γ1 − γ2
. Using the expressions given in (3.1), it is easy to

show that the MSFE of ŷT+k is given by

MSFE(ŷT+k) = E
T

[
(yT+k − ŷT+k)2

]
= E

T

[
(µT + ηT+1 + . . . + ηT+k + εT+k − µ̂T )2

]
= Pµ

T + σ2
ε + k σ2

η +
1− (γ1 + γ2)k

1− (γ1 + γ2)
(
q̂T+1 − σ2

η

)
+ (α1 + α2)k−1

(
ĥT+1 − σ2

ε

)
, k = 1, 2, ... (3.2)

where Pµ
T = E

T
[(µT − µ̂T )2]. Note that the LL-GARCH model is not conditionally Gaussian

even when the standardized disturbances, ε†t and η†t , are Gaussian. Therefore, obtaining the
conditional expectations involved in the MSFE is not straightforward. Harvey et al. (1992)
show that, in practice, it is possible to obtain approximations of the quantities µ̂T , Pµ

T , ĥT+1

and q̂T+1 in (3.2) by using an augmented version of the Kalman Filter.

Expressions (ĥT+1 − σ2
ε) and (q̂T+1 − σ2

η) in (3.2) may be interpreted as measures of the
excess volatility at the time of forecasting, with respect to the marginal variance in both noises.
Note that the MSFE of the homoscedastic local level model is given by the first three terms of
(3.2). Furthermore, given that α1 + α2 < 1, the MSFE of the LL-GARCH becomes a linear
function of k in the long run, with the same slope as its homoscedastic counterpart, but with
a different intercept due to the contribution of the fourth term in (3.2). However, for short
and medium horizons, depending on whether the excess kurtosis is negative or positive, the
influence of the excess volatility in both noises leads to a MSFE smaller or greater than that of
the homoscedastic local level model.

Once ŷT+k and its MSFE are available, one can obtain prediction intervals for yT+k by
assuming that the distribution of the k-steps-ahead prediction errors is Normal1. Therefore, the
approximated (1− α)% prediction intervals for the LL-GARCH model are given by

µ̂T ± Zα/2

√
MSFE(ŷT+k), (3.3)

where MSFE(ŷT+k) is given by (3.2) and Zα/2 is the α/2 quantile of the standard Normal
density. On the other hand, when assuming homoscedasticity, the prediction intervals are given
by

µ̂T ± Zα/2

√
Pµ

T + σ2
ε + k σ2

η. (3.4)

It is important to note that there is a significant difference in the behavior of the prediction
intervals in (3.3) depending on whether the conditional heteroscedasticity affects the long or
the short-run components. An excess volatility in the permanent component affects the MSFE
for all horizons while the effect of an excess volatility in the transitory component vanishes
in the long run. Therefore, when the heteroscedasticity only affects the transitory noise, i.e.

1As we commented before, the prediction error distribution is not Gaussian. However, the results of Pascual

et al. (2006) suggest that it could be well approximated by a Gaussian distribution.
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γ1 = γ2 = 0, the prediction intervals in (3.3) converge to those of the homoscedastic model
in (3.4). However, when the long run component is heteroscedastic, depending on the sign of
the excess volatility, the prediction intervals of the heteroscedastic local level model are wider
or thinner than those obtained in the homoscedastic model for all prediction horizons. As an
illustration, Figure 3.1 plots the prediction intervals obtained for a series simulated by the local
level model with parameters α0 = 0.05, α1 = 0.10, α2 = 0.85, γ1 = γ2 = 0 and qη = 1, i.e. only
εt is heteroscedastic. The time point when the prediction is made is selected in such a way that
the excess volatility is positive. Assuming that the parameters are known and using the Kalman
Filter proposed by Harvey et al. (1992) to approximate the MSFE, we construct the prediction
intervals for the LL-GARCH (in solid lines) as in (3.3) and for the homoscedastic model (in
dash-dotted lines) as in (3.4). Note that the LL-GARCH model produces wider intervals for
short horizons than the homoscedastic model, because the conditional variance is higher than
the marginal. However, since the shock producing the positive excess volatility is transitory, the
prediction intervals of the LL-GARCH stick to those of the homoscedastic model as k increases.
Figure 3.1 also plots possible trajectories of yT+k, represented by the vertical clouds of points,
in order to have a visual insight of the coverage of the prediction intervals for this particular
series.

Figure 3.1: 95% Prediction intervals for a series simulated from the local level model with the transitory
component being GARCH(1,1), with α0 = 0.05, α1 = 0.10, α2 = 0.85, and qη = 1. The time point when
the forecast is made is selected in a highly volatile period. The vertical clouds of points represent possible
trajectories of yT+k, given information at time T .

Consider now that instead of using the LL-GARCH, the corresponding IMA(1,1)-GARCH(1,1)
model given by (2.1) and (2.28) is fitted to the series of interest. In this case, assuming that the
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within sample innovations are observable, the optimal predictor of yT+k given the information
available at time T is given by

ŷT+k = yT + θaT , k = 1, 2, ... (3.5)

with MSFE

MSFE(ŷT+k) =


σ2

a + (σ2
T+1 − σ2

a), k = 1[
(1 + θ)2(k − 1) + 1

]
σ2

a +[
(1+θ)2−(δ1+δ2)k−1(θ(2+θ)+δ1+δ2)

1−(δ1+δ2)

]
(σ2

T+1 − σ2
a), k = 2, 3, ...

(3.6)

Once more, (σ2
T+1 − σ2

a) is a measure of the excess volatility of at. Note that the MSFE in
(3.6) can also be separated into a linear and a nonlinear part, defined by the first and second
terms, respectively. It is clear from (3.6) that as k increases, the MSFE(ŷT+k) is also a linear
function of the horizon. However, as long as the excess volatility is different from zero, the path
of MSFE in the IMA-GARCH model is always above or below the path of the MSFE in the
corresponding homoscedastic IMA model. This implies that the sign of the excess volatility at
time T determines if the IMA-GARCH prediction variance will be smaller or larger than the
prediction variance of the homoscedastic IMA for all prediction horizons. In this sense, the
behavior is similar to that of the local level model with heteroscedastic long-run disturbances.

As in the LL-GARCH model, k-steps-ahead intervals based on the IMA-GARCH model can
be obtained by assuming that the forecast errors are Normally distributed for all k. In this case,
the approximated (1− α)% prediction intervals for the IMA-GARCH model are given by

yT + θ aT ± Zα/2

√
MSFE(ŷT+k), (3.7)

where the MSFE(ŷT+k) is given by (3.6). Finally, we can construct the prediction intervals for
future values of yT+k by assuming an homoscedastic IMA model. We do not further consider
these intervals as they are identical to the ones obtained using the homoscedastic local level
model in (3.4).

Going back to the illustration in Figure 3.1, we also plot the IMA-GARCH prediction in-
tervals (in dashed lines) from (3.7). The values of θ and δ0 in the IMA-GARCH model have
been obtained by using the functions that relate them with the signal-to noise ratio, qη, and
the marginal variance, σ2

ε , while the parameters of the GARCH process, δ1 and δ2, have been
recovered from α1 and α2 following the procedure described in Chapter 2. By looking at the
resulting intervals, we observe that they have almost the same length as those of the LL-GARCH
for very short horizons, but they become wider as k increases. This behavior is the consequence
of taking the transitory shock as permanent, so that the positive excess volatility leads to a
higher MSFE and wider prediction intervals.

3.2.2 The smooth trend model

Consider now that yt is given by the smooth trend model in (1.4), with εt being a GARCH(1,1)
process (henceforth ST-GARCH). In this case, the optimal point predictor is given by

ŷT+k = µ̂T + k β̂T , k = 1, 2, ... (3.8)
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where β̂T = E
T

(βT ). Note that, in this case, the optimal point predictor grows linearly with the

time horizon, k. From (3.8) we find the following expression of the MSFE when εt is GARCH,

MSFE(ŷT+k) = Pµ
T + k2 P β

T + 2k Pµ,β
T +

k(k − 1)(2k − 1)
6

σ2
ξ + E

T
[ε2

T+k]

= Pµ
T + k2 P β

T + 2k Pµ,β
T +

k(k − 1)(2k − 1)
6

σ2
ξ + σ2

ε

+ (α1 + α2)k−1 (ĥT+1 − σ2
ε), k = 1, 2, ..., (3.9)

where P β
T = E

T
[(βT − β̂T )2] and Pµ,β

T = E
T

[(µT − µ̂T )(βT − β̂T )]. Note that the MSFE of the

homoscedastic smooth trend model is given by the first five terms of (3.9), and the last term
depends on the excess volatility. However, the long run predictions of the homoscedastic and
GARCH smooth trend model will have the same MSFEs since the heteroscedasticity comes only
from the transitory component. Following the same arguments of Harvey et al. (1992) for the
LL-GARCH model, it is possible to obtain estimates of the conditional moments involved in
(3.8) and (3.9) by using an augmented version of the Kalman Filter. Then, it is also possible to
construct approximated (1− α)% prediction intervals for the ST-GARCH model as follows,

µ̂T + k β̂T ± Zα/2

√
MSFE(ŷT+k), (3.10)

where MSFE(ŷT+k) is given by (3.9). On the other hand, the homoscedastic prediction interval
are constructed as follows,

µ̂T + k β̂T ± Zα/2

√
Pµ

T + k2 P β
T + 2k Pµ,β

T +
k(k − 1)(2k − 1)

6
σ2

ξ + σ2
ε . (3.11)

As an illustration, Figure 3.2 presents a case in which the prediction intervals of simulated
series are calculated at a highly volatile period. For the simulations, we set σ2

ε = 1, α1 = 0.15,
α2 = 0.8, and σ2

ξ = 0.5 (i.e qξ = 0.5).

Again, if we are now interested in fitting the IMA(2,2)-GARCH(1,1) of (2.2) and (2.28), then
the optimal predictor is given by

ŷT+k =

 2yT − yT−1 + θ1 aT + θ2 aT−1, k = 1

k ŷT+1 − (k − 1)(yT − θ2 aT ), k = 2, 3, ...
(3.12)

with MSFE

MSFE(ŷT+k) =


σ2

a + (σ2
T+1 − σ2

a), k = 1

(k − 1)
[
(1− θ2)2 + k (2k−1)+6(1−θ2) k

6 (1 + θ1 + θ2)2
]
σ2

a

+
∑k−1

j=0 B2
j (δ1 + δ2)k−1−j (σ2

T+1 − σ2
a), k = 2, 3, ...

(3.13)

where B0 = 1 and Bj = j (1+θ1+θ2)+(1−θ2), j = 1, 2, ..., k−1. In this case, the first term is the
linear part of the MSFE and the second the nonlinear one, defined as a function of the excess
volatility and the prediction horizon, k. When compared to the MSFE of the smooth trend
model, the nonlinear term does not vanish when k increases. Therefore, as in the IMA(1,1)-
GARCH case, any shock that leads to an excess volatility different from zero is permanent and
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Figure 3.2: Prediction intervals of an ST-GARCH series, with α1 = 0.15, α2 = 0.8, and qξ = 0.5.
The time point is selected in a highly volatile period. The vertical clouds of points represent possible
trajectories of yT+k, given information at time T .

thus the MSFE of the heteroscedastic model will differ from that of the homoscedastic one
for all prediction horizons. By analogy to the IMA-GARCH case in the local level model, the
prediction intervals constructed from (3.13) are given by

ŷT+k ± Zα/2

√
MSFE(ŷT+k), (3.14)

with ŷT+k and MSFE(ŷT+k) defined as in (3.12) and (3.13), respectively. Figure 3.2 shows the
IMA-GARCH prediction intervals in dotted lines. Again, as in the local level case, it seems that
the IMA-GARCH prediction intervals are too wide in terms of the nominal coverage. Indeed,
they contain almost all observations for all k.

Summarizing, in the models where the transitory component, εt, is the only heteroscedastic
component, the shocks to the variance are purely transitory. Consequently, the homoscedastic
and the unobserved component with GARCH noises produce prediction intervals that stick
to each other as k increases. However, depending on the sign of the excess volatility, the
ARIMA-GARCH counterparts may be wider or thinner than the intervals obtained with the
corresponding unobserved component model. This is due to its incapacity of distinguishing
whether the heteroscedasticity affects the long or the short run components, and it may lead
to significant differences between the two prediction intervals, specially for medium and long
term. In the next section we will study this issue in depth by performing several Monte Carlo
experiments and reporting the nominal coverage of each prediction intervals.
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3.3 Forecasting Performance

Having seen that the conclusions for the LL-GARCH model can be applicable for the ST-GARCH
model, in this section we will focus on the former one. In order to analyze the performance of
the prediction intervals described in the previous section, we calculate the observed coverage of
these intervals by generating B = 1000 trajectories of yT+k conditional on {y1, y2, ..., yT }. Then,
we repeat this procedure for 1000 series simulated from the LL-GARCH. As an example, Figure
3.3 reports the observed coverage of the 95% prediction intervals shown in Figure 3.1. Note that
the coverage of the three prediction intervals is different across models and across the forecast
horizons k.

Figure 3.3: Observed coverage measured as the percentage of trajectories within the 95% prediction
intervals of the three models selected. The series is simulated from the local level model with the
transitory component being GARCH, and the time point corresponds to a highly volatile period; see
Figure 3.1.

For the Monte Carlo simulations, we consider four designs depending on whether the tran-
sitory or the permanent components are heteroscedastic, and on the value of the signal-to-noise
ratio. For each design, we construct 90% and 95% prediction intervals from the estimated
LL-GARCH model using the augmented Kalman Filter, the homoscedastic LL model and the
IMA-GARCH model as given in (3.3), (3.4) and (3.7), respectively. In the first two designs, the
transitory component is heteroscedastic while the long-run component is homoscedastic. Their
parameters are α0 = 0.05, α1 = 0.10 and α2 = 0.85 with qη = 0.5 in the first model and qη = 1 in
the second. In the other two designs, the long-run component is heteroscedastic with γ0 = 0.05,
γ1 = 0.10, γ2 = 0.85 and qη = 1 in the third model and qη = 2 in the last one. The prediction
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horizons considered are k = 1, 2, 6, 12 and 24.

Note that, in practice, the parameters needed to construct the prediction intervals in (3.3),
(3.4) and (3.7) should be estimated. Consequently, in order to compare the effects of estimation
on the performance of prediction intervals, we construct them by assuming known parameters
and by substituting the parameters by their QML estimates. To estimate the parameters of
the heteroscedastic local level model, we follow the estimation approach proposed by Harvey
et al. (1992). Tables 3.1 and 3.2 report the mean absolute deviation (MAD) of the observed
coverages with respect to the nominal, for the two models with heteroscedasticity in the transi-
tory component and the two models with heteroscedastic long-run component, respectively. The
first conclusion from both tables is that regardless of the model and coverage considered, the
deviations between the empirical and nominal coverages are in general smaller as the prediction
horizon increases. However, the conclusions arising from Tables 3.1 and 3.2 are rather different.

Consider first, the results reported in Table 3.1 for the two models in which the long-run
component is homoscedastic. In this case, if the parameters are known, we can observe that
the homoscedastic models have the largest deviations between empirical and nominal coverages
only when predicting in the short run for k = 1. However, when the prediction horizon is
larger, constructing the intervals using the IMA model leads to the worst coverages. This is due
to the inability of the IMA-GARCH model to represent the dynamics of series in which only
the transitory component is heteroscedastic. Also note that when the forecast horizon is large
(k = 24), the deviations between the empirical and nominal coverages of the homoscedastic
and LL-GARCH models are similar. Obviously, when the parameters are estimated, we observe
larger deviations. However, the conclusions about the comparison among intervals are the same
as those obtained assuming known parameters.

We consider now the results reported in Table 3.2 for the models in which the short-run
component is homoscedastic. In this case, regardless of whether the parameters are known or
estimated, the homoscedastic prediction intervals are worse than any of the two intervals con-
structed with the heteroscedastic models for all prediction horizons. Furthermore, comparing
the heteroscedastic intervals between them, we observe that their MAD are very similar, mainly
when the parameters are estimated. Therefore, when the long-run component is heteroscedastic,
constructing the prediction intervals using the LL-GARCH model, only leads to slight improve-
ments in the performance of prediction intervals with respect to constructing them using the
simpler IMA-GARCH models. Once more, the deviations between empirical and nominal cov-
erages are larger when the parameters are estimated.
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The information in Tables 3.1 and 3.2 allows us to compare the alternative models in terms of
which generates smallest deviations between the nominal and empirical coverages. However, it
does not contain any information on the sign of these deviations. Therefore, we cannot conclude
whether we are obtaining intervals that cover more or less than the nominal. Obviously, the
sign of the deviations depends on the sign of the excess volatility at the time the prediction is
made. Consequently, we also compute the mean coverage of each model and prediction horizon,
conditional on whether the excess volatility is positive or negative. Figure 3.4 plots the averaged
empirical coverages against the horizon k, computed in a volatile period, when the marginal
variance is smaller than the conditional (top row) and in a quiet period in which the marginal
is larger than the conditional (bottom row) for the model in which the short-run component
is heteroscedastic and qη = 0.5. Figure 3.4 shows that in both periods, the coverage of the
homoscedastic model tends to the nominal when the prediction horizon increases. However, in
the short-run, the coverage of the homoscedastic prediction intervals is smaller (larger) than the
nominal when the excess volatility is positive (negative). The short-run coverages of the two
heteroscedastic intervals are better than those of the homoscedastic intervals, although there
still exists a gap between the empirical and nominal coverages.2. On the other hand, the long-
run coverages of the IMA-GARCH intervals are well above (below) the nominal when the excess
volatility is positive (negative). As we mentioned above, this model incorporates the unit root
and it cannot cope with the fact that only the transitory component is heteroscedastic. Finally,
the average coverages of the LL-GARCH intervals are close to the nominal for all the prediction
horizons considered.

Finally, note in Figure 3.4 that obtaining the prediction intervals with estimated parameters
imply larger deviations of the empirical with respect to the nominal coverages. However, the
conclusions on the comparative performance of the three intervals considered in this paper
are the same. The only point worth to be made in this case is that estimating the parameters
renders IMA-GARCH intervals with closer (further) coverages from the nominal when the period
of forecasting is quiet (volatile) than those obtained when the parameters are known. This is
due to the fact that when the prediction is made in a quiet period, the IMA-GARCH intervals
tend to be too thin in order to have the assumed coverage. However, estimating the parameters
generate wider intervals, which obviously have coverages closer to the nominal. On the other
hand, when forecasting in a volatile period, estimating the parameters still yields wider intervals,
which produce coverages even further from the nominal than when the parameters are known.

3.4 An empirical illustration

In this section, we construct and evaluate out-of-sample prediction intervals of two real time
series. The series selected are the seasonally adjusted monthly US inflation rate and the daily
Pound/Euro (£/e) exchange rate already described in Chapter 2. The inflation rate is defined as

2This happens presumably because the prediction intervals are based on quantities computed by running

the Kalman filter as if the model were conditionally Gaussian while, in fact, the series are generated from the

LL-GARCH model, which is not conditionally Gaussian.
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Figure 3.4: Mean observed coverage in volatile (positive excess volatility) and quiet (negative excess
volatility) periods. The series are generated from the local level model with a GARCH(1,1) noise only in
the transitory component. The parameters are given by α1 = 0.10, α2 = 0.85 and qη = 0.5.

the log-difference of the monthly personal consumption expenditure (PCE) deflator, multiplied
by 100 to have percentage rates, and it has been downloaded from the EcoWin database. As
done in the last chapter, an intervention analysis prior to estimation was carried out to account
for possible outliers. The period analyzed for this series spans 49 years, from February 1959
to May 2008, thus containing T = 592 observations. On the other hand, the exchange rate
series is defined as 100 times the logarithm of the daily closing price of one Pound per unit
of Euro. For this series, we use a different sample compared with that used in Chapter 2,
covering from 1993 to 2003, with T = 2589 observations. We decide to work with this sample
to evaluate the forecasting performance of the series immediately after the beginning of the
Euro as a common currency. Figure 3.5 plots the two series, together with their corresponding
sample autocorrelations of the observations in levels and in squares. Having shown in the last
chapter that the local level and IMA(1,1) models provide a good fit to the exchange rate series,
the correlogram of the first difference of the inflation rate seems to support the use of the same
models for this series.

We proceed as follows. We use the first T − R observations for the in-sample estimation
of the three models, namely, the homoscedastic local level, the LL-GARCH and IMA-GARCH
models, and construct the prediction intervals k steps ahead, conditional on the estimated
parameters. Then, we move the sample window one observation at a time, re-estimate the
models and construct again the prediction intervals conditional on the new estimates. At the
end of the procedure, we have R− k k-steps-ahead prediction intervals for each model and each
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Figure 3.5: The daily £/e exchange rate, from 1993 to 2003, and the monthly seasonally adjusted US
inflation rate, from 1959 to 2008.

series. With them, we find the out-of-sample observed coverage, defined as the proportion of
actual observations laying within the intervals. We fix R = 450 in the exchange rate series (from
January 2000 to September 2003) and R = 90 in the inflation rate series (from Dec 2000 to May
2008). In the inflation series, given that the variance of the permanent component is very small
relative to that of the transitory component (i.e. the estimated q̂η is very small), we assume that
the permanent component noise, ηt, is homoscedastic and include GARCH(1,1) effects only in
the transitory component, εt. On the other hand, we include GARCH effects in both noises of
the local level model fitted to the exchange rate series.

Table 3.3 shows the in-sample estimation results, with the first T−R observations. Note that
the estimated signal-to-noise ratio for the exchange rate series is much larger than that of the
inflation series. This implies that the volatility shocks in the permanent (transitory) component
will have a great impact in the exchange rate (inflation rate) series. Figure 3.6 plots the series of
time-varying volatility throughout the sample, in order to assess the size of the excess volatilities
in each component with respect to its marginal variance, represented by the horizontal dashed
lines. Note that, in the exchange rate series, the volatility in the transitory component, ĥt, is
important only in the first part of the sample. Consequently, in the evaluation period, after the
vertical dotted line, all volatility shocks are driven by the permanent component. On the other
hand, the transitory component in the inflation series is the only heteroscedastic one. In other
words, (q̂t − σ2

η) = 0 for all t, so that the MSFE of the LL-GARCH model will differ from that
of the homoscedastic model only when (ĥt − σ2

ε) 6= 0. As we can see from the plot of ĥt, this
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difference is positive in almost all months of the evaluation period.

Pound/Euro exchange rate US inflation rate

LL-GARCH IMA-GARCH LL-GARCH IMA-GARCH
σ̂2

ε = 8.3× 10−2 σ̂2
a = 34.1× 10−2 σ̂2

ε = 16.1× 10−3 σ̂2
a = 21.7× 10−3

σ̂2
η = 19.6× 10−2 θ̂ = -0.243** σ̂2

η = 14.9× 10−3 θ̂ = -0.738**
α̂1 = 0.131** δ̂1 = 0.049** α̂1 = 0.193** δ̂1 = 0.141**
α̂2 = 0.866** δ̂2 = 0.942** α̂2 = 0.738** δ̂2 = 0.803**
γ̂1 = 0.042** γ̂1 = –
γ̂2 = 0.948** γ̂2 = –

Table 3.3: Estimates of the LL-GARCH and IMA-GARCH models fitted to the £/e exchange rate and
the US inflation rate. *(**) Significant at 5% (1%) level.

Figure 3.6: Conditional volatilities of £/e exchange rate and the US inflation rate series (in solid lines),
estimated from the local level with GARCH noises. ht and qt are the conditional variances of the
transitory and permanent components, respectively. The estimated marginal variance of each component
is represented by the horizontal dashed line. Finally, the vertical dotted line indicates the starting point
of the evaluation period.

Conditional on the estimated parameters of each model, we find the approximated (1−α)%
prediction intervals for horizons running from k = 1 to k = 36 of the two heteroscedastic and
the homoscedastic models given in (3.3), (3.4) and (3.7). We consider α = 5% and 10%. As an
illustration, Figure 3.7 plots the approximated 90% prediction intervals for the US inflation rate
in June 2003, a period of high volatility, i.e. (ĥt−σ2

ε) > 0. Observe that the homoscedastic model
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produces much narrower prediction intervals than those produced by the two heteroscedastic
models, LL-GARCH and IMA-GARCH, for small k. However, as the horizon increases, the LL-
GARCH prediction intervals stick to those of the homoscedastic local level model, while those
of the IMA-GARCH become wider. As we have seen with the simulated data, this behavior is
explained by that fact that the IMA-GARCH takes a transitory shock as permanent. In this
case, the shock is positive, so that the IMA-GARCH prediction intervals are always wider than
those of the LL-GARCH when k is relatively large.

Figure 3.7: 90% Prediction intervals of the US inflation rate obtained in June 2003 for the three models
considered.

Finally, we calculate the observed coverage of each prediction interval in both series. Table
3.4 reports the results for some selected horizons. For the inflation series, we choose k =
1, 3, 6, 12, 24 and 36. Note in this case that if the nominal coverage is 90% and the prediction
horizon is k = 1, 3, or 6, the coverage of the homoscedastic intervals is smaller than the nominal,
while the two heteroscedastic models have similar coverages close to 90%. However, for larger
horizons, the three models generate intervals with very similar coverages, which are clearly larger
than the nominal 90%. When the nominal coverage is 95%, the conclusions are similar, although
the coverages of the LL-GARCH intervals are slightly closer to the nominal, even when k = 12
or 24. Therefore, estimating the conditionally heteroscedastic models improves the coverage,
specially for short and medium horizons. As the estimated value of the signal-to-noise ratio, qη,
is very small (around 0.1), we cannot expect big differences between the LL and the IMA models
(in the limiting case where qη = 0, the local level component model collapses into a white noise
process). However, estimating directly the conditionally heteroscedastic component seems to
work better for medium and long horizons.
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For the exchange rate series, we select k = 1, 2, 5, 10, 20 and 40. In this case, given that
the evaluation period is mainly characterized by having negative excess volatility, i.e. the con-
ditional variance smaller than the marginal one, the prediction intervals of the homoscedastic
model overestimates the nominal coverage, for all k. With respect to the two heteroscedastic
models, they produce prediction intervals with almost identical empirical coverage. This sup-
ports the result found with simulated data, where the prediction intervals of the LL-GARCH
and IMA-GARCH models have a very similar performance when only the permanent compo-
nent is heteroscedastic. Finally, note also that the two heteroscedastic models produce more
accurate prediction intervals than the homoscedastic model for all k, because the latter is unable
to capture the volatility shocks that do not vanish with k, as they come from the permanent
component.

Monthly US inflation rate

Homoscedastic LL-GARCH IMA-GARCH
Horizon 90% 95% 90% 95% 90% 95%

h = 1 81.11 88.89 88.89 91.11 90.00 91.11
h = 3 82.95 87.50 88.64 92.05 87.50 92.05
h = 6 84.71 91.76 89.41 94.12 90.59 94.12
h = 12 91.14 92.41 91.14 94.94 92.41 96.20
h = 24 95.52 97.01 94.03 95.52 94.03 98.51
h = 36 98.18 100.00 98.18 98.18 98.18 100.00

Daily Pound/Euro exchange rate

Homoscedastic LL-GARCH IMA-GARCH
Horizon 90% 95% 90% 95% 90% 95%

h = 1 92.89 96.89 91.56 96.44 92.67 96.89
h = 2 92.43 95.77 90.65 95.10 90.20 94.43
h = 5 93.50 96.41 92.15 95.96 92.38 95.74
h = 10 93.88 97.96 91.38 96.60 91.16 96.15
h = 20 96.06 99.30 93.97 97.45 93.97 97.68
h = 40 96.35 100.00 93.67 96.84 93.92 97.32

Table 3.4: Empirical coverage of the Pound/Euro exchange rate and the US inflation rate, measured as
the percentage of observations laying within the 90% and 95% prediction intervals. The out-of-sample
period goes from January 2000 to September 2003 (450 observations) in the exchange rate and from
December 2000 to May 2008 (90 observations) in the inflation series. The values of k have been selected
to show relevant prediction horizons, such as a month, a quarter or a year ahead in the inflation series
and a day, a week, a month or two month ahead in the exchange rate series.



3.5. Conclusions 61

3.5 Conclusions

In this chapter, we analyze the differences between prediction intervals for conditionally het-
eroscedastic series with stochastic trends, constructed using either unobserved component mod-
els with GARCH disturbances or the alternative ARIMA-GARCH model. In particular, we
consider the local level and smooth trend models with GARCH(1,1) disturbances and their
corresponding IMA-GARCH models.

We have seen that, in the local level and the smooth trend models where the transitory
component, εt, is the only heteroscedastic component, the shocks to the variance are purely
transitory. Consequently, the prediction intervals based on the homoscedastic and heteroscedas-
tic unobserved components models stick to each other for large prediction horizons. However,
depending on the sign of the excess volatility, the ARIMA-GARCH counterparts may be wider
or thinner than the intervals obtained with the corresponding unobserved component model.
This is due to its incapacity of distinguishing whether the heteroscedasticity affects the long or
the short run components, and it may lead to significant differences between the two prediction
intervals, specially for medium and long term. Therefore, the use of reduced form ARIMA mod-
els to construct prediction intervals may be inappropriate to capture the underlying uncertainty
of the heteroscedastic components. These results are illustrated with simulated data and with
two real time series of the Pount/Euro exchange rate and the US monthly inflation rate.



Chapter 4

Modelling inflation: conditional

heteroscedasticity versus

time-varying parameters

4.1 Introduction

Some recent literature on forecasting inflation has been applying unobserved component mod-
els with conditionally heteroscedastic noises to describe and predict the dynamic evolution of
monthly prices; see, for example, Stock and Watson (2002, 2007), Cecchetti et al. (2007) and
Broto and Ruiz (2009) for references. These models are very flexible and lead to predictions of
future prices with adequate properties. However, as it was stated in previous chapters, dealing
with conditionally heteroscedastic unobserved component models could be complicated due to
the presence of several disturbances and the consequent difficulties involved in their estimation.
Therefore, many authors represent the dynamic evolution of inflation by fitting reduced form
ARIMA models with conditionally heteroscedastic errors; see, for example, Bos et al. (2007).
In Chapter 2 we have seen that, although the noise of the reduced form ARIMA model is not a
GARCH process, it can be well approximated by it. On the other hand, conditional heteroscedas-
ticity has been related with ARIMA models with time-varying parameters. For example, Stock
and Watson (2007), in a very interesting and influential paper, propose to represent the inflation
by the local level model with non-stationary stochastic volatility disturbances. They argue that
the presence of heteroscedasticity in the components, generates a reduced form MA(1) model
with a time-varying MA parameter. When the models for the conditional variances of the unob-
served components are stationary, we show in Chapter 2 that the parameters of the conditional
mean of the reduced form ARIMA model are constant over time. This apparent contradiction
may be explained by the fact that Stock and Watson (2007) are assuming a non-stationary het-
eroscedastic model for the unobserved noises, while our results are given under the assumption
of stationarity. In general, if the marginal variances are constant, the presence of conditional
heteroscedasticity in the components does not affect the signal-to-noise ratio. Consequently, it
does not affect the parameters governing the conditional mean of the process. Therefore, the

62
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point predictions obtained by fitting the unobserved component and the reduced form ARIMA
models are similar. However, structural breaks in the marginal variances of the components can
generate changes in the signal to noise ratios and, consequently, the reduced form parameters
will also change.

In this chapter, we focus on the local level model and analyze the evolution of the reduced
form MA parameter when the marginal variances of the local level noises have structural breaks.
We consider two different assumptions about the conditional second order moments of the noises:
i) they are homoscedastic, ii) they are conditionally heteroscedastic but stationary. We show
that the evolution of the MA parameter, θ, detected by Stock and Watson (2007) can be only
attributed to breaks and not to the stationary evolution of the conditional variances. However,
given that the random walk model assumed for the log-volatilities of the components is well
designed to deal with structural breaks, they are able to explain changes in the MA parameters
with the conditionally heteroscedastic local level model.

We also perform an empirical analysis of the seasonally adjusted US inflation rate, measured
as the personal consumption expenditure deflator (PCE). We fit different unobserved component
and ARIMA models to the series. Then, we obtain out-of-sample point and interval predictions
and evaluate the relative forecasting performance of both models. The point forecast evaluation
has already been performed by many authors; see, for example, Nelson and Schwert (1977),
Atkeson and Ohanian (2001), Fisher et al. (2002), Orphanides and van Norden (2005) and Stock
and Watson (2007). In this chapter, we also measure the forecasting performance by assessing the
accuracy of prediction intervals, which may be as important as the point predictions, specially for
policy makers. We show that the heteroscedastic models provide point and interval forecasts that
are more accurate than their homoscedastic counterparts. Additionally, the local level model
with the transitory component being GARCH(1,1) and the noise of the permanent component
having a break in its marginal variance, produces the most accurate point forecasts for almost
all horizons.

The rest of the chapter is structured as follows. In Section 4.2, we briefly describe the
local level model with heteroscedastic disturbances and then we study with simulated data
the properties of the rolling window estimate of the IMA parameter coming from series with
highly persistent noises in either or both unobserved components. We focus on whether the
time-varying IMA model is able to capture the dynamics of the evolving volatility given by the
conditionally heteroscedastic local level model. To this end, we carry out several Monte Carlo
exercises. In Section 4.3, we perform a forecasting exercise with a US inflation series to study
whether fitting unobserved component models will provide more accurate results in terms of
point and interval forecasts, when compared with the rolling estimation or some other reduced
form IMA models. Finally, Section 4.4 concludes.

4.2 The local level model and the rolling window IMA approach

One useful model to represent the dynamics of seasonally adjusted inflation is the local level
model. Nelson and Schwert (1977) is an early reference that shows the good forecasting per-
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formance of the IMA model (the reduced form of the local level model) fitted to monthly US
inflation observed from 1953 to 1971. More recently, Broto and Ruiz (2009), Cogley and Sargent
(2007), Müller and Watson (2006) and Stock and Watson (2002, 2007) show the usefulness of
the local level model for forecasting US inflation. Recall that the local level model assumes that
the series of interest, yt, is composed by an underlying stochastic level that contains a unit root,
µt, and a transitory component, εt, as in (1.2). The reduced form of this model is obtained
by looking for the ARMA model that has the same autocorrelation function of ∆yt. If σ2

ε and
σ2

η are both finite, then the acf of ∆yt is given by (2.5). Note that qη (from now on, just q),
obtained as the ratio of the marginal variances of the long run and transitory components, plays
a fundamental role in determining the size of the first order autocorrelation of ∆yt. By looking
at the acf of the local level model, it is straightforward to show that the reduced form model of
yt with a unique disturbance is an ARIMA(0,1,1) whose parameters are determined by q and
σ2

ε in the following way

θ =
(q2 + 4q)1/2 − 2− q

2
, (4.1a)

σ2
a = −σ2

ε

θ
. (4.1b)

Note that if the marginal variances are finite and constant over time in (4.1), then the MA
parameters will also be constant. However, we cannot ensure that either θ or σ2

a remain constant
whenever some of the noises in the local level model are nonstationary in second moments. In
this section we study this issue with the aid of simulated data.

4.2.1 Constant marginal variances

In Chapter 2 we have already illustrated with simulated time series that when the local level
noises have finite and constant marginal variances then the value of θ is constant, regardless
of whether these noises are conditionally heteroscedastic. As a corollary of this result, we can
conclude that when the parameter θ evolves over time, this evolution cannot be attributed to
the presence of stationary conditional heteroscedasticity in the components but to structural
breaks in the marginal variances or to other causes generating non-constant marginal variances.

Obviously, even when the parameter θ is truly constant over time, if we estimate this param-
eter with a rolling window, we will obtain estimates that evolve over time around θ. To illustrate
the kind of evolution that could be observed, we generate four series of size T = 500 with the
homoscedastic local level model and find the rolling window estimates of the MA parameter,
θ̂rol, using a window of 100 observations. We use this setup to resemble the case of a monthly
series observed during approximately 40 years, and using a rolling window of around eight years,
commonly used for fitting inflation series. Figure 4.1 shows these estimates, together with the
implied θ coming from the estimation of q. The bands correspond to ±2 asymptotic standard
deviations of θ̂rol. We choose q = 0.5 (θ = −0.5) for this exercise. Note that the resulting θ̂rol

have a very persistent dynamic behavior, resembling a nonstationary process. In fact, the larger
the window size, the higher the autocorrelations between consecutive values of θ̂rol and therefore
the more persistent is the whole process. This happens because a shock at a given time point on
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the series will persist for at least 100 values of the θ̂rol until the rolling window does not include
this observation.

Figure 4.1: Rolling window MA estimate, θ̂rol, and the implied θ of series simulated from the homoscedas-
tic local level model with q = 0.5 (θ = −0.5). The bands correspond to ±2 standard deviations of θ̂rol.

The above results are obtained regardless of the noises being homoscedastic or heteroscedas-
tic, as far as the series are stationary with constant marginal variances. If, in particular, we
consider that either or both noises are stationary GARCH or ARSV processes, then, given that
the marginal variances are constant, we would obtain the same type of behavior as in the ho-
moscedastic case. For example, Figure 4.2 plots the rolling window estimates and the implied
θ that comes from the estimation of q, using either the heteroscedastic version of the Kalman
Filter, θ̂(het), proposed by Harvey et al. (1992), or the homoscedastic one, θ̂(hom). The results
correspond to the local level series with GARCH noises in the transitory component, εt, and
whose parameters are α0 = 0.05, α1 = 0.15, α2 = 0.8, γ0 = 0.5, i.e. a marginal q = 0.5 and
thus θ = −0.5. From the plots we observe that the behavior of the rolling window estimates
track always the marginal θ, as in the homoscedastic cases. Note also that the estimates, θ̂(het)

and θ̂(hom), are pretty similar to each other and close to the real value, -0.5, thus indicating
that both filters provide accurate estimators of the marginal variances, when they exist and are
constant over time.

4.2.2 Nonstationary processes and structural breaks in the local level noises

The above simulations have been carried out assuming finite and constant marginal variances.
Therefore, the evolution of θ̂rol observed in Figures 4.1 and 4.2 can be attributed to sampling
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Figure 4.2: Rolling window estimates of the MA parameter, θ̂rol, and the two estimates of the implied θ,
according to whether the homoscedastic, θ(hom), or the heteroscedastic, θ(het), filter is used. The series
are generated from the local level model with GARCH noises where α0 = 0.05, α1 = 0.15, α2 = 0.8,
γ0 = 0.5 and γ1 = γ2 = 0. The bands correspond to ±2 standard deviations of θ̂rol.

variability of the QML estimator of θ. If we now consider nonstationary heteroscedastic models
for the noises, εt and ηt, then, θ is not defined. However, it may be interesting to estimate it
anyway in order to give an insight about the shape of the rolling window estimates. Thus, we
generate series with IGARCH processes on εt and ηt, and obtain the θ̂rol. In the local level model,
the IGARCH process for each noise is obtained when α0 = γ0 = 0 and α1 + α2 = γ1 + γ2 = 1
in (2.8). Figure 4.3 plots the rolling windows estimates of θ for four particular time series.
In the examples it is evident that the dynamic behavior of θ̂rol is very persistent and, more
importantly, it does not in general evolve around a specific value. However, this dynamics is
not related to the presence of breaks in the data, and it is simply the consequence of undefined
marginal variances. Furthermore, note that by just looking at the evolution of θ̂rol, it is very
difficult to decide whether this evolution can be attributed to sample variability of the estimator
of θ or it is the consequence of a non-stationary evolution of the conditional variance.

On the other hand, given that θ is a function of the marginal variances, if any of them has a
structural break, then θ captures it and shows also a break. In order to illustrate this effect, we
now generate series from the homoscedastic and heteroscedastic local level model with breaks in
the marginal variances. The size and time of these breaks are chosen to replicate those usually
found in the US inflation; see, for example, Sensier and van Dijk (2004). The sample size is
set equal to 557 and the unique break is introduced in observation 299 in the marginal variance
of both noises. Moreover, the size of the shock has been set in a way that the signal-to-noise
ratio decreases from q = 2.4 to q = 0.25 after the break, thus replicating the shock estimated
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Figure 4.3: Rolling window estimates of the MA parameter, θ̂rol, and the two estimates of the implied θ,
according to whether the homoscedastic, θ(hom), or the heteroscedastic, θ(het), filter is used. The series
are simulated from the local level model with IGARCH disturbances, with α1 = γ1 = 0.1. The bands
correspond to ±2 standard deviations of θ̂rol.

for the US quarterly inflation series in Stock and Watson (2007). Consequently, the random
walk process of the underlying level become relatively less important in the series, a common
feature shared by many US macroeconomic variables from the early eighties (often referred as
the “Great Moderation”). Figure 4.4 plots the evolution of θ̂rol for four series simulated with
homoscedastic noises and breaks as just described. Looking at the plots, there seems to be a
common pattern in the evolution of the time-varying estimate of the MA coefficient. Although
the rolling window estimate capture the effect of the break, it adapts very smoothly to the
new level. This happens because the window size of 100 observations makes the transition too
smooth. Therefore, not until 100 observations after the break the rolling window estimate of
θ will be obtained entirely with observations coming from the new data generating process. In
a monthly series, this means that the new level for the MA parameter will be achieved after 8
years, something unrealistic for macroeconomic data.

We also generate series in which the long run noise, ηt, is homoscedastic and the transitory
noise, εt, is heteroscedastic. In this case, the break is introduced only in the marginal variance
of the homoscedastic permanent component. This model could be useful to describe the time-
varying volatility of the US inflation, as well as the effect of the “Great Moderation”. Plots
of the implied and rolling MA parameter are given in Figure 4.5. In general, the conclusion
from the plots are the same as in Figure 4.4, in that the rolling window estimate adapts very
smoothly to the new level after the breaks. Again, as in the other cases commented before, it is
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very difficult to identify by just looking at the evolution of θ̂rol, the date and size of the break.

Figure 4.4: Rolling window MA estimate, θ̂rol, and the implied θ of series simulated from the local level
model with a break in its homoscedastic disturbances. The break is in observation 299, and the size in
both variances is such that before this observation, q = 2.4 and after q = 0.25. The bands correspond to
±2 standard deviations of θ̂rol.

Alternatively, the effect of a break in either or both variances can be handled by imposing
integrated processes for the variances of the local level noises and then let the conditional
variances to adapt accordingly, as in Stock and Watson (2007). This model should be flexible
enough to incorporate the discrete jump more quickly. As an illustration, in Figure 4.6 we show
the estimated σ2

η,t for the local level model with an IGARCH process for ηt to capture the breaks
in the variance of this noise present in the series given in Figure 4.5. Indeed, we can see from
the plots that the estimated conditional variance of ηt captures the break and accommodates
to the new levels very quickly, in opposition to the evolution of the rolling windows estimate of
θ. In the plots of Figure 4.6 we also include an estimate of σ2

η,t resulting from a random walk
stochastic volatility (RW-SV) process on ηt. Note that this model yields estimates of σ2

η,t that
are very similar to those of the IGARCH model.

In any case, comparing Figures 4.1 to 4.5, we can conclude that it is very difficult to assess
if the evolution of the θ̂rol comes only from sample variability or from changes in the marginal
variances of the local level noises.
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Figure 4.5: Rolling window MA estimate, θ̂rol, and the implied θ of series simulated from the local level
model with a break in the variance of the homoscedastic ηt and with a GARCH process in εt, in order
to mimic the dynamics of the US monthly inflation.

4.2.3 Conditional volatility in the rolling windows IMA model

In the last subsections, we have discussed the relationship between the local level model with
conditionally heteroscedastic noises and/or breaks in the underlying marginal variances, and
the rolling window estimate of θ in the reduced form IMA model. In this subsection, we study
the properties of the residuals resulting from the time-varying IMA model, at. In particular,
we analyze whether the the rolling windows IMA model is able to capture the conditional
heteroscedasticity coming from the local level noises.

In order to study the properties of the residuals of the rolling window IMA model, Table
4.1 reports results of some diagnostic tests for 100 simulated series generated by the local level
models considered above. For each model, it reports the percentage of cases the 10th-order
Ljung-Box statistic (Q(10)), the Jarque-Bera (J-B) normality test, the 10th-order Rodriguez
and Ruiz (2005) test statistic (Q1(10)) to the squared residuals, and the LM test for ARCH
effects with j lags (ARCH(j)) reject the corresponding null hypothesis at 5% significance level.
The estimates of at for the rolling window estimation approach are recovered in a recursive way
from

ât = ∆yt − θ̂rol,t ât−1, (4.2)

where θ̂rol,t is the QML estimate of the MA parameter for the sample t − 99, ..., t. First note
that the Q(10) test statistic is around the nominal 5% only in the cases where the noises are
homoscedastic. However, if some of the noises are heteroscedastic, this test over rejects the null
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Figure 4.6: Estimated time-varying volatility of ηt, σ2
η,t, resulting from two different non-stationary

heteroscedastic models, the IGARCH and the random walk stochastic volatility models, and fitted to
capture the break in the marginal variance of ηt. The size and location of the break are set to replicate
the dynamics of the US inflation.

of zero autocorrelation, i.e. the size of the test is too large. On the other hand, the Q1(10)
and ARCH(j) tests show that the residuals obtained from (4.2) have significant autocorrelations
of squares when some of the local level noises are heteroscedastic. This means that allowing
the estimator of θ to change over time by using a rolling window approach does not capture
the heteroscedastic nature of the local level disturbances. On the other hand, the presence of
breaks in the variances of the local level noises does not lead to conditionally heteroscedastic
innovations in the time-varying IMA models. Finally, note that when both noises are IGARCH,
the marginal variances and covariances of at are not defined and, consequently, the tests are no
longer valid.

4.3 Empirical evidence with the US inflation rate

In this section, we fit several models to the US seasonally adjusted monthly inflation rate. These
models are chosen to capture different features of the series that may affect the forecasting
performance. Nextly, we perform an out-of-sample forecast evaluation of the point and interval
predictions generated by these models.
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DGP on the local level Q(10) J-B Q1(10) ARCH(1) ARCH(4)

εt ∼ GARCH
12.7% 40.2% 67.6% 32.5% 53.2%

ηt ∼ Homosc

εt ∼ Homosc
3.4% 5.1% 5.8% 5.3% 5.8%

ηt ∼ Homosc

εt ∼ IGARCH
89.6% 84.8% 99.4% 94.7% 98%

ηt ∼ IGARCH

εt ∼ Homosc w/breaks
5.1% 6% 5.6% 3.6% 5.4%

ηt ∼ Homosc w/breaks

εt ∼ GARCH
10.8% 36.7% 70.2% 26.8% 48.5%

ηt ∼ Homosc w/breaks

Table 4.1: Diagnostic tests for the residuals of the rolling window IMA model fitted to series coming from
the local level model. The figures reported are the percentage of cases the 10th-order Ljung-Box statistic
(Q(10)), the Jarque-Bera (J-B) normality test, the 10th-order Rodriguez and Ruiz (2005) test statistic
(Q1(10)) to the squared residuals, and the LM test for ARCH effects with j lags (ARCH(j)) reject the
corresponding null hypothesis at 5% significance level.

4.3.1 The Data

We use the Personal Consumption Expenditure (PCE) deflator as a measure of inflation. Calling
Pt the price index at time t, we define the inflation rate as Πt = 100 × log(Pt/Pt−1). The
observation period spans from 02/1959 to 05/2008. This leads to a sample of T = 592. The
first 332 observations are used for the estimation, while the last 60 observations are left for the
out-of-sample forecast evaluation. The series has been downloaded from the EconWin database,
and it is already seasonally adjusted. Figure 4.7 plots the inflation series. As suggested by many
authors, the “Great Moderation effect” from the beginning of the eighties onwards seems to
make the series less erratic.

With respect to the descriptive statistics, Table 4.2 reports some sample moments of the first
difference of the inflation series, ∆Πt. In order to have more information about the behavior of
the series prior and after the ”Great Moderation”, we also split the sample and compute the
descriptive statistics, separately for the periods spanning from 02/1959 to 12/1983 and from
01/1984 to 05/2008. The date for the breakpoint is chosen according to what is found in the
literature as the beginning of the Great Moderation; see, for example, Sensier and van Dijk
(2004) and Stock and Watson (2007) and the references therein. First, note that the marginal
variances of the series does not vary significantly in the two periods. On the other hand, when
looking at the sample autocorrelations on the first column of Figure 4.8, we see that r(1) is
significant and negative, with slightly differences between the two periods and the estimated
for the whole sample. Note also that r(2) is also significant in the second period. The second
column of this figure shows the differences between the sample autocorrelations of squares and
the squared sample autocorrelations, r̄2(τ) = r2(τ) − [r(τ)]2. If we approximate the standard
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Figure 4.7: Seasonally adjusted monthly inflation series, defined as 100 × log(Pt/Pt−1), where Pt is the
price index coming from the Personal Consumption Expenditure (PCE) at month t. The sample period
goes from 02/1959 to 05/2008. The vertical dashed line corresponds to 06/2003, the starting point of the
out-of-sample forecast evaluation period.

deviation of r̄2(τ) to be 1/
√

T , we see that there exist some significant values of r̄2(τ). This fact,
together with the presence of some positive excess kurtosis, suggest that the series may present
a conditional heteroscedastic structure that should be considered, specially in the first period.

Mean Var Skew Exc Kurt

First Period: 02/1959-12/1983 0.001 0.030 -0.228 2.832

Second Period: 01/1984-05/2008 0.000 0.036 -0.033 0.470

Whole Sample: 02/1959-05/2008 0.001 0.033 -0.120 1.492

Table 4.2: Descriptive statistics of the first difference of the inflation rate. The analysis is performed for
the whole period, 02/1959-05/2008, and also for the part of the sample prior to and after 01/1984.

4.3.2 Model selection and estimation

The correlations reported in Figure 4.8 suggest that an MA(1) with negative parameter or
alternatively, the random walk plus noise model can be appropriate both when we consider the
whole sample period or when we look at each of the subperiods separately. Consequently, we
start by fitting these two models with homoscedastic noises. Table 4.3 reports the QML estimates
of the parameters θ and q. The differences in the values of q̂ prior to and after 01/1984 suggest
that the “Great Moderation” may involve a structural break in the variances of the local level
noises and should be taken into account when selecting the models to fit these series. Moreover,
the results show that only the noise of the permanent component has a significant break in its
marginal variance. Then, it would be worthy to add a model that includes a discrete jump that
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Figure 4.8: Sample autocorrelations, r(τ), and the differences between the sample autocorrelations of
squares and the squared sample autocorrelations, r̄2(τ) = r2(τ) − [r(τ)]2, for the first difference of the
inflation series. The analysis is performed for the whole period, 02/1959-05/2008, and also for the sample
periods prior to and after 01/1984.

captures this break. On the other hand, we also observe a significant change in θ̂ in the IMA
model, but with a marginal variance of at constant between the two sample periods. As done
in Stock and Watson (2007), we use a 10-year rolling-windows approach to capture the changes
on θ.

In order to capture the heteroscedastic structure that may be present in the inflation process,
we also add a model in which the local level noises are GARCH. Following the same argument
as in Chapter 3, we decide to assume a GARCH process only in the transitory component.
Additionally, if we want also to capture possible breaks in the marginal variances of the noises, we
need to include a discrete jump in the noise of the permanent component as in the homoscedastic
case. Alternatively, we also fit a GARCH process on the residuals ât for the IMA models with
θ constant and with the 10-year rolling window estimate, θ̂rol. Finally, we also fit two other
models to the series that include non-stationary processes in the form of either IGARCH or
RW-SV model, as an alternative way of capturing possible breaks in the local level variances.
Analogously, we also fit an IMA model with IGARCH noises. Thus, summarizing, we fit six
different local level models, and other six IMA models, in order to capture the features of the
series that lead to improve the forecasting performance. Namely, the twelve models, with their
labels in parenthesis, are given by
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Local level models IMA models

q̂(all) q̂(1st) q̂(2nd) q̂(2nd) − q̂(1st) θ̂(all) θ̂(1st) θ̂(2nd) θ̂(2nd) − θ̂(1st)

0.081 0.167 0.009 -0.158** -0.781 -0.660 -0.899 -0.240**

σ̂2
ε,(all) σ̂2

ε,(1st) σ̂2
ε,(2nd) σ̂2

ε,(2nd) − σ̂2
ε,(1st) σ̂2

a,(all) σ̂2
a,(1st) σ̂2

a,(2nd) σ̂2
a,(2nd) − σ̂2

a,(1st)

17.2 15.3 19.5 4.2 24.3 23.0 24.1 1.1

σ̂2
η,(all) σ̂2

η,(1st) σ̂2
η,(2nd) σ̂2

η,(2nd) − σ̂2
η,(1st)

1.4 2.5 0.2 −2.3 ∗ ∗

Table 4.3: Quasi maximum likelihood (QML) estimates of σ2
ε , σ2

η and q of the local level model and θ

and σ2
a of the IMA model, both assuming homoscedastic noises. The subindexes (all), (1st) and (2nd)

correspond to the estimates for the whole, first and second sample periods, respectively, i.e. prior to and
after 01/1984. The variances are multiplied by 103. *(**) means significant at 5% (1%).

1. Local level model with homoscedastic noises and without breaks (Homoscedastic w/o
breaks).

2. Local level model with homoscedastic noises and with step breaks in the variances of both,
εt and ηt in 01/1984 (Homoscedastic w/ breaks).

3. Local level model with GARCH(1,1) process in εt and homoscedasticity in ηt (GARCH in
εt w/o breaks).

4. Local level model with GARCH(1,1) process in εt, and homoscedasticity and a break in
01/1984 in ηt (GARCH in εt w/ breaks).

5. Local level model with IGARCH(1,1) processes in both noises (IGARCH in both noises).

6. Local level model with a stationary ARSV process in εt and a RW-SV in ηt (ARSV in εt

and RW-SV in ηt)

7. IMA(1,1) model with homoscedastic at (Homoscedastic)..

8. IMA(1,1) model with a GARCH(1,1) process in at (GARCH in at).

9. IMA(1,1) model with a IGARCH(1,1) process in at (IGARCH in at).

10. 10-year rolling window IMA(1,1) model with homoscedastic at (S & W approach).

11. 10-year rolling window IMA(1,1) model with a GARCH(1,1) process in at (GARCH in at).

12. 10-year rolling window IMA(1,1) model with a IGARCH(1,1) process in at (IGARCH in
at).

Given that we leave the last 60 observation for out-of-sample evaluation, we first estimate
the models from 02/1959 to 05/2003 (532 observations) and then re-estimate them moving the
sample one month at a time. For the 10-years rolling window IMA models, the first sample
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is from 06/1993 to 05/2003. At each step, the point and interval forecasts at three different
horizons, h = 1, 6 and 12 months, are recorded. Finally, these values are used to evaluate the
forecasting performance of each model. We use quasi-maximum likelihood (QML) estimation
methods in all models but the local level with ARSV noises. In this case, we use MCMC
methods to obtain posterior distributions of the parameters and the unobserved components1.
Table 4.4 reports the p-value of the Ljung-Box statistic, Q(10), and the Rodriguez and Ruiz
(2005) statistic, Q1(10), on the level and squared standardized residuals, respectively. In general,
the fit of the conditional mean seems to produce “clean” residuals only in the 10-years rolling
window IMA models. On the other hand, when analyzing the squared residuals, we see that
only the heteroscedastic models eliminate the correlation structure.

Local Level Q(10) Q1(10)
Homoscedastic w/o breaks 0.006 0.000
Homoscedastic w/ breaks 0.008 0.000
GARCH in εt w/o breaks 0.006 0.175
GARCH in εt w/ breaks 0.009 0.270
IGARCH in both noises 0.005 0.393
ARSV in εt and RW-SV in ηt 0.002 0.052

IMA(1,1)
Homoscedastic 0.006 0.000
GARCH in at 0.003 0.245
IGARCH in at 0.002 0.571

Rolling Window TV-IMA(1,1)
S & W approach 0.280 0.420
GARCH in at 0.408 0.981
IGARCH in at 0.392 0.951

Table 4.4: Diagnosis for the standardized residuals of the models selected to fit the inflation series. The
sample covers the fist T −R = 532 observations, from 02/1959 to 05/2003. The figures are the p-values
of the 10th-order Ljung-Box statistic, Q(10), applied to the level residuals and the 10th-order Rodriguez
and Ruiz (2005) statistic, Q1(10), applied to the squares residuals.

4.3.3 Forecasting performance of the competing models

After re-estimating the models for the whole evaluation period, we obtain the point and intervals
forecasts for each horizon h. Table 4.5 summarizes the information with respect to point forecasts
for h = 1, 6 and 12. The values correspond to the root mean squared forecast error (RMSFE)
and mean absolute deviation (MAD) for each model and horizon, relative to the 10-year rolling
window IMA(1,1) model with homoscedastic at, i.e. the Stock and Watson (2007) approach,

1To obtain the posterior distributions, we use WinBugs, a package developed for doing Bayesian inference,

specially through MCMC methods; see Meyer and Yu (2000). A free version of this software is available at

www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
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which we use as the benchmark model. Thus, models with values of the RMSFE or MAD less
than one means that they produce more accurate point forecasts than the homoscedastic 10-year
rolling window model. We check the significance of these differences with the test proposed by
Diebold and Mariano (1995). This test performs a pairwise comparison of the accuracy of two
models, with respect to a given loss function. We use quadratic differences of the forecast errors
in the columns corresponding to the RMSFE, and absolute differences of the forecast errors in
the columns corresponding to the MAD. Thus, for instance, a value with *(**) in the RMSFE
columns means that the point forecast of the corresponding model is significantly more accurate
than the benchmark model at 5%(1%). Note that for the three horizons, there is at least one
model that significantly improves the accuracy of the benchmark model. Moreover, note that
the best point-forecasts (measured as the lowest RMSFE and MAD) in almost all cases is the
heteroscedastic local level model with the deterministic break in the variance of the permanent
component. Observe also that the models with non-stationary specifications for the conditional
variances in the local level models, do not yield more accurate point forecasts than the other
local level models. On the other hand, the IMA models fitted to the whole sample and with θ

fixed yield in general worse point forecasts than the local level models, although in this case,
assuming an integrated GARCH process in the residuals seems to improve forecast accuracy.
With respect to the 10-years rolling window models, their accuracy are about 10 or 15% worse
than the local level models with the best performance. Finally, among the local level models,
note that imposing a deterministic break to account for the change in the marginal variances
improves forecasting accuracy.

Table 4.6 reports the empirical coverage, calculated as the percentage of observations laying
inside the 90% and 95% intervals for each model and horizon. First, note that in general, the
coverage is underestimated. With respect to the different models, it seems that the integrated
versions in both, the local level and IMA models, produce prediction intervals with coverages
closer to the nominal. However, when disregarding these models, again the heteroscedastic mod-
els yield a coverage closer to the nominal than the homoscedastic ones. This implies that the
models with homoscedastic noises produce in general worse coverages than those with condi-
tionally heteroscedastic noises.

Summarizing the results regarding forecasting performance in the inflation series for the
period considered, we conclude that the conditionally heteroscedastic models produce more
accurate point and interval forecast than those with homoscedastic noises. Moreover, the results
on the point forecast evaluation suggest that the conditionally heteroscedastic local level model
is in general better than the IMA counterparts, and that the inclusion of the deterministic break
in the marginal variance of ηt significantly improves forecast accuracy, for almost all horizons.
However, in what concerns to interval forecasting evaluation, results are no so clear, and there is
not a dominant model for all series. In any case, the models with conditionally heteroscedastic
noises seem to generate prediction intervals with better coverages than those produced by the
homoscedastic models.
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RMSFE MAD
Local Level h = 1 h = 6 h = 12 h = 1 h = 6 h = 12
Homoscedastic w/o breaks 0.920 0.925 1.017 0.959 0.851 0.956
Homoscedastic w/ breaks 0.890* 0.882** 0.946* 0.919* 0.825** 0.897*
GARCH in εt w/o breaks 0.905* 0.898* 0.979 0.939 0.836* 0.939
GARCH in εt w/ breaks 0.877* 0.862** 0.933 0.897* 0.803** 0.895*
IGARCH in both noises 0.906 0.902* 0.984 0.936 0.834 0.930*
ARSV in εt and RW-SV in ηt 0.918 0.913 1.006 0.954 0.834* 0.954

IMA(1,1)
Homoscedastic 0.914 0.916 1.004 0.949 0.844 0.945
GARCH in at 0.914 0.916 1.004 0.949 0.844 0.945
IGARCH in at 0.912 0.915 1.003 0.938 0.844* 0.945

Rolling Window TV-IMA(1,1)
S & W approach 1.000 1.000 1.000 1.000 1.000 1.000
GARCH in at 0.998 0.990* 1.000 0.995 0.986* 1.004
IGARCH in at 0.909 0.894** 0.972 0.926 0.860* 0.950

Table 4.5: Out-of-sample evaluation of the point forecasts for the inflation series, from 6/2003 to 5/2008.
RMSFE is the root mean squared forecast error and MAD the mean absolute deviation. The values are
standardized for each horizon h, such that the RMSFE and MAD of the benchmark model labelled as S
& W approach are equal to one. *(**) means 5%(1%) significantly more accurate than the benchmark,
according to the Diebold and Mariano (1995) test.

4.4 Conclusions

In this chapter, we study the use of a rolling-windows approach to estimate the reduced form MA
parameter, θ, when the series is generated by the local level model with different specifications in
its noises. With some simulated series, we observe that if the marginal variances of εt and ηt are
constant, then θ is also constant over time, regardless of whether these noises are heteroscedastic
or not. On the other hand, when assuming integrated processes on the variances of the two
noises, θ is not defined and therefore we cannot say anything about its evolution. Finally, when
the marginal variances have one or more breaks, this is going to affect θ. Consequently, with
these results, we say that the rolling window approach considered in Stock and Watson (2007),
cannot be used to track the evolution of the stationary conditional variances of εt and ηt, and
in general, that it is very difficult to assess if the evolution of the θ̂rol comes only from sample
variability or from changes in the marginal variances of the local level noises. Moreover, we
also show that the MA model with a rolling window estimate of θ is not able to capture the
conditionally heteroscedastic structure of the local level noises.

From the results of the forecasting exercise with the selected inflation series, we conclude
that the conditionally heteroscedastic models produce more accurate point and interval forecast
than those with homoscedastic noises. Moreover, the results on the point forecast evaluation
suggest that the conditionally heteroscedastic local level model is in general better than the
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90% 95%
Local Level h = 1 h = 6 h = 12 h = 1 h = 6 h = 12
Homoscedastic w/o breaks 83.33 85.45 89.80 91.67 92.73 91.84
Homoscedastic w/ breaks 83.33 81.82 83.67 90.00 89.09 89.80
GARCH in εt w/o breaks 91.67 90.91 93.88 93.33 96.36 93.88
GARCH in εt w/ breaks 85.00 87.27 89.80 91.67 90.91 91.84
IGARCH in both noises 91.67 94.55 93.88 96.67 96.36 93.88
ARSV in εt and RW-SV in ηt 93.33 89.09 91.84 93.33 96.36 93.88

IMA(1,1)
Homoscedastic 83.33 85.45 89.80 91.67 92.73 91.84
GARCH in at 93.33 94.55 93.88 95.00 96.36 93.88
IGARCH in at 91.67 94.55 93.88 96.67 96.36 95.92

Rolling Window TV-IMA(1,1)
S & W approach 86.67 81.82 81.63 90.00 89.09 87.76
GARCH in at 88.33 90.91 85.71 91.67 92.73 93.88
IGARCH in at 90.00 89.09 87.76 93.33 92.73 93.88

Table 4.6: Out-of-sample empirical coverage of the 90% and 95% prediction intervals for the inflation
series, from 6/2003 to 5/2008. The observed coverage is defined as the proportion of times the actual
value of the series lays within the 90% and 95% prediction intervals, for each horizon h.

IMA counterparts, and that the inclusion of the deterministic break in the marginal variance of
ηt significantly improves forecast accuracy, for almost all series and horizons. However, in what
concerns to interval forecasting evaluation, results are no so clear, and there is not a dominant
model for all series. In any case, the models with conditionally heteroscedastic noises seem to
generate prediction intervals with coverages closer to the nominal.



Chapter 5

On the accuracy of prediction

intervals when using a

disaggregation approach

5.1 Introduction

The effect of disaggregation on the forecasts of index series has been widely analyzed in the
literature; see Espasa and Albacete (2004), Hubrich (2005) and Hendry and Hubrich (2006) for
a detailed study of this topic and applications for the Harmonized Consumer Price Index of the
Euro zone. Within the context of vector ARMA (VARMA) models, forecasting contemporaneous
and temporal aggregations of different series has been widely analyzed since the seminal work
of Lütkepohl (1987). On the other hand, aggregation in conditionally heteroscedastic models
in the form of GARCH processes has also been considered in the literature; see Silvestrini and
Veredas (2008) for an up-to-date survey on aggregation of VARMA models with multivariate
GARCH noises.

In this chapter, we study the performance of the prediction intervals of the aggregate when
at least one of its components is conditionally heteroscedastic. In particular, we analyze if
using the indirect approach of modelling the whole vector of components improves the accuracy
of prediction intervals when compared with the direct approach of taking the aggregate as a
univariate series. We obtain the predictions of the conditional means and variances k steps
ahead for the case of a VAR(p) process with a constant conditional correlation (CCC) GARCH
residual vector. We show with simulated data that the indirect approach may be preferred
because it yields more accurate prediction intervals than working directly with the aggregate.

The rest of the chapter is structured as follows. In Section 5.2 we briefly review the main
findings on aggregation of GARCH processes. In Section 5.3, we first derive the multi-step
minimum mean squared error (MSE) prediction of the conditional means and variances of the
VAR(p) process with CCC-GARCH noises. Next, we find the prediction intervals of the ag-
gregate, using either its own past or the information coming from the multivariate process,

79
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and particularize the results for the bivariate VAR(1) model with mutually independent noises.
Section 5.4 presents several Monte Carlo simulations to study the relative accuracy of the two
alternative ways of constructing the prediction intervals of the aggregate. Finally, Section 5.5
concludes.

5.2 Aggregation of GARCH models: A brief review

In these days, it is almost indisputable that many financial and monetary time series such as
stock returns, exchange rates, or price indexes exhibit conditional heteroscedasticity. Among
all the existing parametric models that account for this feature, those of the GARCH family,
originally proposed by Engle (1982) and Bollerslev (1986), are the most popular, specially in
empirical applications. A recent review of the applications of GARCH processes is given by
Diebold (2004).

In its simplest form, the GARCH(p,q) process is given by

σ2
t = ω +

q∑
i=1

αi ε
2
t−i +

p∑
j=1

βj σ2
t−j , (5.1)

where εt is a sequence of stationary errors and the coefficients ω, αi, i = 1, .., q, and βj , j =
1, 2, ..., p, are such that the fourth order moment of εt is finite and σ2

t is nonnegative.

One of the theoretical drawbacks of GARCH models is that they are not necessarily closed
under aggregation. That is, the sum of two or more GARCH processes is not in general GARCH.
With respect to temporal aggregation, Drost and Nijman (1993) conclude that only weaker
versions of the GARCH models are closed under temporal aggregation. They define three types
of GARCH models, strong, semi-strong and weak, with the following properties:

ε†t = εt/σt ∼ i.i.d.D(0, 1) (Strong definition) (5.2)

E[εi
t|εt−1, εt−2, ...] =

{
0, i = 1
σ2

t , i = 2
(Semi-Strong definition) (5.3)

P [εi
t|εt−1, εt−2, ...] =

{
0, i = 1
σ2

t , i = 2
(Weak definition) (5.4)

where D(0, 1) specifies a distribution with zero mean and unit variance, and P [xt|εt−1, εt−2, ...]
denotes the best linear predictor of xt in terms of 1, εt−1, εt−2, ..., ε

2
t−1, ε

2
t−2, ..., i.e

E (xt − P [xt|εt−1, εt−2, ...]) εr
t−i = 0, i ≥ 1, r = 0, 1, 2. (5.5)

Note that the weak definition implies that εt must be a zero-mean uncorrelated process in which
Cov(ε2

t , ε
2
t−i) = Cov(σ2

t , σ
2
t−i), i ≥ 1. Drost and Nijman (1993) show that even in this general

version of GARCH processes, it is possible to obtain strongly consistent QML estimators. They
also show that the class of ARMA models with symmetric weak GARCH errors and either
stock or flow variables are closed under temporal aggregation. In a more recent paper, Meddahi
and Renault (2004) discuss the results found by Drost and Nijman (1993) and state that the
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limitations of the weak GARCH processes, specially when trying to capture the empirical features
of the series, make them less attractive and propose a new model based on linear state space
modelling (or stochastic volatility modelling), that is also closed under temporal aggregation.

On the other hand, Nijman and Sentana (1996) study the behavior of GARCH models under
contemporaneous aggregation. They show that the sum of independent univariate GARCH
processes yields a weak GARCH process. In particular, they demonstrate that the sum of
two independent (strong) GARCH(1,1) process yields a weak GARCH(2,2) process. There are
however two special cases, which consist on adding a mutually independent white noise error
to a (strong) GARCH(1,1) process and summing two (strong) GARCH(1,1) process with the
same persistence1. In these two cases, the result is another (weak) GARCH(1,1) process. In
the limiting case, when the aggregation involves a large number of GARCH processes, Zaffaroni
(2007) shows that the heteroscedasticity in the limiting aggregate depends crucially on the cross
correlations among the components. Thus, for instance, the limiting aggregate of n GARCH
processes, as n goes to infinity, maintains the features of a volatility model (uncorrelated levels
and correlated squares) only for sufficiently cross-correlated components and has a linear stable
representation otherwise. For financial time series aggregates like stock indexes, the results of
Zaffaroni (2007) are relevant because even with mutually independent stock returns, there exist
situations in which the volatility is not diversified away by aggregation.

5.3 Prediction intervals of the aggregate

In this section, we obtain the prediction intervals of the aggregate, yt, which is composed of n

possibly conditionally heteroscedastic components, xi,t, stacked in a vector Xt. We assume that
Xt follows a VAR(p) process with contemporaneously correlated noises. As the interest lays in
studying prediction intervals, we need first to find the multi-step minimum mean squared error
(MSE) prediction of the aggregate and its conditional variance. Throughout this section we will
assume that the parameters are known unless otherwise stated.

5.3.1 The VAR(p) with Multivariate GARCH disturbances

Consider that Xt is a vector of n stationary time series used to construct an aggregate yt.
Assume that the dynamics of Xt is represented by the following VAR(p) model

Xt = C + Φ1 Xt−1 + Φ2 Xt−2 + ... + Φp Xt−p + εt, (5.6)

where C is a vector of constants and Φi, i = 1, ..., p are n× n matrices of coefficients such that
all the roots of

Φ(L) = In − Φ1L− Φ2L
2 − ...− ΦpL

p,

1In a GARCH(1,1) process, the literature often defines the measure of persistence as the sum of the ARCH

and GARCH coefficients, i.e. α1 + β1.
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lay outside the unit circle. Consider also that εt has the following properties

εt = Σ1/2
t Zt, (5.7)

Zt ∼ NIDn(0, R),

Σ1/2
t = diag(σ1,t, ..., σn,t),

where NIDn denotes the nth-dimensional serially independent Normal distribution, R = [ρi,j ],
ρi,i = 1 is the covariance matrix of Zt. Additionally,

σ2
i,t = ωi + αi ε

2
i,t−1 + βi σ

2
i,t−1, i = 1, 2, ..., n, (5.8)

with ωi, αi and βi chosen to satisfy fourth order stationarity and positiveness of σ2
i,t. This model

for εt is a simple multivariate version of the GARCH(1,1), allowing for constant conditional
correlation (CCC) among the errors, εi,t, and it was first proposed by Bollerslev (1990); see Ling
and McAleer (2003) and He and Terasvirta (2004) for extensions and generalizations. Expression
(5.7) implies that εi,t are serially uncorrelated with constant contemporaneous cross correlations.
Moreover, the lagged cross covariances, E[εi,t, εj,t−s], with s > 0, are also zero for all i 6= j.
With (5.6) and (5.7), we say that Xt follows a VAR(p) process with CCC-GARCH noises. Using
the properties of this model, we know that the mean and variance of Xt+1, conditional on the
information up to time t are given by

Xt+1|t ≡ E
Xt

[Xt+1]

= C + Φ1 Xt + Φ2 Xt−1 + ... + Φp Xt−p+1 (5.9)

Vt+1|t ≡ E
Xt

[(Xt+1 −Xt+1|t) (Xt+1 −Xt+1|t)
′]

= E
Xt

[Σ1/2
t+1 Zt+1 Z

′
t+1 Σ1/2

t+1 ]

= Σ1/2
t+1 R Σ1/2

t+1, (5.10)

where E
Xt

denotes the mean conditional on the whole set {X1, X2, ..., Xt}. Note that the since

Zt is Normal, then Xt+1 given Xt, i.e. Xt+1|Xt, is also Normal, with mean Xt+1|t and variance
Vt+1|t. However, for multi-step forecasts, i.e. k > 1, due to the multiplicative structure of the
CCC-GARCH model, Xt+k|Xt is not Normal anymore. Additionally, we do not have an analytic
expression for the k-step-ahead conditional variance of εt, defined as Ht+k|t ≡ E

Xt

[εt+k ε′t+k],

unless R is diagonal, i.e. ρi,j = 0 for all i 6= j. In this case, we find that

Ht+k|t = Σt+k|t

= diag
(

σ2
1,t+k|t, ..., σ

2
n,t+k|t

)
, (5.11)

where, by property of univariate GARCH(1,1) processes,

σ2
i,t+k|t ≡ E

σ2
i,t

[σ2
i,t+k]

= σ2
i + (αi + βi)k−1(σ2

i,t+1 − σ2
i ), k > 1, (5.12)

for i = 1, 2, ..., n, and σ2
i is the unconditional variance of εi,t. For the general case in which R

is not diagonal, the characteristic element of Ht+k|t is given by hi,j,t+k|t = ρi,j E
Xt

[σi,t+k σj,t+k],
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which is equal to σ2
i,t+k|t when i = j. The conditional mean included in hi,j,t+k|t does not have

an analytic expression as a function of the GARCH parameters. However, we can approximate
the off-diagonal elements of Ht+k|t by assuming that E

Xt

[σi,t+kσi,t+k] ≈ σi,t+k|t σj,t+k|t. In this

case, if we believe that this approximation is valid, we can obtain the multi-step conditional
variance of εt given by

Ht+k|t ≈ Σ1/2
t+k|t R Σ1/2

t+k|t, (5.13)

We find now the multi-step predictions of Xt. Applying conditional expectations to (5.6),
the minimum MSE k-step ahead predictor for Xt+k, Xt+k|t, is given by

Xt+k|t ≡ E
Xt

[Xt+k]

= C +
p∑

j=1

Φj Xt+k−j|t, (5.14)

where Xt+k−j|t = Xt+k−j when j ≥ k. Therefore, we can work recursively by obtaining Xt+j|t

as a function of Xt+j−1|t and use the result to obtain Xt+j+1|t until j + 1 = k. On the other
hand, having found Ht+k|t, we can also find the conditional variance of the k-steps ahead MSE
point predictor of Xt+k, Vt+k|t. First, we follow Hlouskova et al. (2009) and put model (5.6) in
the following companion format

Xt = C + Ω Xt−1 + εt, (5.15)

where

Xt =


Xt

Xt−1

...
Xt−p+1

 , C =


C

0n

...
0n

 , Ω =


Φ1 . . . Φp

In 0n . . . 0n

. . . . . . . . .

0n . . . In 0n

 , εt =


εt

0n

...
0n

 ,

and In and 0n are the n× n identity and null matrices, respectively. This companion format is
useful because now we work with a (higher dimensional) VAR(1). By property of this model,
we know that the conditional variance of Xt+k is given by

Vt+k|t ≡ E
Xt

[
(Xt+k −Xt+k|t)(Xt+k −Xt+k|t)

′]
= B′

k−1∑
j=0

Ωj B Ht+k−j|t
(
Ωj B

)′
B, (5.16)

where B = [In, 0n, ..., 0n]′ is an np×n matrix used to extract the first n elements of Xt, i.e. the
ones corresponding to Xt. Note from (5.16) that, as long as Ht+k|t is approximated by (5.13),
Vt+k|t is also an approximation of the true conditional variance.
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5.3.2 Prediction intervals of the aggregate

Consider the n×1 weighting vector, λt, that is known by the forecaster at the time the prediction
is made2, such that the aggregate yt is given by

yt = λ′
t Xt

=
n∑

i=1

λi,t xi,t, (5.17)

with Xt defined as in (5.6). Then, yt is a weighted sum of the elements of a stationary
VAR(p) process. Lütkepohl (1984) shows that in this case, the aggregation of such process
is an ARMA(p′,q′) model of the form

yt = c +
p′∑

i=1

φi yt−i +
q′∑

j=1

θj at−j + at, (5.18)

where at is a zero-mean uncorrelated process, and c, φi and θj parameters such that the process
is stationary and invertible. This means that the stationary VAR(p) process on Xt is closed
to contemporaneous aggregation. Then, given the orders p′ and q′, we can use this univariate
model to forecast yt, conditional on its own past, i.e the whole set {y1, y2, ..., yt}. The minimum
MSE point predictor of yt+k, according to (5.18), is given by

yt+k|t ≡ E
yt

[yt+k]

= c +
p′∑

i=1

φi yt+k−i|t +
q′∑

j=1

θj at+k−j , (5.19)

where yt+k−i|t = yt+k−i when i ≥ k and at+k−j = 0 when j ≥ k. In (5.19), we assume that, at
time t, the whole series of innovations {a1, ..., at} can be recovered once we know c, φi and θj .

Alternatively, we can work with Xt+k|t given in (5.14) and directly aggregate the MSE point
prediction of Xt, that is

y∗t+k|t = λ′
t Xt+k|t. (5.20)

When comparing yt+k|t with y∗t+k|t, the main results found in the literature state that if the
data generating process (DGP) of the vector Xt is known in terms of structure and coefficients,
working with the indirect approach of first obtaining Xt+k|t and then calculating y∗t+k|t is pre-
ferred in terms of smaller mean square forecast errors typically because the information set in
this case, the whole set of past values of Xt, is greater than the information set composed of
only the past values of yt; see Lütkepohl (1987) and Hendry and Hubrich (2006) for a deeper
study. However, when the DGP is unknown, even if the order selection criterion is consistent,
the point forecasts coming from the indirect approach may not always be more accurate than
those coming from the direct approach of using the past values of yt. In fact, as Hubrich (2005)

2Note that the weights may be time-varying, a feature that is commonly observed in economic aggregates like

the consumer price index (CPI).
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states, the relative (point) forecast accuracy depends on the extent to which the gains derived
from a greater information set are offset by the effects of estimation variability.

When analyzing the prediction intervals of both alternative ways of forecasting the aggregate,
yt, we find a big difference with respect to point forecasts. As discussed in the previous section, if
we assume a certain type of multivariate GARCH process on the residuals εt, when aggregating
this vector the result does not belong to any class of (strong) univariate GARCH. Indeed, even
in the simplest case where R is diagonal, we obtain the result of Nijman and Sentana (1996) with
independent univariate GARCH processes, generalized for the case of n components. Therefore,
we cannot explicitly characterize the volatility dynamics of at with a (strong) GARCH(p,q)
model. However, we do know some properties of this process. For example, we know that in
general, the heteroscedastic structure of at is weaker than that of the components εit, something
that has been studied in Chapter 2 but in a different context. Therefore, often one cannot reject
the null of homoscedasticity in the aggregate that is composed of one or more conditionally
heteroscedastic components. Moreover, we also know that if the GARCH processes on εit share
some properties, then their contemporaneous aggregation still provides the best linear predictor
of the variance, i.e. at follows a weak GARCH process. In any case, if we define ht+k|t ≡ E

yt

[a2
t+k]

as the k-step ahead conditional variance of at+k in (5.18), then the conditional variance of yt+k|t,
according to model (5.18)vt+k|t, is given by

vt+k|t ≡ E
yt

[
(yt+k − yt+k|t)

2
]

= b′
k−1∑
j=0

Θj b1 ht+k−j|t
(
Θj b1

)′
b, (5.21)

where

Θ =



φ1 . . . φp′ θ1 . . . θq′

1 0 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . .

0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0
0 0 . . . 1 0 1 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 . . . 1 0


is the p′ + q′ square matrix of coefficients of the VAR(1) model applied to the stacked vector

yt = [yt, yt−1, . . . , yt−p′ , at, at−1, . . . , at−q′ ]′,

b1 = [1, 0, ..., 0, 1]′ and b = [1, 0, ..., 0]′ are two (p′ + q′) × 1 vectors used to extract the first
element of yt. With yt+k|t and vt+k|t, we are able to construct the (1− α) prediction interval k

steps ahead, PIk(1− α) as

PIk(1− α) =
[
Fα/2(yt+k|t, vt+k|t) ; F1−α/2(yt+k|t, vt+k|t)

]
, k ≥ 1, (5.22)

where F is the cumulative distribution function of yt+k|yt, with mean yt+k|t and variance vt+k|t.
Note that at being and aggregation of GARCH processes implies that F is not Normal and,
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in general, we need to use, for example, bootstrap methods to estimate F ; see Pascual et al.
(2006) for a deep study. However, as these authors show, Gaussian intervals may be a good
approximation to the true intervals, so that we can approximate (5.22) as

PIk(1− α) ≈ yt+k|t ±N−1
α/2 v

1/2
t+k|t, k ≥ 1, (5.23)

where N−1
u is the argument of the standard Normal cumulative distribution function valued at

u.

Alternatively, we can work directly with Xt+k|t given in (5.14) and find the conditional
variance of y∗t+k|t. Then, it is straightforward to see that

v∗t+k|t = λ′
t Vt+k|t λt. (5.24)

Using an analogous approximation to (5.23), we find the (1 − α) prediction interval k steps
ahead, PI∗k(1− α) as

PI∗k(1− α) ≈ y∗t+k|t ±N
−1
α/2 (v∗t+k|t)

1/2, k ≥ 1. (5.25)

As with the point predictions, we are interested in studying the accuracy of the two prediction
intervals, PIk and PI∗k , in terms of their coverage. In order to clarify the analysis, we will focus
on a simple bivariate VAR(1) model. In the next paragraphs, we find closed form expressions
of the conditional mean and variance of both approaches for this simple case.

5.3.3 The bivariate VAR(1) model with independent GARCH noises

Let Xt be a 2 × 1 vector that follows a VAR(1) process with zero mean, i.e. C = 0, and with
the noises εi,t being serially and mutually uncorrelated, each of them following a univariate
GARCH(1,1) process. This is the simplest version of the general nth dimensional VAR(p) model
with CCC-GARCH noises. It can be shown that the aggregate of Xt in this particular case is an
ARMA(2,1). Of course, different restrictions in the parameters space of the VAR(1) may lead
to an ARMA process of a lower order, i.e. some roots of the AR and MA polynomials cancel
out.

With respect to the conditional mean of Xt, expression (5.14) reduces to

Xt+k|t = Φ Xt+k−1|t

= Φk Xt, (5.26)

where Φ is the matrix of coefficients of the VAR(1). On the other hand, using the result of
(5.11), the conditional variance of Xt is given by

Vt+k|t =
k−1∑
j=0

Φj Σt+k−j|t
(
Φj

)′
. (5.27)

Note that the marginal variance of Xt, V [Xt], is obtained by substituting Σt+k|t for the marginal
variance of the errors, Σε = diag(σ2

1, σ2
2). Then, by means of (5.12), we can obtain a multivariate
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version of the excess volatility in the following way:

Vt+k|t − V [Xt] =
k−1∑
j=0

Φj diag
[
(α1 + β1)k−1(σ2

1,t+1 − σ2
1), (α2 + β2)k−1(σ2

2,t+1 − σ2
2)

] (
Φj

)′
.

(5.28)

Note from expression (5.28) that the excess volatility of the component xi,t one step ahead is
simply that of its corresponding noise, εi,t. However, as k increases, the excess volatility of
xi,t depends not only on the excess volatility of εi,t, but also on that of εj,t, with i = 1, 2 and
i 6= j, by means of matrix Φ. This means that independent GARCH noises on the VAR process
does not ensure independent paths for the conditional variances of each component3. This is
an important result because it states that if one component is homoscedastic, its conditional
variance may still be influenced by periods of high or low volatility of other components.

When aggregating Xt by means of a vector λ = [λ1, (1− λ1)]′ (we suppress the time index
for simplicity), y∗t+k|t and v∗t+k|t are given by

y∗t+k|t = λ′ Φj Xt (5.29)

v∗t+k|t = λ′
k−1∑
j=0

Φj Σt+k−j|t
(
Φj

)′
λ. (5.30)

In this case, the excess volatility of the aggregate when k = 1 is equal to

v∗t+1|t = λ2
1(σ

2
1,t+1|t − σ2

1) + (1− λ1)2(σ2
2,t+1|t − σ2

2).

That is, a combination of the excess volatilities of ε1,t and ε2,t. Note that if 0 < λ1 < 1, the
excess volatility of the aggregate may be closer to zero than that of all the components, because
λ2

1 + (1 − λ1)2 < 1. Finally, we obtain the approximated (1 − α) prediction intervals of yt

conditional on the information given by Xt directly by plugging (5.29) and (5.30) into (5.25).

Alternatively, if we take yt and find the ARMA(p′,q′) process that results of aggregating Xt,
it is relatively easy to see that p′ = 2 and q′ = 1, that is

yt = φ1 yt−1 + φ2 yt−2 + θ1 at−1 + at. (5.31)

Moreover, following the development of Hendry and Hubrich (2006), we know that φ1 = trace(Φ),
φ2 = −det(Φ) and θ1 and σ2

a are the parameters of the MA(1) process given by

mt = λ1 (ε1,t − u1 ε1,t−1) + (1− λ1) (ε2,t − u2 ε2,t−1), (5.32)

where u1 = Φ2,2 − Φ2,1 and u2 = Φ1,1 − Φ1,2, with Φi,j being the element of the ith row and
jth column of Φ. Consequently, we are able to fully characterize the conditional mean of the
aggregate process. However, as we mentioned above, at is not in general GARCH, so that it is
impossible to find the conditional variance by doing something similar to the conditional mean.

3Only in the case in which Φ is diagonal, i.e. no component causes in the Granger sense to the others, we can

say that the excess volatility in εi,t affects the conditional variance of only xi,t+k. Obviously, this is the case of

two totally independent components, that can be modelled separately.
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In any case, we may use some of the results given by Nijman and Sentana (1996) commented
before, and define a (weak) GARCH process for at. Thus, once we fit a model for the conditional
mean and another for the conditional variance, we are able to plug the point forecast and its
conditional variance into the prediction interval of (5.23).

5.3.4 Cumulative forecasts and their conditional variance

Finally, consider now that Xt is the stationary transformation of a given time series vector Pt

such that Xt = ∆Pt. This may be the case of a (log) price index, in which the inflation process,
defined as its first difference, is given by Xt. Then, it may be interesting to find the point and
interval forecasts directly of Pt instead of Xt. In this case, under the assumptions made on Xt,
it is easy to show that the k-steps ahead MSE point predictor, Pt+k|t is given by

Pt+k|t =
k∑

j=1

Xt+k|t, k ≥ 1. (5.33)

Let Wt+k|t be the minimum MSE conditional variance of Pt+k. It is straightforward to see that
Wt+1|t is equal to Ht+1|t, which is also equal to Vt+1|t. However, for k > 1, Wt+k|t has a more
complex expression because it not only involves the sum of the conditional variances Vt+k|t, but
also of the covariances between the forecasts i and j periods ahead, which are not in general
zero. After working out the conditional expectations involved in Wt+k|t, we obtain a recursive
expression as follows

Wt+k|t = Wt+k−1|t + Vt+k|t + Φ KΦ VΦ + (KΦ VΦ)′ Φ′, k > 1, (5.34)

where

KΦ = [I2, Φ, Φ2, . . . , Φj−2]

and

VΦ = [Vt+k−1|t, Vt+k−2|t, . . . , Vt+1|t]
′

are two stacked matrices used to obtain the cross products involved in the covariances. With
expressions (5.33) and (5.3.4) we find the cumulative forecasts and their conditional variance of
the aggregate by noting that p∗t+k|t = λ′ Pt+k|t, so that w∗

t+k|t = λ′ Wt+k|t λ.

On the other hand, the multi-step cumulative forecasts of the univariate ARMA(2,1) process
for the aggregate yt is given by

pt+k|t =
k∑

j=1

yt+k|t, k ≥ 1, (5.35)

with their conditional variance given by where

wt+k|t = b′ Ψt+k|t b, k > 1, (5.36)

where

Ψt+k|t = Ψt+k−1|t + Ξt+k|t + ΘKΘ ΞΘ + (KΘ ΞΘ)′ Θ′,
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KΘ = [I3, Θ, Θ2, . . . , Θj−2],

ΞΘ = [Ξt+k−1|t, Ξt+k−2|t, . . . , Ξt+1|t]
′,

Ξt+k|t =
k−1∑
j=0

Θj b1 ht+k−j|t
(
Θj b1

)′
and Ψt+1|t = Ξt+1|t. The vectors b and b1 are defined as in (5.21). With p∗t+k|t, w∗

t+k|t, pt+k|t

and wt+k|t, we can obtain the approximated k-steps-ahead prediction intervals given in (5.25)
and (5.23), respectively. Note that the cumulative forecasts of yt, using either the indirect or
direct approach, have conditional variances that increase with the horizon k. This also implies
that the effects of a volatility shock at the time of forecasting do not vanish with k.

In the next section, we perform several Monte Carlo exercises with data simulated from the
VAR(1) process with CCC-GARCH noises to analyze the accuracy of the prediction intervals
generated by either the direct approach of using yt as a univariate process or the indirect
approach of using the information of the whole vector Xt. We also perform the exercise for the
cumulative forecasts using the expressions given above.

5.4 A Monte Carlo exercise

The objective in this section is to evaluate the coverage of the prediction intervals for different
specifications of the VAR(p) model with CCC-GARCH noises, given in (5.6). We stick to the
bivariate case and p = 1, allowing for GARCH(1,1) noises in either or both components. Table
(5.1) describes the data generating processes used to simulate the data. Note that the range
of models cover the simplest cases of R and/or Φ being diagonal and the more complex ones
where the unrestricted VAR(1) is combined with the mutually dependent CCC-GARCH, i.e. R

is also unrestricted. Without loss of generality, we use the equally weighted index that implies
λ1 = 0.5. We also fix

Φ =

[
0.4 −0.3
0.5 0.8

]
, R =

[
1 0.6

0.6 1

]
.

Additionally, we set α1 = α2 = 0.15, β1 = β2 = 0.8, σ2
1 = 1 and σ2

2 = 2 for the univariate
GARCH processes for the unrestricted versions of the models. In the restricted cases, we just
fix to zero the corresponding elements of the two matrices, R and Φ, and set α1 = β1 = 0 for
the cases in which only the second component is heteroscedastic.

For each DGP, we generate B = 1000 bivariate processes Xt and, assuming that the param-
eters are known, we find the MSE point predictor of Xt+k given Xt and its conditional variance
using the expressions given above. Then, we use them to obtain the prediction intervals of the
aggregate. This will be the indirect approach, which counts with the information on Xt. Alter-
natively, we obtain the univariate process yt of the simulated Xt, by means of the relationships
between the parameters given above, and find the point forecasts. With respect to the condi-
tional variance, we use the corresponding (weak) GARCH process4. This exercise allows us to

4For the more general cases included in the DGPs of Table 5.1, for which we do not count with a theoretical
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Conditional mean Conditional Variance
Label Order (p) Matrix Φ GARCH(1,1) Matrix R

U-B-D 1 Upper triangular Both Diagonal
F-B-D 1 Full Both Diagonal
D-B-D 1 Diagonal Both Diagonal

U-2nd-D 1 Upper triangular 2nd Component Diagonal
F-2nd-D 1 Full 2nd Component Diagonal
D-2nd-D 1 Diagonal 2nd Component Diagonal
U-B-F 1 Upper triangular Both Full
F-B-F 1 Full Both Full
D-B-F 1 Diagonal Both Full

U-2nd-F 1 Upper triangular 2nd Component Full
F-2nd-F 1 Full 2nd Component Full
D-2nd-F 1 Diagonal 2nd Component Full

Table 5.1: Data generating processes (DGPs) used for the Monte Carlo experiments. The matrix of
coefficients of the VAR(1) model, Φ, may be unrestricted (Full), upper triangular or diagonal. The
error vector εt may have GARCH(1,1) processes in only the second or in both components, allowing for
constant conditional correlation different from zero (R is Full) or zero (R is Diagonal).

compare the coverage of the two prediction intervals when we know the DGP of the series. Al-
ternatively, it may be worthy to fit also the best VAR(p) model with CCC-GARCH noises for Xt

and ARMA(p,q)-GARCH for yt according to some information criterium, in order to replicate
the case in which we do not count with any information about the DGP of Xt or yt. We use the
Bayesian Information Criterium (BIC). We also add an homoscedastic version of the selected
model for yt in order to capture the effect of disregarding the conditional heteroscedasticity in
the prediction intervals.

For measuring accuracy in the prediction intervals, we generate P = 1000 trajectories of
Xt+k|t, and obtain the empirical coverage of each model by counting the proportion of observa-
tions laying within each prediction interval. Thus, we obtain B coverages and calculate their
mean absolute deviation (MAD) with respect to the nominal coverage. The model obtaining
the smallest MAD will be the one yielding the most accurate prediction intervals, i.e. the one
giving coverages closest to the nominal. We choose the forecast horizons k = 1, 2, 6, 12, 24 and
a relatively small sample size T = 200 to resemble the case of a monthly series, such as the
aggregate inflation rate. Table 5.2 shows the results for the 95% prediction intervals. The top
block of rows correspond to the cases in which we know the DGP of the data, and the bottom
block correspond to the case in which we need to find the best model and estimate it.

relationship, e.g. the sum of two dependent (strong) GARCH(1,1) processes, we just use the Monte Carlo averages

of the QML estimates of the GARCH(1,1) fitted to the aggregate of very long simulated series. That is, we simulate

100 bivariate processes, Xt, with a sample size of T = 20000, find their aggregate by means of the vector λ, fit

the GARCH(1,1) process and collect the ARCH and GARCH coefficients.
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With respect to the results in which we know the DGP, the main conclusion is that the
indirect approach of using the multivariate model provides more accurate prediction intervals
than the direct approach of fitting the corresponding ARMA-GARCH model to the aggregate.
This conclusion is maintained for all DGPs. However, as k increases, the volatility shocks vanish
and consequently, the direct approach produce prediction intervals with coverages closer to those
of the indirect approach.

With respect to the cases in which the DGP is unknown and the parameters need to be
estimated, again we observe that in general the indirect approach yields the best coverages, for
almost all DGPs. Of course, with respect to the homoscedastic models, the indirect approach
greatly improves the coverages for small k. Again, as k increases, the indirect and the direct
approaches with or without GARCH noises yield similar results. Among the different DGPs used
to simulate the data, the ones with R being unrestricted and only the second component being
GARCH (2nd-F) yield the worst coverages in both, the indirect and direct approaches. In other
words, the cases in which the homoscedastic noise is correlated with the heteroscedastic one
produce relatively worse coverages. However, when we set the first component to be GARCH,
both approaches yield much better coverages. This pattern may be explained by the fact that
the approximated Ĥt+k|t given in (5.13) may not be good when one component is homoscedastic,
although it may be valid if both noises are GARCH processes with the same parameters, as in
our case.

Finally, we also carry out Monte Carlo experiments to measure the accuracy of the cumulative
prediction intervals for all the DGPs considered in Table 5.1. Table 5.3 reports the results. Note
that for k = 1 the results are identical to those of Table 5.2, by construction. In general the
relative performance of the two approaches with respect to pt is similar to the case of yt for small
k. However, as k increases, we see that the differences in accuracy of the different prediction
intervals are larger. As mentioned before, this is a consequence of having volatility shocks that
do not vanish with k. Thus, if the direct or indirect approach captures differently a given excess
volatility, their conditional variances will differ for all k. Of course, given that the homoscedastic
case does not take into account these shocks, it will always has the worst coverages for almost
all DGPs.

As a general result of these Monte Carlo experiments, we can say that the univariate model
for the aggregate does not generate as good prediction intervals as the indirect approach of
using a multivariate model, mainly because the former is not able to distinguish the source of
the volatility shocks. Consequently, it cannot properly assess the true uncertainty associated
with the future values of the series. This is more evident when working with the cumulative
forecasts.

5.5 Conclusions

In this chapter, we study the performance of the prediction intervals of the aggregate when at
least one of its components is conditionally heteroscedastic. In particular, we analyze if using the
indirect approach of modelling the whole vector of components and then aggregate the forecasts
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improves the accuracy of prediction intervals when compared with the direct approach of taking
the aggregate as a univariate series. We obtain the multi-step MSE point predictions and their
conditional variance k steps ahead for the case of a VAR(p) process with a constant conditional
correlation (CCC) GARCH residual vector. We find with simulated data that the use of the
indirect approach may be preferred because it yields more accurate prediction intervals than the
approach of working directly with the aggregate. Making an analogous argument as in Chapter
3, this result may be explained by the fact that the direct univariate approach is not able to
distinguish the source of the volatility shocks, i.e. which components have excess volatilities
different from zero. Consequently, it cannot properly assess the true uncertainty associated
with the future values of the series.
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Chapter 6

Conclusions and future research

Stochastic trends and volatility clustering are two features that are present in many economic and
financial time series. In this thesis, we study two alternative models to deal with these features,
the unobserved component model with conditionally heteroscedastic noises and the ARIMA-
GARCH model. We focus mainly on the local level model and its reduced form IMA counterpart
and analyze the relative forecasting performance of the prediction intervals constructed from
these two models. Throughout the chapters, we use either simulated or real time series data to
illustrate the main results.

In Chapter 2 we derive the statistical properties of the reduced form unobserved component
model when we allow the noises to be conditionally heteroscedastic and show that although
working with the ARIMA reduced form model is simpler because there is only one disturbance,
working with the unobserved component model may lead to discover conditionally heteroscedas-
tic structures that could not be apparent in the reduced form noise.

When focusing of the relative forecasting performance of the two alternative approaches, we
show in Chapter 3 that if the unobserved component models have conditionally heteroscedastic
noises only in the transitory component, then the prediction intervals based on the homoscedas-
tic and heteroscedastic unobserved components models stick to each other for large prediction
horizons. However, depending on the sign of the excess volatility, the ARIMA-GARCH counter-
parts may be wider or thinner than the intervals obtained with the corresponding unobserved
component model. This is due to its incapacity of distinguishing whether the heteroscedasticity
affects the long or the short run components, and it may lead to significant differences between
the two prediction intervals, specially for medium and long term. Therefore, the use of reduced
form ARIMA models to construct prediction intervals may be inappropriate to capture the
underlying uncertainty of the heteroscedastic components.

On the other hand, in Chapter 4 we compare the conditionally heteroscedastic local level
model with a time-varying IMA model based on the rolling-window estimation approach. These
models models have been recently used to forecast the dynamics of the US inflation. We show
that the evolution of the MA parameter can only be attributed to breaks and not to the time-
varying variances of the local level noises. Moreover, we can conclude that it is very difficult
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to assess if the evolution of the rolling window estimator comes only from sample variability or
from changes in the marginal variances of the local level noises, and that the rolling window
estimation approach is not able to capture the conditionally heteroscedastic structure of the
local level noises.

Finally, in Chapter 5 we study the forecasting performance of prediction intervals constructed
from two alternative approaches of fitting an index series. In particular, we analyze if the use of
a disaggregation approach consisting on fitting the components of the index series as a vector
an then aggregate their predictions is better than the more direct approach of using a univariate
model to fit and forecast the aggregate. We show with some simulated data that the latter
does not generate as good prediction intervals as the former approach of using a multivariate
model, mainly because the former is not able to distinguish the source of the volatility shocks.
Consequently, it cannot properly assess the true uncertainty associated with the future values
of the series.

Different topics have been arising while working on the different chapters of this thesis, which
are part of the future research agenda. We list the most relevant ones below.

The study of the statistical properties of the conditionally heteroscedastic unobserved com-
ponent models and their reduced form ARIMA counterpart given in Chapter 2 is made only for
univariate time series. We believe that it may be worthy to generalize the results obtained for
the case in which yt is a vector, and compare the multivariate versions of the unobserved com-
ponents with vector ARIMA processes, when some of the component noises are conditionally
heteroscedastic. This may be of empirical interest specially when dealing with financial time
series.

When working with simulated time series, we measure accuracy in prediction intervals by
means of the observed coverage, which is computed as the percentage of simulated trajectories
that fall inside the intervals. However, when dealing with real time series, the observed coverage
must be estimated in an out-of-sample scheme. Consequently, to make inference about the
relative accuracy of these intervals, we need to use some of the existing tests for interval and
density forecasts; see, for example, Giacomini and Komunjer (2005), Corradi and Swanson (2005)
and Giacomini and White (2006). Many of them are generalizations of the mean square forecast
error (MSFE). We plan to include the results of these tests in the empirical illustrations.

In Chapter 4, we plan to make a more exhaustive empirical analysis of the forecasting
performance of the presented models, by using other measures of the inflation rate, in order
to check the robustness of the conclusions. On the other hand, in Chapter 5, we also wish to
compare the two approaches using an index of the inflation rate, and decompose it into four
of five components. Thus, we can identify which of them are conditionally heteroscedastic and
then use the indirect approach of fitting the components as a vector time series, aggregate the
predictions, and finally compare the relative accuracy of these predictions with those obtained
directly from the univariate analysis of the aggregate inflation. Again, we should use some of
the tests for interval and density forecasts mentioned above to perform the analysis.

Finally, as one of the main conclusions of the thesis is that using unobserved component
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models to fit conditionally heteroscedastic time series may lead to improve accuracy on prediction
intervals, we think that more effort should be made to find estimation procedures that yield
estimators with better properties. In this regard, we think that the use of nonlinear filters or
MCMC methods, some of them already existing in the literature, may be of great help.
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