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Abstract- In this paper, we investigate further the way
information disseminates from informed to uninformed
traders in a market populated by heterogeneous
boundedly rational agents. In order to achieve our goal,
we construct a computer simulated market where only a
small fraction of the population observe the risky asset's
fundamental value with noise, while the rest of agents try
to forecast the asset's price from past transaction data.
The paper departs from previous studies in that the risky
asset does not pay a dividend every period, so agents
cannot learn from past transaction prices and subsequent
dividend payments. Our main finding is that information
can potentially disseminate in the market as long as: (1)
informed investors' trades tilt transaction prices in the
fundamental path direction; and (2) the median investor's
expectation is very responsive to transaction prices.
Otherwise, markets may display crashes or bubbles. We
find that the first condition requires a minimal amount of
informed investors, and is severely limited by short
selling and borrowing constraints

1 Introduction

Electronic continuous double auction markets, where
agents can submit orders to buy or sell to a computerized
limit order book, are becoming the standard trading
mechanism in financial markets around the world.
Examples include NASDAQ Supermontage, Deutsche
Borse's Xetra, Euronext or Spanish Continuous Market,
as well as all Electronic Communications Networks such
as Instinet or Terra Nova Trading. In other markets, as is
the case of London Stock Exchange or Chicago
Mercantile Exchange, electronic order-driven systems
now coexist with traditional quote-driven or open-outcry
trading systems.
Despite the popularity of electronic double auction
financial markets, whether this system is an efficient
means of price discovery or the determinants of
informational efficiency in such markets, remain open
questions. The theory of financial markets explain price
formation in more stylized settings. In a Walrasian
equilibrium, on one hand, traders base their investment
decisions upon their own prior information. The
equilibrium price, which equalizes demand and supply,

therefore summarizes investors' heterogeneous beliefs.
However, because investors do not recognize the
informational content of market prices about other agents'
expectations, there is no possible transfer of information
from informed traders to uninformed traders and prices
need not converge to the asset's intrinsic value. In a
rational expectations (RE) equilibrium', on the other
hand, traders rationally update their forecasts about the
future state of nature (and their beliefs about other agents'
forecasts) upon observing the Walrasian equilibrium
price. Agents then trade accordingly until asset prices
finally reflect all available information. Private
information is in this way transferred across traders.
Moreover, because in equilibrium disagreement about the
true price vanishes, there are no reasons to trade, and
volume should be zero.
In the real world private information is not observable, so
researchers have relied on experiments conducted in
laboratories to test for the validity of the theory. In
experimental markets with human agents and
asymmetrically distributed information, Plott and Sunder
(1982) and Forsythe et al. (1982) find support for the RE
hypothesis: when uninformed agents coexist with
informed traders, market prices converge after some time
towards RE equilibrium prices2. This evidence is
considered favorable to the RE model.
In experiments with human traders, agents' strategies are
beyond the researcher's control and their expectations are
not observable. For this reason, computer simulated
markets3 have arised as alternative laboratories to study
the convergence property of the double auction trading
system. In an early study, Gode and Sunder (1993)
construct a simple double auction market4 where investors

1 See, for instance, Lucas (1972), Green (1973), Grossman and
Stiglitz (1980), Grossman (1981), and Hellwig (1980, 1982).
2In other experiments, however, Forsythe and Lundholm (1990)
find that both trading experience and common knowledge of
agents' information structures were necessary to achieve the RE
equilibrium.
3See Lebaron (2000, 2001) for a more detailed view of agent-
based financial markets.
4 In Gode and Sunder (1993) unaccepted limit orders are deleted
with each transaction, unlike in a real market where limit orders
stay in the book until matched by subsequent market orders or
canceled by the trader who submitted them.
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submit random orders, and show that the market price
converges to the equilibrium price as long as traders are
not allowed to buy or sell at a loss. In a more recent study,
Chan et al. (2001) study information dissemination in a
market populated by boundedly rational investors with
heterogeneous trading strategies, which include technical
analysis rules and Bayesian learning. They find prices
converge fast to the RE equilibrium price when investors
have homogeneous preferences, but the model fails if this
condition does not hold.
In this paper, we investigate further the way information
transmits from informed to uninformed traders in a
market populated by boundedly rational agents. In order
to achieve this goal, we construct a market where only a
small fraction of the population observe the risky asset's
fundamental value with noise, while the rest of agents try
to forecast-in different ways-the asset's price from past
transaction data. Our market departs from Chan et al.
(2001) in that the risky asset pays no dividend so agents
cannot learn from past transaction prices and subsequent
dividend payments. Consequently, convergence to the
asset's fundamental price can only be attributed to private
information being disseminated in the market. This
distinction is important because Yang (2002) has shown
that uninformed agents with no private information but
endowed with neural learning capabilities can bring
market prices to the RE equilibrium price
Our artificial market enables us to answer a number of
pressing questions. First, can private information
disseminate in a continuous double auction market where
most agents never observe the realized state of nature? If
the answer to the previous question is positive, how
exactly does private information become impounded into
prices? Finally, how do market features affect the market
efficiency?
The paper's main conclusion is that private information
can disseminate effectively in a continuous double
auction market populated by heterogeneous boundedly
rational investors. We find that, in our market, transaction
prices are very close to the theoretical equilibrium price in
a repeated Walrasian auction, which implies that the
median investor's price expectation is very responsive to
past transaction prices. It follows that convergence to the
fundamental path is possible as long as informed
investors' trades can affect transaction prices in the right
direction. Otherwise, the market price may depart from
the fundamental's price, creating crashes or bubbles. A
crash, in particular, arises in our market when the price
moves below the fundamental path and continues to fall
despite informed investors' initial bids. Absent a budget
constraint, such bids would eventually bring prices up.
However, if the budget constraint becomes binding for
informed investors, because of borrowing restrictions,
they can no longer submit new bids to the limit order
book. Only the randomness of market dynamics can then
make the asset price return to the fundamental path and
bring it once again under the discipline of informed
traders.

The rest of the paper is organized as follows: section 2
presents the features of our artificial market; section 3
describe the design of simulations; section 4 explains the
results; and, finally, section 5 concludes.

2 A continuous double-auction artificial
market

In this section, we describe in detail the trading
mechanism as well as the market's composition in terms
of participating agents. At the end of the section we
discuss possible equilibria.

2.1 Market structure
We assume that agents can store wealth in a riskless asset
with zero net return (numeraire) and a risky asset. For the
risky asset, we model a decentralized trading mechanism
with no market maker, where orders are submitted by any
investor and matched automatically. More specifically,
our market is based in Chan et al. (2001).
We have simulated 1,000 trading periods. Each trading
period (that represents one day) consists of 5 rounds of
trading, which implies that each agent is granted the
opportunity to trade a maximum of 5 times in a trading
period. The event of one agent participating in a given
round is random with probability 0.75. Participating
agents are sorted randomly6. When an agent's turn
arrives, he may submit a limit order, i.e., he may quote a
price to buy (bid) or sell (ask) one unit of the risky asset.
Alternatively, the agent may introduce a market order,
which means that he may buy one unit of the risky asset at
the best ask price or sell at the best bid price. As in Chan
et al. (2001) or Chiarella and Iori (2002) we restrict the
order size to one unit of the risky asset in order to limit
the dimension of the investor's problem.
At the time of submitting an order, the agent must satisfy
two different budget constraints. First, he cannot submit
market orders which imply short-selling the risky asset or
borrowing. Second, he cannot submit a limit order such
that if all his limit orders were matched at some point in
the future, he would have to short sell or borrow.
Also agents can cancel suboptimal limit orders every time
they go to the market. These orders are defined as those
that would result in a loss given the agent's new beliefs
about the risky asset's price.
Finally, agents' orders to buy (sell) are rounded
downwards (upwards) in order to comply with the
exchange's tick size requirements. In particular, we have
chosen to set the tick size equal to 0.001 dollars.

2.2 Fundamental price
We asume that the risky asset's fundamental price
dynamics is governed by a geometric Brownian motion:

5 It is based on the idea that, in real financial markets, agents do
not trade everytime: even active agents usually trade a few times
in a trading session.
6 A permutation of agents is randomly sampled from all possible
permutations according to a uniform discrete distribution.
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dPft = ,uPfdt + crPftdW

where Pft denotes the risky asset's fundamental price at

time t and W, a standard Brownian motion. Under this
process, the fundamental price is conditionally
lognormally distributed:

lnPf,+A 0 {nPf +ru2j-A,-\ AJ (1)

where A is the time interval between two trading periods
(we set A = 250-l) and fb denotes the normal density
function. The continuously compounded fundamental
return, computed as the difference in logs, is normally
distributed, serially independent and has constant
variance.

2.3 Agents and trading
All agents are risk neutral and myopic. Their objective
function is therefore the expected value of their wealth at
the end of each trading period. In order to form this
expectation, i-th agent forecasts the risky asset's price at
the end of the current trading period, P7', and buys as

long as the best ask price is at least S dollars below his
forecast. Similarly, he sells as long as the best bid price is
at least S dollars above his forecast. This assumption is
necessary to incorporate explicit transaction costs such as
broker commission or fees: investors will trade only if the
expected profit from trading is high enough to offset the
cost of trading. Note, however, that a higher value of S
will decrease the volume/frequency of trading. In our
simulations, the exact value of S for each agent at each
round is a realization from a uniformn distribution.
The agent can also submit a new bid (PI'-S) or ask

(PI' +S). The agent's limit order is subsequently added to
the limit order book in the corresponding position. Table
1 displays the agents' decision process.
Agents differ from each other in the way they obtain their
forecast of the risky asset's price. In our market we
consider four different classes of agents:
i) Zero Intelligence (ZI) agents. In our market, ZI agents
serve as liquidity providers, since they introduce
discrepancy in the risky asset's valuation. Their
prediction for the risky asset's price is a realization of a
random variable which is uniformly distributed around
the last transaction price:

Pt U(0-9prsLlp,)

where r denotes the last time the risky asset was traded.
This way of modelling ZI agents' behavior depart from
that of Gode and Sunder (1993), since in our market ZI
agents modify their prediction with every transaction.
Consequently, if the market where exclusively populated
with ZI agents we would not expect convergence to the
"equilibrium price" since a high (low) transaction price
would shift expectations for all agents upwards
(downwards). Moreover, they enable us to assess the

effect of informed-based trading on uninformed traders'
wealth.

Table 1. Order generation procedures.
Scenario Order

Case 1:There is at least one askprice and one bidprice
in the limit order book7.

Pt' > a + S Market order to buy

P' < b - S Market order to sell

a+S>Pt' >b-S & Limit order to sell

ag> P: b withask= P +S
a+S > PIt > b-S & Limitordertobuy

a-Pt' <Pt' - b with bid-= F -s
Case 2: There are no bidprices

P'> a + S Market order to buy
Limit order to buy

P' < a+S withbidP -S

Case 3: There are no askprices
P,' < b - S Market order to sell

Limit order to sell
P>2b-S with ask= P' +S
Case 4: There are no ask or bidprices

Limit order to buy
With probability 2 with bid P' -S

Limit order to sell
With probability V2 withask P +S

ii) Informed agents. They observe the risky asset's
fundamental price plus some noise. Their forecast of the
asset's price is the fundamental price:

Pt -U(0.99Pf,t,l.0lPfst)
We could think of informed agents as fundamentalist
traders (more noise) or as insider traders (less noise). To
the extent that informed traders' orders drive market
prices towards the risky asset's fundamental value, prices
become informationally efficient.
iii) ANN agents. These investors use an nonlinear model
(Artificial Neural NetWorks (ANN)) to forecast next
period's return. Artificial Neural Networks have been
usually considered as complex models inspired in the
structure of the brain. ANNs inherit three basic
characteristics of the biological neurons: they are
intrinsically parallel; they provide nonlinear responses to
stimulus; and they process the information through
several layers of interconnected neurons. One of the main
characteristics of ANNs is their capacity to "learn" and
"generalize" using real data, that is, an ANN learns the
relationship between a set of inputs and their

7 The lowest ask prevailing in the limit order book when the
agent takes his decision is denoted by a and the highest bid is
denoted by b.
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corresponding outputs. An ANN is composed of a
number of processing units which are hierarchically
organized in layers. The input layer consists of a set of
nodes that receive the information from the outside world.
The hidden layer processes the information while the
output layer sends the signal to the outside8. The most
widely used structure is that of a feedforward neural net
in which the information is hierarchically processed in a
single way from the input layer to the output through the
hidden layer(s). The units are connected through a
synaptic weight which determines quantitatively the
influence of one unit on the other. Specifically, the ANN
agents we use a feedforward neural net with a unique
hidden layer9, "h" input units, and a unique unit in the
output layer to form their expectation about next period's
return. It is important to highligh that the net is not fix
during a simulation, is trained each "im" trading periods
(More specifically, we select the parameters, h = 10, m =
50, and the number of epochs used in the training of nets
is 200). Therefore, as the market becomes more efficient,
the ANN agents are capable of training the net in a more
efficient way, and therefore the ANN agents evolve
towards more efficient agents.
iv). Technical Analysts (TA). These agents attempt to
identify trends in price series. In particular, they compute
the average close price of last s trading periods and the
average close price of last 1 periods, where s is either 1, 2
or 5 periods with equal probability and 1 can take the
following values: 50, 150 or 200, also with equal
probability. If the short moving average is higher than the
long moving average the TA will think the market is
bullish and will want to buy the risky asset. Otherwise, he
will sell10. TA's actions therefore differ slightly from
those of the rest of agents. In particular, in a bullish
market, a TA will buy at the prevailing ask price, a, if
there is at least one ask price with Pti > a + S, where p1<
is taken to be price of the last transaction. Otherwise, they
will submit a limit order to buy with bid equals to Pt -S.
Analogously, in a bearish market, TAs will sell at the
prevailing bid price, b, if there is at least one bid price
with P,' < b - S and will submit a limit order to sell with
ask equal to P,' +S, otherwise.
At the beginning of each simulation, each agent receives
an identical endowment consisting of 3,000 dollars and 30
units of the risky asset. Since TAs and ANN agents
require a minimum number of transactions before they
start to trade, wealth is reinitialized again when all agents

operate simultaneously. For this reason, in the first 200
periods only informed agents and ZI agents participate
and we do not take into account these results in our futher
analysis.

2.4 Equilibrium
Given the risk neutral assumption and the restriction to
buying or selling one unit of the asset, in the absence of
explicit transaction costs, the Walrasian equilibrium price
roughly corresponds to the sample median of individuals'
expectations. To see this point assume zero explicit
transaction costs and no budget constraint. If we let FN( )
and N denote the empirical distribution of Pi and the
number of agents, respectively, the demand function for
the risky asset then equals QD(p) = N (1- FN(P)) whereas
the supply function is given by Qs(P) = N FN(P). The
market-clearing price is such that:

(1-FN(P)) = FN(P),

which is exactly the sample median price expectation.
Introducing a fixed explicit transaction cost, S, changes
the above condition to (1-FN(P+S)) = FN(P-S). The
equilibrium price, P*, is therefore not affected as long as
FN(P*+S)_FN(P*) = FN(P*)-FN(P*-S), but the number of
units exchanged is necessarily lower.
The noisy RE equilibrium price results from updating a
prior distribution about the fundamental price upon
observing price signals received by all informed traders.
For a sufficiently high number of signals or for
sufficiently precise signals, this noisy RE equilibrium
price is close to the fundamental price.
Note that in this market, convergence to the RE price can
be achieved as long as informed investors influence the
Walrasian equilibrium price, since the rest of investors
will react to observed price changes.

3 Simulation design

In order to analyze the sensitivity of market's efficiency
to market parameters we have simulated 10 paths of
fundamental values according to (1) with a different ,u for
each path (uniformly distributed between +1-5%), and
Pf0 =100. The reason why we let ,u change is to ensure

that results do not depend on a specific market trend.
Next, for each fundamental path, we have simulated a
total of 1,000 trading periods, changing one of the market
parameters at a time11. More specifically, we have
considered the parameter sets shown in Table 2.

8 Kuan and White (1994) provide an introduction to ANNs in an
econometric context, showing that these models are, in fact,
quite familiar to the econometrician, see it for a more detailed
description.
9 Homik et al. (1989) showed that an ANN with a single hidden
layer with enough hidden logistic units and linear outputs can
approximate arbitrarily well any measurable function.
10 In future extensions, TA might use a genetic algorithm to
select among competing forecast rules as in Arthur et al. (1996)
or Lettau (1997).

11 Since each trading period contains 5 trading rounds, each
simulation consists of 5,000 trading rounds.
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Table 2. Sensitivity Analysis12
Number of
Agents Budget Explicit

Market Infor_f Transaction

med ANN TA Cash Asset Costs (S)med Cash ~~Units
Benchmark 40 10 40 3,000 30 U (0,2)
Market 1 20 10 40 3,000 30 U (0,2)
Market 2 40 0 40 3,000 30 U (0,2)
Market 3 40 10 0 3,000 30 U (0,2)
Market 4 40 10 40 00 00 U (0,2)
Market 5 40 10 40 3,000 30 U (0,2.5)

To study convergence of the price dynamics to the
fundamental path, we compute the following measures
from Theissen (2000):
a) Mean Absolute Error
It is the average of absolute deviations of the transaction
close price from the fundamental price.

AL4E =T=1I Pt - PtfMAE 1t=
b) Mean Relative Error
It enables comparisons across different paths.

1 T Pt -Ptf
T t=l pf

c) Root Mean Squared Error
This measure weights extreme
heavily:

relative errors more

25.13% to 65.87%, negative skewness, kurtosis, and
Value at Risk also rise significantly, and, finally,
normality is rejected in all simulations. Table 4 displays
measures of efficiency for all markets: convergence to the
fundamental price drops dramatically in Market 1 with
respect to the benchmark market. To understand these
results, we consider a single fundamental path and
analyze price dynamics in the benchmark market and
Market 1.

Table 3. Descriptive Statistics for returns.
Retum is the average mean return in percentage for each market
and for the fundamental prices. Std. Dev. means the average
mean standard deviation in percentage. Skw shows the mean
skewness. Kur is the kurtosis. VaR show the minimum price
decrease with a 99% probability, and the last column (Reject.
norm) shows the number of times that the null hipothesis of
normality is rejected using the Jarque-Bera test at 10% of
significance.

Std. Reject.
Retum Dev. Skw Kur VaR
(%) (%) norm

Fundamen- -0.83 9.97 0.016 2.9 2.02 0
tal
Benchmark -2.09 25.13 -0.009 7.1 8.46 6
Market 1 1.09 65.87 -0.15 17.0 31.70 10
Market 2 -0.67 34.66 -0.44 21.6 17.37 9
Market 3 -0.27 27.85 0.03 4.0 6.43 4
Market 4 -0.49 18.09 -0.22 8.7 7.04 8
Market 5 -0.29 21.92 0.29 7.8 4.58 1

RMSE- p

4 Results

Table 3 displays the average descriptive statistics of end-
of-period returns in all five markets. The table shows that
microstructure noise in our benchmark market accounts
for more than half the standard deviation of market
returns, which increases from 10% in the fundamental
series to 25.13% in market terms. Moreover, the Value at
Risk of the fundamental path is multiplied by 4.
Interestingly, market returns in our computer simulated
are characterized by excess kurtosis and non-normality in
6 of the 10 simulated series. Finally, the return
distribution is negatively skewed. Our benchmark market
therefore captures stylized facts of real financial
markets'3. When the number of informed agents is halved
(Market 1), price dynamics depart even more from the
fundamental distribution: volatility increases from

12 The number of ZI agents is 120 in all markets and the
standard deviation of the fundamental prices is fixed to 10% for
all experiments.
13 Although the results are not shown in the paper, we must note
that as in real financial markets we also found evidence of
volatility clustering in our market.

Table 4. Informational efficiency for all simulations
MAE MRE RMSE

Benchmark 3.63 3.17% 5.96%

Market 1 17.54 17.24% 28.02%

Market 2 2.00 2.04% 4.68%

Market 3 1.03 1.04% 1.32%

Market 4 0.81 0.82% 1.13%

Market 5 3.54 3.09% 5.84%

Figure 1 shows how close transaction prices are to
fundamental prices in the benchmark market. This Figure
is in contrast to Figure 2 that corresponds to Market 1.
First, the high volatility of returns is apparent from the
bottom panel (returns) of Figures 1 and 2 in all periods.
Informed investors not only ensure convergence to price
fundamentals, but also reduce randomnes in transaction
prices as suggested by Table 3. The top panel (prices), on
the other hand helps explain the poor efficiency results of
Table 4.While transaction prices in Market 1 tend to track
the fundamental path in most periods, from period 200 to
period 350, the market experiences a crash. This crash
starts with a sharp decline in the asset's price followed by
periods of stability, and finally, a quick return to the
fundamental path that is not abandoned again. Finally, the
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medium panel shows that trade volume peaks when prices
fall and rise, and remains relatively low in between.
In order to understand the crash in Market 1, we look at
the evolution of agents' average positions per investor
class, which are shown in Figure 3.

Figure 1. Price dynamics in the benchmark market.
The red and dotted line corresponds to transaction prices/returns
and the solid line corresponds to fundamental prices/returns.

FUNDAMENTAL PRICE AND MARKET PRICE AT THE END OF EACH PERIOD
120
100_

60
40

200 300 400 500 600 700 800 900 1000
AVERAGE NUMBER OF TRANSACTIONS PER PERIOD

400

200 r

0
200 300 400 500 600 700 800 900 1000

FUNDAMENTAL RETURN AND MARKET RETURN

0.2-

200 300 400 500 600 700 800 900 1000

Figure 2. Price dynamics in Market 1.
The red and dotted line corresponds to transaction prices/returns
and the solid line corresponds to fundamental prices/returns.

FUNDAMENTAL PRICE AND MARKET PRICE AT THE END OF EACH PERIOD
120
100__
60C401
200 300 400 500 600 700 800 900 1000

AVERAGE NUMBER OF TRANSACTIONS PER PERIOD
400

200

200 300 400 500 600 700 800 900
FUNDAMENTAL RETURN AND MARKET RETURN

1000

0.2 X I I .. ___
0 Ali ai

-0.2'-
200 300 400 500 600 700 800 900 1000

Figure 3 shows that as Technical Analysts sell their
positions, the price falls below its fundamental value.
Informed investors then increase their positions in the
asset. By doing so, they run out of cash, and since
borrowing is not permitted, they cannot submit new bids
to the system. Because TA are also constrained by short
selling restrictions, they cannot continue selling and
prices stabilize. Towards period 300, only ANN agents
and ZI agents can trade. As prices eventually rise above
their recent mean, TA start to buy from ANN and ZI
agents, and prices start to rise again. Around period 350,
prices have already reached the fundamental path and
keep rising, so informed traders intervene again selling

the asset. This time, however, their orders manage to
bring prices down to the fundamental path. Since market
price stay close to the fumdamental price after the crash,
informed agents enjoy an informational advantage that
enables them to beat other agents in the long run.
Informed agents must therefore create a critical mass for
information to disseminate in the market.

Figure 3. Agents' average positions per investor
category in Market 1.
This table shows the agent's position in cash, risk asset and also
the total wealth in each trading period. The thick solid, thin
solid, dashed and dotted lines correspond to informed investors,
zero intelligence agents, technical analysts and ANN agents,
respectively.

CASH
10000

5000

0 y
200 300 400 500 600 700 800 900 1000

ASSET UNITS
100

50

0
200 300 400 500 600 700 800 900 1000

TOTAL WEALTH

10000

5000 _

0
200 300 400 500 600 700 800 900 1000

In Markets 2 and 3, we investigate the effect of a
reduction in the number of ANN and TA, respectively.
Table 3 suggests that reducing the number ofANN agents
has an affect on market dynamics similar to the effect of
reducing the number of informed agents: volatility, Value
at Risk, negative skewness and kurtosis increase with
respect to the benchmark. Eliminating TA from the
market, however, affects market dynamics only slightly,
although Value at Risk, kurtosis and nonnormality reduce
slightly, and skewness becomes positive. Finally,
reducing the number of ANN agents and, especially, TA
has a clear positive effect on efficiency. These results
imply that TA contribute to nonnormality in returns while
ANN agents have the opposite effect. The presence of
both, however, reduces the relative weight of informed
agents, and therefore their ability to influence prices.
Since information dissemination appears to be limited by
the presence of a budget constraint, it is an interesting
exercise to investigate how the market behaves when such
constraint is never binding. As we can see in Table 3,
Market 4 is characterized by lower volatily and Value at
Risk than the benchmark market, although returns display
more kurtosis and negative skewness. With regards to
price dissemination, as expected, Table 4 shows that
prices in this market capture private information
remarkably well. Clearly, when informed investors are
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not constrained by their budget, their ability to influence
prices is much stronger. Non-normality of returns, which
appears to be related with the presence of TA also
increases, since these agents are also free from their
budget constraint.
Finally, we study how a specific feature of the market
microstructure, explicit transaction costs, affect market
prices. When the upper bound of S is raised to 2.5,
according to Table 3 (Market 5), volatility in returns and,
most notably, VaR reduce with respect to the benchmark
market. Normality in this market is only rejected in 3 out
of the 10 simulations. Although not shown in the paper
for the sake of brevity, our analysis of the limit order
book suggests that higher explicit transaction costs make
trading less likely and increases the depth of the limit
order book. The natural consequence is a reduction in the
sensitivity of market prices to minor shifts in investors'
expectations, and hence in volatility. Moreover, this
reduction in volatility does not come at the expense of
increased inefficiency: information dissemination actually
improves according to Table 4.
The analysis of Market 1 has suggested that when
informed investors are not sufficient in number, the
budget constraint limits the ability of market prices to
reflect private information. But, how do market prices
become informationally efficient in the first place? To
gain further insight, we consider the same fundamental
path as in the previous examples, and compute the median
price expectation across all agents in each period. As
explained above, in our market this price roughly
corresponds to the equilibrium price in a Walrasian
auction, but because we use all of investors' expectations
in each period, it should be interpreted as the median
price after a series of repeated auctions when agents are
reactive to market information. We then compute the
correlation matrix for the market price, the fundamental
price and the Walrasian price. We split each series
Results are displayed in Tables 5 and 6.

Table 5. Price correlations for a single fundamental
path. Periods 250-625.

This table shows the correlation coefficient between market
prices (Pr), fundamental prices
(PWa)3

(Pf) and the Walrasian price

Pt, Pf Pt, PWa Pf, PWa
Benchmark 0.986 0.987 0.997

Market 1 -0.355 0.993 -0.367

Market 2 0.980 0.981 0.998

Market 3 0.988 0.988 1

Market 4 0.989 0.993 0.994

Market 5 0.989 0.989 0.998

Table 6. Price correlations for a single fundamental
path. Periods 626-1000.

This table shows the correlation coefficient between market
prices (Pt), fundamental prices (Pf) and the Walrasian price
(PWa).

Pt, Pf Pt, PWa Pf, PWa

Benchmark 0.987 0.987 0.998

Market 1 0.873 0.951 0.890

Market 2 0.985 0.986 0.998

Market 3 0.991 0.991 1

Market 4 0.993 0.995 0.997

Market 5 0.992 0.992 0.999

The first column from Tables 5 and 6 confirms the
conclusion that market prices in our continuous double
auction are generally very responsive to changes in
informed investors' expectations. In the second part of the
series, when informed investors only account for 10% of
total traders (Market 1), the correlation between the
fundamental path and transaction prices is 87.33%. Of
course, in this market there is a high risk of departures
from the fundamental path as becomes apparent from the
low correlation between market prices and true prices in
the first part of the sample
Interestingly, Tables 5 and 6 provide an explanation for
information dissemination in the double auction market.
The highest correlations are those between the market
price and the Walrasian price. This implies that the
market's median expectation in this market reacts fast to
past transaction prices. Consequently, when informed
investors' orders are able to shift transaction prices in the
"right" direction, subsequent convergence of transaction
prices to the fundamental price is almost assured. The
main lesson from Tables 5 and 6 is that boundedly
rational investors' ad hoc responses to market prices
appear "as though" investors rationally update their
beliefs about the true asset price which in turn leads to a
RE-like equilibrium.
Finally, all but one correlation coefficient is marginally
higher in Table 6 than its counterpart in Table 5. In other
words, as time passes, prices become more efficient. This
effect, however, cannot be attributed to learning, since it
is present even when there are no ANN agents in the
market. We conjecture that the higher wealth accumulated
by informed investors in the second part of the series,
diminishes the probability of their budget constraint
becoming binding, and hence strengthens their capacity to
influence prices.

5 Summary and conclusions

The idea that private information can disseminate well in
continuous double auction markets has found support
both in experiments with humans and with computational
agents. The exact mechanism through which such transfer
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of information is possible, however, deserves a further
look. This paper is an attempt to shed light on this issue
with important implications for both academics and
market structure designers.
Our main finding is that when investors respond, even in
mechanical ways, to transaction prices, minor shifts in
these prices can potentially alter the median investor's
beliefs towards the intrinsic asset value. If informed
traders are a sufficient fraction of total investor
population, their trades have the potential to bring prices
to the fundamental path. This ability, however, is limited
by borrowing and short-selling restrictions, which
prevents them from bidding up prices in a stock market
crash or offering the asset when it is highly overvalued.
The presence of other investors, or increased explicit
transaction costs, introduces noise in the system and has
interesting effects on market dynamics, but does not alter
the main conclusions regarding information
dissemination.
The idea that short sale or borrowing constraints can
prevent information or opinions from being expressed in
stock prices is not new. Miller (1977) or Diamond and
Verrechia (1987) models express this point formally. Our
paper shows that the same perverse effect of short selling
and borrowing constraints is present in more complex
markets populated by heterogenous boundedly rational
investors. Moreover, our results show that the same
constraints prevent rumors or techical analyst from
driving asset prices from their intrinsic values forever.
This benefit, however, is more than outweighted by the
cost.
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