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In this paper, flexural vibrations of cracked micro- and nanobeams are studied. The model is based

on the theory of nonlocal elasticity applied to Euler–Bernouilli beams. The cracked-beam model is

established using a proper modification of the classical cracked-beam theory consisting of dividing

the cracked element into two segments connected by a rotational spring located at the cracked

section. This model promotes a discontinuity in bending slope, which is proportional to the second

derivative of the displacements. Frequency equations of cracked nanobeams with some typical

boundary conditions are derived and the natural frequencies for different crack positions, crack

lengths, and nonlocal length parameters are calculated. The results are compared with those

corresponding to the classical local model, emphasizing the differences occurring when the nonlocal

effects are significant.

I. INTRODUCTION

Many micro- or nanoelectromechanical systems sMEMS
or NEMSd devices incorporate structural elements such as
beams and plates at a micro- sor nano-d length scale. Size
effects are significant in the mechanical behavior of these

structures in which dimensions are small and comparable to

molecular distances. Since the atomic and molecular models

require great computational effort, simplified models are use-

ful for analyzing the mechanical behavior of such devices.

Classical continuum mechanics cannot predict the size

effect, due to its scale-free character. Among the size-

dependent continuum theories, the theory of nonlocal con-

tinuum mechanics initiated by Eringen s1972d and Eringen
and Edelen s1972d has been widely used to analyze many
problems, such as wave propagation, dislocation, and crack

singularities.

From the pioneer work of Peddieson et al. s2003d, ap-
plying the simplified model proposed by Eringen s1983d for
problems involving nanotechnology, several studies have

been devoted to different aspects of the mechanical behavior

of beams, plates, and shells on the nanoscale. Thus, the non-

local theory of elasticity has been used to address the static

bending behavior, buckling, and free transverse vibrations of

microbeams and nanobeams, as well as carbon nanotubes

fSudak s2003d, Wang s2005d, Xu s2006d, Wang et al. s2006d,
Wang and Varadan s2006d, Lu et al. s2006d, Wang et al.

s2007d, Wang and Liew s2007d, Lu s2007d, Lu et al. s2007d,
and Heireche et al. s2008dg. Reddy s2007d applied the Erin-
gen nonlocal elastic constitutive relations to derive the equa-

tion of motion of various kinds of beam theories available

sEuler–Bernoulli, Timoshenko, and Reddy and Levinsond
and reached analytical and numerical solutions on static de-

flections, buckling loads, and natural frequencies. As Reddy

s2007d and Lu et al. s2007d have pointed out, some published
works fWang s2005d, Wang et al. s2006d, Wang and Varadan

s2006d, and Wang and Liew s2007dg do not adequately con-
sider the nonlocal effect in writing the shear stress-strain

relation of the Timoshenko beam theory. It is important to

underline that all these works refer to intact devices; al-

though the probability of finding defects is very low, the

presence of a defect could dramatically alter the structural

behavior of the component. An example of the importance of

this kind of analysis is the work of Luque et al. s2006d, who
have studied the tensile behavior of cylindrical copper wires

of nanometric diameter, considering atomically sharp surface

cracks. These analyses have been carried out using

molecular-dynamics techniques.

In the present work, the flexural vibrations of cracked

micro- and nanobeams are studied. In the next section the

general constitutive equations of nonlocal elasticity theory

are briefly summarized. Section III gives the governing equa-

tions of the dynamics of a nonlocal Euler–Bernoulli beam.

The cracked beam model is established in Sec. IV, using a

proper modification of the classical cracked-beam model by

dividing the cracked element into two segments connected

by a rotational spring located at the cracked section. This

model promotes a discontinuity in bending slope which is

proportional to the second-derivative of the displacements.

Natural frequencies from cracked nanobeams with some

typical boundary conditions are calculated for different crack

positions, crack severities, and values of the nonlocal length

parameter. The results are compared with those correspond-

ing to the classical local model, highlighting the differences

occurring when nonlocal effects are significant.

II. CONSTITUTIVE RELATIONS FOR THE ERINGEN
NONLOCAL ELASTICITY THEORY

The theory of nonlocal elasticity, developed by Eringen

s1972d, Eringen s2002d, and Eringen and Edelen s1972d
states that the nonlocal stress-tensor components skl at any

point x in a body depend not only on the strain at x slocal
theoryd but also on strains at all points of the body. Forad
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homogeneous and isotropic nonlocal elastic solids, the con-

stitutive relations can be expressed in an integral form as

sklsxd = E
V

asux8 − xu,tdtklsxddVsx8d , s1d

where tkl are the components of the classical local stress

tensor at point x, which are related to the components of the

linear strain tensor «kl by the conventional constitutive rela-

tions for a Hookean material, i.e.,

tklsxd = l«rrsxddkl + 2G«klsxd . s2d

The kernel a sux8−xu ,td is the nonlocal modulus which
incorporates into the constitutive relation the nonlocal effect

of the stress at point x produced by local strain at the point

x8. Here, ux−x8u is the Euclidean distance and t is given by

t =
e0a

l
, s3d

which represents the ratio between a characteristic internal

length a se.g. a C–C bond, lattice parameter, and granular
distanced and characteristic external one l se.g., crack length
and wavelengthd. Meanwhile, e0 is an adjusting constant, de-
pendent on each material, which needs to be determined

from experiments or by matching dispersion curves of plane

waves with those of atomic-lattice dynamics.

According to Eringen s1983d, for a class of physically
admissible kernel a sux8−xu ,td it is possible to represent the
integral constitutive relations given by Eq. s1d in an equiva-
lent differential form as

f1 − se0ad2¹2gskl = tkl. s4d

Thus, the scale coefficient e0a takes into account the size

effect on the response of micro- and nanostructures.

III. NONLOCAL EULER–BERNOULLI BEAM MODEL

Let us consider a beam of length L along the axial coor-

dinate x. The Euler–Bernoulli beam theory considers the fol-

lowing displacement field:

u1 = usx,td − y
]v

]x
, u2 = vsx,td, u3 = 0, s5d

where u and v are, respectively, the axial and transverse dis-

placements of the point x on the middle plane si.e., y=0d of
the beam.

From this displacement field, the only nonvanishing

strain is

«xx =
]u

]x
− y

]2v

]x2
. s6d

If the rotational inertia is neglected, the equations of

motion of the beam is given by

]N

]x
+ fsx,td = rA

]2u

]t2
, s7d

]2M

]x2
+ psx,td = rA

]2v

]t2
, s8d

where r is the density of the material, A is the cross-sectional

area of the beam, p is the vertical distributed transverse force

along axis x, f is the horizontal distributed transverse force

along axis x, N is the axial force, S is the shear force, M is

the resultant bending moment, and I is the moment of inertia,

defined respectively as follows:

N = E
A

sxxdA, S = E
A

sxydA ,

M = − E
A

sxxydA, I = E
A

y2dA . s9d

The nonlocal expressions for the axial force, the bending

moment, and the shear force can be determined from the

constitutive equations as a function of the horizontal and

vertical displacements and the forces distributed along the

beam fReddy s2007d and Reddy and Pang s2008dg,

Nsxd = EA
]u

]x
+ sae0d

2SrA
]3u

]x]t2
−

]f

]x
D ,

Msxd = EI
]2v

]x2
− sae0d

2Sp − rA
]2v

]t2
D ,

Ssxd = − EI
]3v

]x3
− sae0d

2S ]p

]x
− rA

]3v

]x]t2
D . s10d

Finally, the equations for the horizontal and vertical dis-

placements for the nonlocal beam could be written as fReddy
s2007d and Reddy and Pang s2008dg

EA
]2u

]x2
+ f − sae0d

2
]2f

]x2
= rA

]2u

]t2
, s11d

EI
]4v

]x4
+ rAS ]2v

]t2
− sae0d

2
]4v

]x2]t2
D = p − sae0d

2
]2p

]x2
. s12d

In this work, transverse free vibrations are investigated.

In order to solve the problem, only Eq. s12d must be analy-
sed, by making the external load equal to zero,

EI
]4v

]x4
+ rAS ]2v

]t2
− sae0d

2
]4v

]x2]t2
D = 0. s13d

The above equation can be solved by using the classical

separation-of-variables method as

vsx,td = Vsxdeivt, s14d

where v is the natural frequency of vibrations.

Substituting Eq. s14d in Eq. s13d and using the dimen-
sionless variables and constants given by

j = x/L, h =
ae0

L
, l4 =

rAL4

EI
v2, V̄ = V/L , s15d

we get the spatial equation as
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V̄IV + l4sh2V̄9 − V̄d = 0, s16d

where s·d8 represents the derivative with respect to j. The

general solution for the above differential equation is

V̄sjd = A1 sinhsbrjd + A2 coshsbrjd + A3 sinsbejd

+ A4 cossbejd , s17d

where

br = l2hÎÎ1 + 4/h4l4 − 1

2
, s18d

be = l2hÎÎ1 + 4/h4l4 + 1

2
. s19d

Once the displacements are known fEq. s17dg, and using
the definition for the variables fEq. s15dg, the bending slope

usjd, the dimensionless bending moment M̄sjd, and dimen-

sionless shear force S̄sjd can be calculated as follows:

usjd = V̄8sjd , s20d

M̄sjd =
MsjdL

EI
= V̄9sjd + h2l4V̄sjd , s21d

S̄sjd =
SsjdL2

EI
= V̄-sjd + h2l4V̄8sjd . s22d

Note that Eqs. s21d and s22d are easily derived from Eqs.
s10d, and they differ from the ones given by the local bend-
ing theory.

The four constants Ai of the solution fEq. s17dg are de-
termined by solving the system of four equations that result

from applying the proper boundary conditions on the end

supports as follows:

• Simply supported end,

V̄ = 0, s23d

V̄9 + h2l4V = 0 sM̄ = 0d , s24d

• fixed end,

V̄ = 0, s25d

V̄8 = 0, s26d

• free end,

V̄9 + h2l4V̄ = 0 sM̄ = 0d , s27d

V̄- + h2l4V̄8 = 0 sS̄ = 0d . s28d

IV. NONLOCAL EULER–BERNOULLI CRACKED-BEAM
MODEL

Let us now consider that the beam has an edge crack of

length a located at a distance L* sb=L* /Ld from the left end.
To take into account the effect of the crack, we extend the

method first proposed by Freund and Herrmann s1976d and
further followed by many others fAdams et al. s1978d,
Narkis s1994d, Fernandez-Saez et al. s1999d, Fernandez-Saez
and Navarro s2002d, and Loya et al. s2006dg. Thus, the
cracked-beam has been considered to be two beams con-

nected by a rotational and a longitudinal elastic spring at the

cracked section sFig. 1d. Both springs are introduced to con-
sider the additional strain energy caused by the presence of

the crack.

In effect, the strain energy U of the cracked nanobeam

can be stated as

TABLE I. Values of the first four order frequency parameters for a simply supported beam with different

nonlocal parameter h and crack-severity K. Crack position j=0.50.

h=0.0 h=0.2

L K=0 K=0.065 K=0.35 K=2 K=0 K=0.065 K=0.35 K=2

1 3.1416 3.0469 2.7496 2.0960 2.8908 2.8031 2.5233 1.9098

2 6.2832 6.2832 6.2832 6.2832 4.9581 4.9581 4.9581 4.9581

3 9.4248 9.1669 8.6129 8.0730 6.4520 6.2604 5.7891 5.3416

4 12.5664 12.5664 12.5664 12.5664 7.6407 7.6407 7.6407 7.6407

h=0.4 h=0.6

1 2.4790 2.4032 2.1567 1.6195 2.1507 2.0846 1.8678 1.3971

2 3.8204 3.8204 3.8204 3.8204 3.1815 3.1815 3.1815 3.1815

3 4.7723 4.6284 4.2729 3.9563 3.9329 3.8141 3.5226 3.2709

4 5.5509 5.5509 5.5509 5.5509 4.5566 4.5566 4.5566 4.5566

FIG. 1. Model of the cracked beam.
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U =
1

2
E
0

L

dxE
A

sxxS ]u

]x
− y

]2v

]x2
DdA + DUc, s29d

with DUc being the increment of strain energy corresponding

to the crack. This expression could be rewritten easily, using

the definitions in Eq. s9d in terms of the axial force and the
bending moment,

U =
1

2
E
0

L SN]u

]x
+M

]2v

]x2
Ddx + DUc. s30d

In view of the functional form of the strain energy of the

intact beam, we can write the increment due to the presence

of an edge crack as follows:

DUc =
1

2kMMMsL*,td
]2v

]x2
+
1

2kNNNsL*,td
]u

]x

+
1

2kMNMsL*,td
]u

]x
+
1

2kNMNsL*,td
]2v

]x2
, s31d

where kNN, kMM, kMN, and kNM are the flexibility constants.

TABLE II. Values of the first four order frequency parameters for a simply supported beam with different

nonlocal parameter h and crack-severity K. Crack position j=0.25.

h=0.0 h=0.2

L K=0 K=0.065 K=0.35 K=2 K=0 K=0.065 K=0.35 K=2

1 3.1416 3.0921 2.9071 2.3493 2.8908 2.8447 2.6645 2.1134

2 6.2832 6.1028 5.6491 5.1047 4.9580 4.8101 4.4169 3.9906

3 9.4248 9.3021 9.0767 8.9008 6.4520 6.3638 6.1924 6.0692

4 12.5664 12.5664 12.5664 12.5664 7.6407 7.6407 7.6407 7.6407

h=0.4 h=0.6

1 2.4790 2.4387 2.2730 1.7660 2.1507 2.1154 1.9661 1.5125

2 3.8203 3.70467 3.3993 3.1123 3.1815 3.0849 2.8336 2.6147

3 4.7723 4.7072 4.5859 4.5062 3.9329 3.8795 3.7816 3.7191

4 5.5509 5.5509 5.5509 5.5509 4.5566 4.5566 4.5566 4.5566

0 0.5 1 1.5 2

Crack-severity, K

1

1.5

2

2.5

3

3.5

4

F
re

q
u

en
cy

p
ar

am
et

er
,

Λ

h = 0
h = 0.2
h = 0.4
h = 0.6

(a)

0 0.5 1 1.5 2

Crack-severity, K

3

4

5

6

7

8

F
re

q
u

en
cy

p
ar

am
et

er
,

Λ

h = 0
h = 0.2
h = 0.4
h = 0.6

(b)

0 0.5 1 1.5 2

Crack-severity, K

3

4

5

6

7

8

9

10

11

F
re

q
u

en
cy

p
ar

am
et

er
,

Λ

h = 0
h = 0.2
h = 0.4
h = 0.6

(c)

0 0.5 1 1.5 2

Crack-severity, K

2

4

6

8

10

12

14

16

F
re

q
u

en
cy

p
ar

am
et

er
,

Λ

h = 0
h = 0.2
h = 0.4
h = 0.6

(d)

FIG. 2. sColor onlined First four frequency parameters for a simply supported beam with crack position j=0.50.
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The last two terms are considered to take into account the

coupled effects between the axial force and bending moment.

The increment of strain energy could be written as

DUc =
1

2MDu +
1

2NDu , s32d

Du being the angle rotated by the rotational spring and Du

the relative horizontal displacement at the edge crack sec-

tion. Comparing Eqs. s31d and s32d the following relations
are established:

Du = kMM

]2v

]x2
+ kMN

]u

]x
, s33d

Du = kNN

]u

]x
+ kNM

]2v

]x2
. s34d

As mentioned above, in this work the transverse free

vibrations are investigated, and hence no longitudinal dis-

placement is considered. In addition, the crossover flexibility

constants skMN and kNMd are assumed to be small enough, as
in the case of local elasticity, to consider only the one related

to the bending moment skMMd. The slope increment Du
=kMM]2v /]x2 in the cracked section is then expressed using

dimensionless variables as

Du =
kMM

L

]2V̄sjd

]j2
U

j=b

= K
]2V̄sjd

]j2
U

j=b

, s35d

where K=kMM /L. In the case of local cracked beams, the

additional strain energy due to the crack DUc can be calcu-

lated from the fracture mechanics theory fIrwin s1960dg. In
the case of nanobeams, DUc must be obtained from either ab

initio studies or molecular dynamics calculations.

Once defined how the edge crack is modeled, we can

proceed to solve the free transverse vibrations of cracked

nanobeams. The spatial solution for the motion in the vertical

direction for each of the two segments can be expressed in a

way similar to Eq. s16d,

V̄1
IV + L4sh2V̄19 − V̄1d = 0, 0ø j ø b ,

V̄2
IV + L4sh2V̄29 − V̄2d = 0, b ø j ø 1, s36d

with L being the frequency parameter of the cracked beam,

which could be related to its natural frequency vc by

L4 =
rAL4

EI
vc
2. s37d

Thus, the general solution for the above differential

equations Eq. s36d is
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FIG. 3. sColor onlined First four frequency parameters for a simply supported beam with crack position j=0.25.
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V̄1sjd = A1 sinhsbsjd + A2 coshsbsjd + A3 sinsb fjd

+ A4 cossb fjd, 0ø j ø b ,

V̄2sjd = A5 sinhsbsjd + A6 coshsbsjd + A7 sinsb fjd

+ A8 cossb fjd, b ø j ø 1, s38d

with bs and b f similar to Eqs. s18d and s19d,

bs = L2hÎÎ1 + 4/h4L4 − 1

2
, s39d

b f = L2hÎÎ1 + 4/h4L4 + 1

2
. s40d

The above two equations fEqs. s38dg, which present
eight unknown constants, must be solved with the specified

boundary conditions and the following compatibility condi-

tions at the cracked section:

• Continuity of the vertical displacement,

V̄2sbd = V̄1sbd . s41d

• Jump in bending slope,

Du = V̄28sbd − V̄18sbd = KV̄19sbd . s42d

• Continuity of the bending moment,

V̄29sbd + h2L4V̄2sbd = V̄19sbd + h2L4V̄1sbd . s43d

• Continuity of the shear force,

V̄2-sbd + h2L4V̄28sbd = V̄1-sbd + h2L4V̄18sbd . s44d

Instead of eight unknown factors, the expressions for

displacements fEqs. s38dg may be written in a more conve-
nient form in terms of just four constants: the displacement

V0, bending slope u0, bending moment M0, and shear force

S0 at j=0,

V̄1sjd = V0g1sjd + u0g2sjd +M0g3sjd + S0g4sjd, 0ø j ø b ,

s45d

V̄2sjd = V̄1sjd + Dug2sj − bd, b ø j ø 1, s46d

where the functions gisjd can be expressed as follows:

g1sjd = coshsjbsd +
fcossjb fd − coshsjbsdgsh

2L4 + bs
2d

b f
2 + bs

2
,

s47d

TABLE III. Values of the first four order frequency parameters for a clamped-clamped beam with different

nonlocal parameter h and crack-severity K. Crack position j=0.50.

h=0.0 h=0.2

L K=0 K=0.065 K=0.35 K=2 K=0 K=0.065 K=0.35 K=2

1 4.7300 4.6285 4.3566 3.9702 4.2766 4.1736 3.8855 3.4764

2 7.8532 7.8532 7.8532 7.8532 6.0352 6.0352 6.0352 6.0352

3 10.9956 10.6976 10.1028 9.5833 7.3840 7.1421 6.6089 6.2045

4 14.1372 14.1372 14.1372 14.1372 8.4624 8.4624 8.4624 8.4624

h=0.4 h=0.6

1 3.5923 3.4947 3.2141 2.63306 3.0837 2.9952 2.7391 2.3949

2 4.5978 4.5978 4.5978 4.5978 3.8165 3.8165 3.8165 3.8165

3 5.4738 5.2993 4.9302 4.6170 4.5231 4.3831 4.0939 3.9116

4 6.1504 6.1504 6.1504 6.1504 5.0505 5.0505 5.0505 5.0505

TABLE IV. Values of the first four order frequency parameters for a clamped-clamped beam with different

nonlocal parameter h and crack-severity K. Crack position j=0.25.

h=0.0 h=0.2

L K=0 K=0.065 K=0.35 K=2 K=0 K=0.065 K=0.35 K=2

1 4.7300 4.7273 4.7194 4.7068 4.2766 4.2752 4.2705 4.2595

2 7.8532 7.6991 7.3175 6.8770 6.0352 5.9062 5.5040 5.0234

3 10.9956 10.7787 10.4067 10.1452 7.3840 7.1962 6.8797 6.7231

4 14.1372 14.0911 14.0159 13.9634 8.4490 8.3902 8.2780 8.2163

h=0.04 h=0.6

1 3.5923 3.5920 3.5903 3.5810 3.0837 3.0836 3.0831 3.0690

2 4.5978 4.4969 4.1539 3.7561 3.8165 3.7324 3.43941 3.1093

3 5.4738 5.3242 5.0900 4.9941 4.5231 4.3965 4.20161 4.1256

4 6.1504 6.0891 6.0081 5.9707 5.0505 4.9985 4.93391 4.9056
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g2sjd =
sinsjb fd

b f

−
s− h2L4b f + b f

3df− sinhsjbsdb f + sinsjb fdbsg

b f
2bssb f

2 + bs
2d

,

s48d

g3sjd = −
cossjb fd − coshsjbsd

b f
2 + bs

2
, s49d

g4sjd =
− sinhsjbsdb f + sinsjb fdbs

b fbssb f
2 + bs

2d
. s50d

The general solution expressed in this way fEqs. s45d
and s46dg satisfy the compatibly conditions at the cracked
section fEqs. s41d–s44dg, and two of the constants are deter-
mined directly from the type of support at j=0. The other

two unknown constants are determined by the system of two

equations from the proper boundary conditions at j=1. In

case of n cracks, an extra equation similar to Eq. s46d must
be added for every new segment, and regardless of the num-

ber of cracks, the problem can be solved by a 232 system of

equations. This is a homogenous system, and to avoid the

trivial solution it is necessary to impose the nullity of the

determinant of the coefficients’ matrix. The methodology

used considerably simplifies the calculations, compared with

the use of a 838 determinant; in addition, this technique is

suitable to analyze the presence of multiple cracks in nano-

beams, without increasing the difficulty of the problem and

keeping the resolution by the 232 determinant.

V. RESULTS

The results presented in this section correspond to the

first four natural frequencies of a nonlocal Euler–Bernoulli

beam for different positions for the edge crack sat the mid-
span, j=0.5, and at a quarter of the beam j=0.25d, two dif-
ferent boundary conditions ssimply supported and clamped-
clampedd, and different crack-severities K. As mentioned

above, the values of K as a function of size of defect must be

determined for nanobeams from molecular dynamics mod-

els; in this work values of K=0 suncracked beamd, and K

=0.065, 0.35, and 2 were used. The nonlocal effect was in-

troduced using the parameter h. Results were obtained for

values of nonlocal parameter h of 0 slocal conventional
cased, 0.2, 0.4, and 0.6. A total of 24 cases were studied.

A. Simply supported beam

The changes of the first four eigenvalues Li for the sim-

ply supported beam with the crack-severity parameter K for
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FIG. 4. sColor onlined First four frequency parameters for a clamped-clamped beam with crack position j=0.50.
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different values of h are given in Table I in the case of an

edge crack located at the midspan of the beam, and in Table

II for a crack located at j=0.25.

In both cases, the first four natural frequencies decrease

with the local parameter h. For the uncracked beam, the val-

ues found exactly reproduce the results given by Lu s2007d
for different values of h. In local cracked beams, this trend is

also observed; it is also found that as the crack considered

lengthens, the beam stiffness decreases and so do the natural

frequencies.

Due to the symmetry of the problem, the mid-span

cracked beam has the second and fourth natural frequencies

independent of crack-severity; this behavior was expected

from the fact that the second derivative of vertical displace-

ment is canceled in the cracked section. The same result was

found for the beam with the crack position at j=0.25, but

only for the fourth natural frequency.

In Figs. 2 and 3 it can be seen that the nonlocal effect

has a significant influence on the dynamic properties of a

cracked beam, in way similar to the first four order eigenval-

ues for any edge-crack length. The difference between the

results found using local and nonlocal beam theory is greater

in higher modes.

B. Clamped-clamped beam

The changes of the first four order eigenvalues Li for the

clamped-clamped beam with the crack-severity parameter K

for different values of parameter h are given for a crack

located at j=0.5 and j=0.25 in Tables III and IV, respec-

tively.

It was found that the variations of the natural frequencies

with K and h for the clamped beam ssee Figs. 4 and 5d have
trends similar to those shown in Figs. 2 and 3 for the simply

supported beam, since the clamped beam is stiffer than the

simply supported beam for a pair of given nonlocal and

crack parameters.

As in the simple-supported beam with j=0.50, the sym-

metry of the problem causes the second and fourth modal

frequencies not to be crack dependent; the same nondepen-

dency is observed in the fourth mode for the quarterspan

cracked beam.

VI. CONCLUSIONS

This paper examines the natural frequencies of cracked

nanobeams; the nonlocal elasticity theory was used to take

into account the size effect of the structure analyzed. The

cracked nanobeam was modeled using a rotational spring

which promotes a discontinuity in the slope. This disconti-

nuity is proportional to the crack severity. Two different

boundary conditions were considered: simply supported and

clamped-clamped.

The methodology used allows the simple determination

of the first four natural frequencies and hence the possibility
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FIG. 5. sColor onlined First four frequency parameters for a clamped-clamped beam with crack position j=0.25.
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of analyzing the influence of the most important parameters

that appear in these kinds of problems: crack severity, crack

position, and nonlocal effect.

From these results presented and discussed, the main

conclusions are as follows:

• The nonlocal parameter h considerably affects the

value of the natural frequencies, which decreases as h

increases.

• The influence of the nonlocal parameter is stronger at

higher modes rather than at the lower ones.

• For the uncracked case, K=0, and taken into account

the nonlocal effect, the results are compared with the

work of Lu s2007d and completely coincide.
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