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In this paper, flexural vibrations of cracked micro- and nanobeams are studied. The model is based
on the theory of nonlocal elasticity applied to Euler—Bernouilli beams. The cracked-beam model is
established using a proper modification of the classical cracked-beam theory consisting of dividing
the cracked element into two segments connected by a rotational spring located at the cracked
section. This model promotes a discontinuity in bending slope, which is proportional to the second
derivative of the displacements. Frequency equations of cracked nanobeams with some typical
boundary conditions are derived and the natural frequencies for different crack positions, crack
lengths, and nonlocal length parameters are calculated. The results are compared with those
corresponding to the classical local model, emphasizing the differences occurring when the nonlocal

effects are significant.

I. INTRODUCTION

Many micro- or nanoelectromechanical systems (MEMS
or NEMS) devices incorporate structural elements such as
beams and plates at a micro- (or nano-) length scale. Size
effects are significant in the mechanical behavior of these
structures in which dimensions are small and comparable to
molecular distances. Since the atomic and molecular models
require great computational effort, simplified models are use-
ful for analyzing the mechanical behavior of such devices.

Classical continuum mechanics cannot predict the size
effect, due to its scale-free character. Among the size-
dependent continuum theories, the theory of nonlocal con-
tinuum mechanics initiated by Eringen (1972) and Eringen
and Edelen (1972) has been widely used to analyze many
problems, such as wave propagation, dislocation, and crack
singularities.

From the pioneer work of Peddieson et al. (2003), ap-
plying the simplified model proposed by Eringen (1983) for
problems involving nanotechnology, several studies have
been devoted to different aspects of the mechanical behavior
of beams, plates, and shells on the nanoscale. Thus, the non-
local theory of elasticity has been used to address the static
bending behavior, buckling, and free transverse vibrations of
microbeams and nanobeams, as well as carbon nanotubes
[Sudak (2003), Wang (2005), Xu (2006), Wang et al. (2006),
Wang and Varadan (2006), Lu et al. (2006), Wang et al.
(2007), Wang and Liew (2007), Lu (2007), Lu et al. (2007),
and Heireche et al. (2008)]. Reddy (2007) applied the Erin-
gen nonlocal elastic constitutive relations to derive the equa-
tion of motion of various kinds of beam theories available
(Euler-Bernoulli, Timoshenko, and Reddy and Levinson)
and reached analytical and numerical solutions on static de-
flections, buckling loads, and natural frequencies. As Reddy
(2007) and Lu et al. (2007) have pointed out, some published
works [Wang (2005), Wang et al. (2006), Wang and Varadan
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(2006), and Wang and Liew (2007)] do not adequately con-
sider the nonlocal effect in writing the shear stress-strain
relation of the Timoshenko beam theory. It is important to
underline that all these works refer to intact devices; al-
though the probability of finding defects is very low, the
presence of a defect could dramatically alter the structural
behavior of the component. An example of the importance of
this kind of analysis is the work of Luque et al. (2006), who
have studied the tensile behavior of cylindrical copper wires
of nanometric diameter, considering atomically sharp surface
cracks. These analyses have been carried out using
molecular-dynamics techniques.

In the present work, the flexural vibrations of cracked
micro- and nanobeams are studied. In the next section the
general constitutive equations of nonlocal elasticity theory
are briefly summarized. Section Il gives the governing equa-
tions of the dynamics of a nonlocal Euler—Bernoulli beam.
The cracked beam model is established in Sec. IV, using a
proper modification of the classical cracked-beam model by
dividing the cracked element into two segments connected
by a rotational spring located at the cracked section. This
model promotes a discontinuity in bending slope which is
proportional to the second-derivative of the displacements.
Natural frequencies from cracked nanobeams with some
typical boundary conditions are calculated for different crack
positions, crack severities, and values of the nonlocal length
parameter. The results are compared with those correspond-
ing to the classical local model, highlighting the differences
occurring when nonlocal effects are significant.

II. CONSTITUTIVE RELATIONS FOR THE ERINGEN
NONLOCAL ELASTICITY THEORY

The theory of nonlocal elasticity, developed by Eringen
(1972), Eringen (2002), and Eringen and Edelen (1972)
states that the nonlocal stress-tensor components oy, at any
point x in a body depend not only on the strain at x (local
theory) but also on strains at all points of the body. For
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homogeneous and isotropic nonlocal elastic solids, the con-
stitutive relations can be expressed in an integral form as

o(X) = fﬂ a([x" = x|, Dt (x)dQ(x"), (1)

where t,, are the components of the classical local stress
tensor at point X, which are related to the components of the
linear strain tensor gy by the conventional constitutive rela-
tions for a Hookean material, i.e.,

t(X) = Nepe(X) g + 2G ey (X). (2)

The kernel a (|x’—x|, 7) is the nonlocal modulus which
incorporates into the constitutive relation the nonlocal effect
of the stress at point x produced by local strain at the point
x'. Here, |x—x'| is the Euclidean distance and 7 is given by

=", @)

which represents the ratio between a characteristic internal
length a (e.g. a C—C bond, lattice parameter, and granular
distance) and characteristic external one | (e.g., crack length
and wavelength). Meanwhile, g is an adjusting constant, de-
pendent on each material, which needs to be determined
from experiments or by matching dispersion curves of plane
waves with those of atomic-lattice dynamics.

According to Eringen (1983), for a class of physically
admissible kernel « (|’ —x|,7) it is possible to represent the
integral constitutive relations given by Eq. (1) in an equiva-
lent differential form as

[1 - (e02)*V?]oyg = ty. (4)

Thus, the scale coefficient eya takes into account the size
effect on the response of micro- and nanostructures.

IIl. NONLOCAL EULER-BERNOULLI BEAM MODEL

Let us consider a beam of length L along the axial coor-
dinate x. The Euler—Bernoulli beam theory considers the fol-
lowing displacement field:

o
up = u(xt) -y,

U, =v(x,t),
PRI (%)

us =0, (5)

where u and v are, respectively, the axial and transverse dis-
placements of the point x on the middle plane (i.e., y=0) of
the beam.

From this displacement field, the only nonvanishing
strain is

_(7_u P

Tox Tl ®

Exx

If the rotational inertia is neglected, the equations of
motion of the beam is given by

oN &
i :pAIu, 7)

FM P
P p(x,t) = pAIlz), (8)

where p is the density of the material, A is the cross-sectional
area of the beam, p is the vertical distributed transverse force
along axis x, f is the horizontal distributed transverse force
along axis x, N is the axial force, S is the shear force, M is
the resultant bending moment, and | is the moment of inertia,
defined respectively as follows:

N:f o dA, S:J oy dA,
A A

M=- f oYydA, 1= f y2dA. 9)
A A

The nonlocal expressions for the axial force, the bending
moment, and the shear force can be determined from the
constitutive equations as a function of the horizontal and
vertical displacements and the forces distributed along the
beam [Reddy (2007) and Reddy and Pang (2008)],

#u af)

au
N(x) = EA— + (ae 2( A
(x) X (aep)| p Mo ox

# #
M0 =I5 - (aeo)z(p - PAIZ)*

v 2( ap v )
S(x)=- EI% - (agp) 5 - pAé’Xo"tz . (10)
Finally, the equations for the horizontal and vertical dis-
placements for the nonlocal beam could be written as [Reddy
(2007) and Reddy and Pang (2008)]

Fu Pf &u

EAﬁ +f- (aeo)zﬁ = pA?, (11)
& P & P

Elgﬁ + pA(;Z - (aep)? angtz) =p- <aeo>2;2. (12)

In this work, transverse free vibrations are investigated.
In order to solve the problem, only Eq. (12) must be analy-
sed, by making the external load equal to zero,

(94U (5‘2U (941)
E|% + pA ? - (aeo)zm =0. (13)
The above equation can be solved by using the classical

separation-of-variables method as

v(x,t) = V(x)e'“t, (14)

where o is the natural frequency of vibrations.
Substituting Eqg. (14) in Eq. (13) and using the dimen-
sionless variables and constants given by

4
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g=x/lL, h==2 )4 —l V=VIL, (15)

we get the spatial equation as
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FIG. 1. Model of the cracked beam.

VIV 4+ \4(h2V7 - V) =0, (16)

where ()’ represents the derivative with respect to & The
general solution for the above differential equation is

V(9 = Ay SINh(B,&) + A cosh(B,&) + Ag Sin(Bed)

+ A, cos(B:f), (17)
where
—
/1+4/h"\* -1
B, =\?h \f (18)

[1+4/m*\*+1
Be=N\h \ \f (19)

Once the displacements are known [Eq. (17)], and using
the definition for the variables [Eq. (15)], the bending slope

0(&), the dimensionless bending moment M(é), and dimen-
sionless shear force S(&) can be calculated as follows:

0é) =V'(&), (20)
w(H =ML = +ne), (21)
_ S 2 _ _

5(9) = % =V + AN (&), (22)

Note that Egs. (21) and (22) are easily derived from Egs.
(10), and they differ from the ones given by the local bend-
ing theory.

The four constants A; of the solution [Eq. (17)] are de-
termined by solving the system of four equations that result
from applying the proper boundary conditions on the end
supports as follows:

e Simply supported end,

V=0, (23)

V'+hAANV =0 (M=0), (24)
* fixed end,

V=0, (25)

V=0, (26)
» free end,

V' +hAN=0 (M=0), (27)

V" +h2\4 =0 (S=0). (28)

IV. NONLOCAL EULER-BERNOULLI CRACKED-BEAM
MODEL

Let us now consider that the beam has an edge crack of
length a located at a distance L* (b=L*/L) from the left end.
To take into account the effect of the crack, we extend the
method first proposed by Freund and Herrmann (1976) and
further followed by many others [Adams et al. (1978),
Narkis (1994), Fernandez-Saez et al. (1999), Fernandez-Saez
and Navarro (2002), and Loya et al. (2006)]. Thus, the
cracked-beam has been considered to be two beams con-
nected by a rotational and a longitudinal elastic spring at the
cracked section (Fig. 1). Both springs are introduced to con-
sider the additional strain energy caused by the presence of
the crack.

In effect, the strain energy ¢/ of the cracked nanobeam
can be stated as

TABLE |. Values of the first four order frequency parameters for a simply supported beam with different
nonlocal parameter h and crack-severity K. Crack position £=0.50.

h=0.0 h=0.2
A K=0 K=0.065 K=0.35 K=2 K=0 K=0.065 K=0.35 K=2
1 3.1416 3.0469 2.7496 2.0960 2.8908 2.8031 2.5233 1.9098
2 6.2832 6.2832 6.2832 6.2832 4.9581 4.9581 4.9581 4.9581
3 9.4248 9.1669 8.6129 8.0730 6.4520 6.2604 5.7891 5.3416
4 12.5664 12.5664 12.5664 12.5664 7.6407 7.6407 7.6407 7.6407
h=0.4 h=0.6
1 2.4790 2.4032 2.1567 1.6195 2.1507 2.0846 1.8678 1.3971
2 3.8204 3.8204 3.8204 3.8204 3.1815 3.1815 3.1815 3.1815
3 4.7723 4.6284 4.2729 3.9563 3.9329 3.8141 3.5226 3.2709
4 5.5509 5.5509 5.5509 5.5509 4.5566 4.5566 4.5566 4.5566




TABLE IlI. Values of the first four order frequency parameters for a simply supported beam with different
nonlocal parameter h and crack-severity K. Crack position £=0.25.

h=0.0 h=0.2
A K=0  K=0065 K=035  K=2 K=0  K=0065 K=035  K=2
1 31416 3.0921 29071 23493 28908 28447  2.6645 21134
2 62832  6.1028 56491 51047 49580 48101 44169  3.9906
3 94248  9.3021 90767 89008 64520 63638 61924  6.0692
4 125664 125664 125664 125664  7.6407  7.6407  7.6407  7.6407
h=0.4 h=0.6
1 24790 2.4387 22730 17660 21507 21154 19661 15125
2 38203 370467 33993 31123 31815 30849 28336  2.6147
3 47723 47072 45859 45062 39329 38795 37816  3.7101
4 55509 55509 55509 55509 45566 45566 45566  4.5566
1t ETR ) In view of the functional form of the strain energy of the
u=3 dX | oy P v dA + AU, (29)  intact beam, we can write the increment due to the presence
0 A

of an edge crack as follows:

with A/, being the increment of strain energy corresponding Ao oy
to the crack. This expression could be rewritten easily, using AU, = %kMMM(L*,t)—2 + %kNNN(L*,t)—
the definitions in Eq. (9) in terms of the axial force and the X X

bending moment, au v
+ skunM(L*, D — + SkuwN(L* D), (31)
L X X2
1 au #v
U==] N +M— |dx+ AlL. (30) o
2Jo \ ox o where kyn, kv ks and kyy are the flexibility constants.
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FIG. 2. (Color online) First four frequency parameters for a simply supported beam with crack position £=0.50.
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FIG. 3. (Color online) First four frequency parameters for a simply supported beam with crack position £=0.25.

The last two terms are considered to take into account the
coupled effects between the axial force and bending moment.
The increment of strain energy could be written as

AU, = 3MAG+ NAU, (32)
A6 being the angle rotated by the rotational spring and Au
the relative horizontal displacement at the edge crack sec-

tion. Comparing Egs. (31) and (32) the following relations
are established:

Pv Ju

AeszM£+kMN&, (33)
au P

AU = kNN& + kNM%' (34)

As mentioned above, in this work the transverse free
vibrations are investigated, and hence no longitudinal dis-
placement is considered. In addition, the crossover flexibility
constants (kyn and kyy) are assumed to be small enough, as
in the case of local elasticity, to consider only the one related
to the bending moment (kywm). The slope increment A6
=kyumd?v/x? in the cracked section is then expressed using
dimensionless variables as
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T N 9 ’
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where K=kym/L. In the case of local cracked beams, the
additional strain energy due to the crack Al can be calcu-
lated from the fracture mechanics theory [Irwin (1960)]. In
the case of nanobeams, Al{, must be obtained from either ab
initio studies or molecular dynamics calculations.

Once defined how the edge crack is modeled, we can
proceed to solve the free transverse vibrations of cracked
nanobeams. The spatial solution for the motion in the vertical
direction for each of the two segments can be expressed in a
way similar to Eq. (16),

VY + ARV - V;) =0, 0=¢<b,

VY + A%h2VS-V,) =0, b<g=<1, (36)
with A being the frequency parameter of the cracked beam,
which could be related to its natural frequency o, by

_ pAL* 2

AN=—o

— (37)

Thus, the general solution for the above differential
equations Eq. (36) is



TABLE I11. Values of the first four order frequency parameters for a clamped-clamped beam with different
nonlocal parameter h and crack-severity K. Crack position £=0.50.

h=0.0 h=0.2
A K=0 K=0.065  K=0.35 K=2 K=0 K=0.065 K=0.35 K=2
1 4.7300 4.6285 4.3566 3.9702 4.2766 4.1736 3.8855  3.4764
2 7.8532 7.8532 7.8532 7.8532 6.0352 6.0352 6.0352  6.0352
3 109956  10.6976  10.1028 9.5833 7.3840 7.1421 6.6089  6.2045
4 141372 141372 141372 141372 8.4624 8.4624 8.4624  8.4624
h=0.4 h=0.6
1 3.5923 3.4947 3.2141 2.63306  3.0837 2.9952 27391 2.3949
2 4.5978 4.5978 45978 4.5978 3.8165 3.8165 3.8165  3.8165
3 5.4738 5.2993 4.9302 4.6170 4.5231 4.3831 40939 39116
4 6.1504 6.1504 6.1504 6.1504 5.0505 5.0505 50505  5.0505
\_/1(5) = A, Sinh(B.&) + Ay cosh(B,8) + A, sin(B;€) e Continuity of the bending moment,
tAsCo8(Br), 0<¢<b, V2(b) + h?A%V,(b) = V(b) + h?A%V, (b). (43)
V(&) = Ag sinh(B,€) + Ag COS(B,8) + A; sin(B:é) + Continuity of the shear force,
+ s S _III \ ! \/ \
A8 COS(Bfg): b g 1: (38) V2 (b) + h2A4V2(b) - Vllu(b) + h2A4V£(b) (44)
with 5 and S similar to Egs. (18) and (19), Instead of eight unknown factors, the expressions for
) V1+4/h*AY -1 displacements [Egs. (38)] may be written in a more conve-
Bs=Ah\ ————. (39)  nient form in terms of just four constants: the displacement

V, bending slope 6,, bending moment My, and shear force

o NI+ ah*AT+1 So at £20,
Bs=A%h — (40)

V1(8) = Vo01(8) + 6092(8) + Mog3(€) +So04(£), 0<¢<b,
The above two equations [Egs. (38)], which present (45)
eight unknown constants, must be solved with the specified
boundary conditions and the following compatibility condi-

tions at the cracked section: \_/2(5) = \_/l(g) +A60g,(E-b), b=sés, (46)
) E:ontmw_ty of the vertical displacement, where the functions g;(¢) can be expressed as follows:
VD=0 . [cos(8,) - cosh(&8) (A" + )
cos - Cos +
« Jump in bending slope, 91(&) = cosh(&Bs) + b 7 '8; 5 ,
— — _ Bf + ﬂs
A6=Vj(b) - Vi(b) =KVi(b). (42) (47)

TABLE IV. Values of the first four order frequency parameters for a clamped-clamped beam with different
nonlocal parameter h and crack-severity K. Crack position £=0.25.

h=0.0 h=0.2
A K=0 K=0.065 K=0.35 K=2 K=0 K=0.065 K=0.35 K=2
1 4.7300 4.7273 4.7194 4.7068 4.2766 4.2752 4.2705 4.2595
2 7.8532 7.6991 7.3175 6.8770 6.0352 5.9062 5.5040 5.0234
3 10.9956 10.7787 10.4067 10.1452 7.3840 7.1962 6.8797 6.7231
4 14.1372 14.0911 14.0159 13.9634 8.4490 8.3902 8.2780 8.2163
h=0.04 h=0.6
1 3.5923 3.5920 3.5903 3.5810 3.0837 3.0836 3.0831 3.0690
2 4.5978 4.4969 4.1539 3.7561 3.8165 3.7324 3.43941 3.1093
3 5.4738 5.3242 5.0900 4.9941 4.5231 4.3965 4.20161 4.1256
4 6.1504 6.0891 6.0081 5.9707 5.0505 4.9985 4.93391 4.9056
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FIG. 4. (Color online) First four frequency parameters for a clamped-clamped beam with crack position £€=0.50.
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92 =——
? Br
_ (= h2A*By + B[ sinh(£Bs) B + sin(£B¢) Bs]
BiBs(B + ) ’
(48)
cos(£By) — cosh(£Bs)
93(6) = - o =, (49)
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= sinh(£Bs) B + sin(£By) B
94(8 = : fz 2 ! S- (50)
Bflgs(lgf + :85)

The general solution expressed in this way [Egs. (45)
and (46)] satisfy the compatibly conditions at the cracked
section [Egs. (41)-(44)], and two of the constants are deter-
mined directly from the type of support at £€=0. The other
two unknown constants are determined by the system of two
equations from the proper boundary conditions at £é=1. In
case of n cracks, an extra equation similar to Eq. (46) must
be added for every new segment, and regardless of the num-
ber of cracks, the problem can be solved by a 2 X 2 system of
equations. This is a homogenous system, and to avoid the
trivial solution it is necessary to impose the nullity of the
determinant of the coefficients’ matrix. The methodology
used considerably simplifies the calculations, compared with

the use of a 8 X 8 determinant; in addition, this technique is
suitable to analyze the presence of multiple cracks in nano-
beams, without increasing the difficulty of the problem and
keeping the resolution by the 2 X2 determinant.

V. RESULTS

The results presented in this section correspond to the
first four natural frequencies of a nonlocal Euler-Bernoulli
beam for different positions for the edge crack (at the mid-
span, ¢€=0.5, and at a quarter of the beam ¢=0.25), two dif-
ferent boundary conditions (simply supported and clamped-
clamped), and different crack-severities K. As mentioned
above, the values of K as a function of size of defect must be
determined for nanobeams from molecular dynamics mod-
els; in this work values of K=0 (uncracked beam), and K
=0.065, 0.35, and 2 were used. The nonlocal effect was in-
troduced using the parameter h. Results were obtained for
values of nonlocal parameter h of 0 (local conventional
case), 0.2, 0.4, and 0.6. A total of 24 cases were studied.

A. Simply supported beam

The changes of the first four eigenvalues A; for the sim-
ply supported beam with the crack-severity parameter K for
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FIG. 5. (Color online) First four frequency parameters for a clamped-clamped beam with crack position £€=0.25.

different values of h are given in Table | in the case of an
edge crack located at the midspan of the beam, and in Table
Il for a crack located at £=0.25.

In both cases, the first four natural frequencies decrease
with the local parameter h. For the uncracked beam, the val-
ues found exactly reproduce the results given by Lu (2007)
for different values of h. In local cracked beams, this trend is
also observed; it is also found that as the crack considered
lengthens, the beam stiffness decreases and so do the natural
frequencies.

Due to the symmetry of the problem, the mid-span
cracked beam has the second and fourth natural frequencies
independent of crack-severity; this behavior was expected
from the fact that the second derivative of vertical displace-
ment is canceled in the cracked section. The same result was
found for the beam with the crack position at £=0.25, but
only for the fourth natural frequency.

In Figs. 2 and 3 it can be seen that the nonlocal effect
has a significant influence on the dynamic properties of a
cracked beam, in way similar to the first four order eigenval-
ues for any edge-crack length. The difference between the
results found using local and nonlocal beam theory is greater
in higher modes.

B. Clamped-clamped beam

The changes of the first four order eigenvalues A; for the
clamped-clamped beam with the crack-severity parameter K

for different values of parameter h are given for a crack
located at £€=0.5 and £=0.25 in Tables Il and 1V, respec-
tively.

It was found that the variations of the natural frequencies
with K and h for the clamped beam (see Figs. 4 and 5) have
trends similar to those shown in Figs. 2 and 3 for the simply
supported beam, since the clamped beam is stiffer than the
simply supported beam for a pair of given nonlocal and
crack parameters.

As in the simple-supported beam with £=0.50, the sym-
metry of the problem causes the second and fourth modal
frequencies not to be crack dependent; the same nondepen-
dency is observed in the fourth mode for the quarterspan
cracked beam.

VI. CONCLUSIONS

This paper examines the natural frequencies of cracked
nanobeams; the nonlocal elasticity theory was used to take
into account the size effect of the structure analyzed. The
cracked nanobeam was modeled using a rotational spring
which promotes a discontinuity in the slope. This disconti-
nuity is proportional to the crack severity. Two different
boundary conditions were considered: simply supported and
clamped-clamped.

The methodology used allows the simple determination
of the first four natural frequencies and hence the possibility



of analyzing the influence of the most important parameters
that appear in these kinds of problems: crack severity, crack
position, and nonlocal effect.

From these results presented and discussed, the main
conclusions are as follows:

e The nonlocal parameter h considerably affects the
value of the natural frequencies, which decreases as h
increases.

e The influence of the nonlocal parameter is stronger at
higher modes rather than at the lower ones.

e For the uncracked case, K=0, and taken into account
the nonlocal effect, the results are compared with the
work of Lu (2007) and completely coincide.
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