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Abstract—This paper presents a new approach to auto-regres-
sive and moving average (ARMA) modeling based on the support
vector method (SVM) for identification applications. A statistical
analysis of the characteristics of the proposed method is carried
out. An analytical relationship between residuals and SVM-ARMA
coefficients allows the linking of the fundamentals of SVM with
several classical system identification methods. Additionally, the
effect of outliers can be cancelled. Application examples show the
performance of SVM-ARMA algorithm when it is compared with
other system identification methods.

Index Terms—ARMA modeling, cross-correlation, support
vector method, system identification, time series.

I. INTRODUCTION

AFREQUENT approach to digital signal processing is
to propose a model composed by two discrete-time

processes (DTP), which are the input and the output to a linear,
time-invariant system (LTIS). An LTIS is usually approximated
by means of a rational transfer function that can be an all-zero
or moving average (MA), an all-pole or auto-regressive (AR),
or a general zero-pole (ARMA) system. ARMA modeling is
useful in problems such as system identification, time-series
analysis, spectral analysis, and deconvolution. A number of
applications for ARMA modeling can be enumerated. For
example, in digital communications, channel identification
provides a way of reducing intersymbol interference; in addi-
tion, channels of multiuser detection schemes can be viewed as
multiple-input multiple-output systems, and the MA structure
is used to compensate the effect of multipath signal propagation
[1]. In radar signal processing, adaptiveness is better achieved
by means of ARMA implementations, getting advantage with
respect to the Fourier transform in the robust determination of
Doppler spectrum [2], [3]. Biomedical signals can be analyzed
to build models for diagnosis purposes; spectral analysis of
the heart-rate variability and its relationship to blood pressure
variability are useful in arrhythmia risk stratification of patients
with previous myocardial infarction [4]; cardiovascular models
of the aortic vein state can be estimated from blood pressure
and flow measurements [5]; and spectral analyses of electroen-
cephalographic potentials enable a deeper knowledge of the
brain [6].
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Classical ARMA estimation methods present some limita-
tions.

• Analysis of DTP with atypical samples (outliers) is neither
easy nor immediate, and it is usually achieved by heuristic
or even visual inspection methods [12]. So, the use of ro-
bust cost functions to avoid the effect of outliers often
arises numerical optimization disadvantages.

• In general terms, ARMA methods require a previous de-
termination of model complexity or number of parameters
in the model, and they are quite sensitive to wrong order
choice [9].

• Finally, error surfaces are not convex in many cases. Even
worse, sample-based approximations to convex theoretical
surfaces can exhibit local minima.

In this paper, we introduce a new approach to ARMA mod-
eling that is based on the support vector method (SVM). The
SVM was first proposed to obtain maximum margin separating
hyperplanes in classification problems [13], but this technique
has become a general learning theory [14], [15]. A comprehen-
sive description of this method for classification and regression
problems can be found in [16] and [17], respectively. Although
some previous work has been done with SVM regression and
time series analysis [7], [8], the algorithm that we present is
formulated for system identification: a framework where robust-
ness is specially needed. Robustness is just a main feature that
SVM controls, as it will be shown in this paper. Besides, we de-
velop a statistical analysis of the characteristics of our method.
In addition, we pay special attention to the cost function used
in this SVM approach, which is a scarcely discussed aspect in
SVM regression literature, although it has a key relevance in
signal processing environments.

The approach to ARMA system identification drawn from
SVM minimizes a regularized cost functional of the residuals.
Potential advantages of SVM are the following.

• It provides a unique solution.
• It is a strongly regularized method, which is appropriate

for ill-posed problems.
• It extracts the maximum information from the available

samples, although the statistical distribution is unknown.
Consequently, SVM can diminish some of the limitations of

classical ARMA system identification methods, as we will see
below in more detail.

The structure of the paper is as follows. In Section II, we in-
troduce SVM-ARMA system identification equations, and we
propose a robust cost function that leads to the corresponding
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SVM-ARMA algorithm. Then, the relationship between resid-
uals and SVM-ARMA coefficients is analyzed in Section III,
yielding a useful statistical interpretation of SVM-ARMA
terms. This allows the establishment of a comparison with clas-
sical system identification methods. Simulation and application
examples are included in Section IV. Finally, in Section V,
conclusions are drawn.

II. SVM-ARMA FORMULATION

Let us consider two DTPs and , which are the
input and the output, respectively, of a rational LTIS. The cor-
responding difference equation is

(1)

where and are the AR and MA coefficients of
the system, respectively, and is a DTP standing for the
effect of measurement errors.

Let us also consider a set of consecutive samples of
and a set of consecutive samples of observed at the
same time instants. The difference equation can be used to set a
relationship among observations, estimated parameters, and er-
rors. In this case, error terms , or residuals, comprehend
both measurement and model approximation errors. In order
to consider initial conditions, (1) is required only for time-lags

, where . Assuming that
and (also known as model order) can be properly chosen

beforehand, ARMA coefficients are usually estimated
from minimizing a cost functional, depending on the residuals.

In general, SVM algorithms for linear classification and re-
gression problems minimize a cost function for the residuals
(CFR) that is called Vapnik’s (or -insensitive) loss function,
which is given by

if
if

(2)

and this CFR is regularized with the norm of the model pa-
rameters [13], [18]. Whereas , SVM allows to obtain
sparse solutions where the estimated classification or regression
function depends only on a reduced number of the set of ob-
served samples; these samples are called support vectors. The
extension of SVM to nonlinear classifiers and regressors can be
easily achieved by using Mercer’s kernels.

An additional free parameter must be previously fixed to
control the tradeoff between the cost of the residuals and the
regularization term. This tradeoff is chosen according to some
a priori knowledge of the problem or by using cross-valida-
tion techniques. The resulting functional is usually optimized
via quadratic programming (QP) [19].

We propose to use Vapnik’s CFR plus an regularization,
including both the AR and the MA model coefficients, to create
what we call SVM-ARMA modeling. This corresponds to the
unconstrained minimization of

(3)

An equivalent formulation of the above process [13] is to min-
imize

(4)

where , and are slack variables or losses constrained to

(5)

(6)

(7)

for , where denotes both and . The
primal-dual or Lagrange functional for this problem is obtained
by introducing a nonnegative coefficient (Lagrange multiplier)
for each constraint [19], yielding

(8)

where the multipliers are constrained to and
, and (7) also stands. Equation (8) has to be minimized with

respect to primal variables , , and and maximized with
respect to Lagrange multipliers (also called dual variables)
and .

From

(9)

several consequences are drawn. First, dual variables are shown
to be constrained between an upper and a lower bound

(10)
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for . Second, we can observe that

(11)

(12)

show the analytical relationship among the model coefficients,
the dual coefficients, and the observations. Third, these condi-
tions can be introduced into Lagrange functional (8) to remove
the primal variables. After that, another term grouping can be
done in by writing down

(13)

(14)

These equations denote the time-local th- and th-order
sample estimators of the values of the autocorrelation functions
of the input and the output DTP and , re-
spectively.

By introducing (13) and (14) into (8), the problem can be
expressed in terms of the residual constraints and the data, and
it is stated in vector-matrix form as the maximization of

(15)

under constrains (10), and where and

.
This is a QP problem, and if we write

(16)

(17)

(18)

then the aim is to maximize with respect to
under some linear constraints. It is clear that matrix is not
invertible and the solution is unfeasible. Like in SVM regression
[17], this problem can be ad hoc regularized by adding a small
value diagonal matrix, i.e., by replacing the square matrix by

. Matrix can be easily shown to be definite
positive, and the resulting constrained QP problem has a single
minimum, thus avoiding the local minima problems in the LS
solution of the normal ARMA system identification equations
[9].

Note that the above-mentioned numerical regularization is
apparently different from the -norm regularization of the
primal functional in (4); in fact, this numerical regularization
is not always reported in SVM regression literature, and it is
frequently treated as a simple numerical trick. However, the
numerical regularization in the dual problem can be seen as an
additional term in the dual functional, given by the norm of

Fig. 1. Robust CFR for the SVM-ARMA algorithm. There are three different
(possible) regions, allowing us to deal with different kinds of noise.

the Lagrange coefficients. This means that the QP problem we
are really solving is the maximization of

(19)

constrained to (10).
Several robust cost functions have been used in SVM regres-

sion, such as Vapnik’s loss function [13], Huber’s robust cost
[7], or the ridge regression approach [20]. Here, we propose a
more general cost function that has the above-mentioned ones as
particular cases. Proposed robust CFR is depicted in Fig. 1, and
it can be expressed as the following piecewise-defined function:

(20)

where . The three different intervals of serve
to deal with different kinds of noise. Insensitive zone is
adequate for low-frequency variations such as wander or base-
line deviations. The quadratic cost zone takes into account the
observation noise, the norm in this zone being appropriate
for Gaussian processes. The linear cost zone limits the effect of
either outliers or jitter noise on the model parameter estimation.

Thus, the proposed robust SVM-ARMA algorithm is stated
as the minimization of this robust CFR plus the regularization
term:

(21)

constrained to (5)–(7), where is the set of samples for which
, and is the set of samples for which .

Appendix A shows that the dual problem corresponding to (21)
is equivalent to (19) in the sense that both reach their optimum
for the same values of Lagrange coefficients. This fact permits
a twofold interpretation.

• When considering Vapnik’s loss function as the cost on the
residuals, the regularized cost function for SVM-ARMA
we are really working with is not (4), but rather (21), due
to the effect of the numerical regularization.
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• Far from being a disadvantage, considering the quadratic
cost zone will allow to work with a more general cost
function than Vapnik’s cost and for some kinds of DTP, it
can be useful to set an appropriate value for free parameter

.
Note that three free parameters ( and ) are to be tuned.

These parameters can be a priori fixed according to the statis-
tical model of DTPs. Selecting leads to Huber’s robust
cost function [21]. In addition, represents Vapnik’s func-
tion, showing that it becomes nondifferentiable at in
the absence of numerical regularization. In a number of applica-
tions, some knowledge of the statistical properties of DTPs can
be available. So, it will be desirable relating (20) to other cost
criteria by establishing a general class of robust cost functions.
When noise is Gaussian, the quadratic cost will be the most ap-
propriate; however, in this case, insensitivity should be removed

, and sparsity will not be achieved. For sub-Gaussian
noise, a better performance could be obtained with a cubic or
higher degree cost zone. If super-Gaussian (for instance, impul-
sive or heavy-tails) noise is present, it will be convenient to set
a low value for product but with so that we will not
have an ill-posed problem.

III. STATISTICAL INTERPRETATION

The consideration of the cost function in (20) allows us to
trace an analytical relationship between residuals and Lagrange
multipliers in the SVM-ARMA algorithm (21). Let be
the Lagrange coefficients in the solution. Then, residuals and
coefficients are related in the form

.

(22)

This analytical relationship is proved in Appendix B from
Karush-Khun-Tucker (KKT) conditions when the solution of
the QP problem is reached.

Analytical relationship (22) between Lagrange multipliers
and residuals in SVM-ARMA algorithm (21) allows us to
compare the latter with classical algorithms. Although a really
vast number of methods for system identification have been
suggested, Ljung points out in [9] that there are two main
general procedures. On the one hand, prediction-error methods
(PEMs) are based on the minimization of a function of the
residual power for a given model. PEMs contain well-known
procedures such as the least-squares (LS) method, and they are
closely related to Bayesian maximum a posteriori estimation
[10]. On the other hand, correlation methods (CMs) seek for
the minimization of the cross-correlation between a function
of the residuals and a transformation of the data, possibly
depending on the parameter vector; this approach includes the
instrumental-variable 4 method (from now, Iv4), as well as
several procedures for rational transfer function modeling [11].
Here, we present a brief comparison of SVM-ARMA with both
kinds of methods.

Comparison with PEM: If , , then Lagrange
multipliers are just proportional to the residuals. To highlight

Fig. 2. Geometrical interpretation of error bias. LS solution v produces
an unbiased averaged error d that is orthogonal to the space spanned by the
data, whereas the SVM solution v can be seen as a regularized but biased
solution with increased approximation averaged error e.

the bias-variance dilemma in SVM-ARMA versus LS system
identification, a geometrical interpretation based on the orthog-
onality principle will be carried out. For the sake of simplicity,
let us consider the projection of a vector onto the sub-
space generated by data , as depicted in Fig. 2. According
to LS criterion, the projection is denoted as ,
whereas SVM projection is . SVM pro-
jection is obtained as the result of minimizing

(23)

constrained to . From

(24)

the following relationships can be established for the coeffi-
cients of both solutions:

(25)

from which

(26)

(27)

Accordingly, SVM-ARMA coefficients given by (11) and
(12) can be seen as the minimum norm projection of the
solution onto the subspace that is generated by the input
signal, the output signal, and their delayed versions. The model
coefficients are calculated as the dot product between the
nonlinearized error and the subspace base vectors.

If the observation noise is Gaussian, and the observed data
have actually been generated by an ARMA model, i.e.,

, then is an unbiased estimator of the model
coefficients [9], and for the th coefficient , we have

(28)

where denotes statistical expectation of a random variable.
However, is a biased estimator since

(29)
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and the bias is due to the regularization term. Additionally, the
variance of the LS estimator is

(30)

whereas the variance of the SVM estimator is

(31)

In this case, biased SVM-ARMA will provide better estima-
tors only if its variance is below LS variance, i.e.,

(32)

As a consequence, in the presence of Gaussian noise and
for an underlying ARMA model, the LS parameter estimator
is the optimum solution in the sense of unbiased error. Here,
SVM-ARMA algorithm will be able to provide a biased (yet
reduced variance) estimator whenever LS estimator variance is
greater than the true ARMA coefficient; this can be the case in
situations having a low number of observation samples, true co-
efficients of low amplitude, or low signal-to-noise ratio (SNR).

Comparison with CM: As previously mentioned, CM are
based on the assumption that a good model produces residuals,
regardless of past data. They also seek the minimization of
the cross-correlation between a function of the residuals and a
transformation of the data. The open issue in this setting is how
to find both the residual function and the data transformation.

In order to relate SVM-ARMA algorithm with CM, we start
from the case , , and (quadratic loss
only), which again leads to Lagrange multipliers that are equal
to the residuals. In this case, prediction coefficients and

are sample estimates (except for a scaling factor) of the
cross-correlation between the residuals and the data. Using (22)
in (11) and (12), and since

(33)

(34)

with , the coefficients can be seen as

(35)

(36)

This emphasizes the fact that the SVM-ARMA solution leads
to low correlation (in the given lags) between the residuals and
the data.

If or (or both), then is a nonlinear
transformation of the residuals given by (22). In this case, the
model coefficients are estimated from the cross-correlation of
the transformed residuals and the data

(37)

(38)

As long as we impose the minimum norm of the coefficients,
the sample correlation between this nonlinear function of the
residuals and the data is reduced. Taking into account (11) and

(12), one can see the relationship to the general CM equation
[9]. Note that there is no data transformation, but instead, the
residual nonlinear function is based on the statistical knowledge
of the errors, which is incorporated into the free parameters of
CFR.

Finally, the comparison with CM suggests the possibility of
a new algorithm by forcing the residuals to be uncorrelated
with the data for more lags than and . This could be easily
achieved by forcing coefficients to be small or even zero
for , .

IV. APPLICATION EXAMPLES

In the applications that we will present here for the system
identification SVM-ARMA algorithm, attention will be paid
to some of its main features. First, a simulation example al-
lows us to appreciate the performance when outliers are present.
Second, a classical example (Feedback’s Process Trainer [9]) is
used to compare SVM-ARMA with several system identifica-
tion methods. Finally, a real-world example is reported (the re-
lationship between simultaneous heart rate and diastolic blood
pressure), where erroneous measurement values often appear.
Two performance measurements are used: the error of the ap-
proximation to the true impulse response of the LTIS when it is
known (example A) and the prediction error on a validation set
when real data are analyzed (examples B and C).

A. Insensitivity to Outliers

The test system to be identified is

(39)

This system is chosen because its impulse response has
samples with amplitudes of different orders of magnitude.
Input DTP is a white, Gaussian noise sequence of unit variance,
which will be denoted . The corresponding
output DTP is corrupted by an additive, small variance random
process , modeling the measurement errors.
This leads to an observed process . The
number of observed samples is chosen to be low, be-
cause SVM algorithms are expected to work well in low-sized
data sets, mainly due to their strong regularization.

Impulsive noise is generated as a sparse sequence, for which
30% of the samples, randomly placed, are of high-amplitude,
having the form [where denotes the uniform
distribution in the given interval]. The remaining are zero sam-
ples. This noise sequence is denoted by . The observations
consist of DTP input and the observed output plus impul-
sive noise, i.e., . Values of go from 18 to
0 dB.

As insensitivity to outliers is expected to be reduced by the
linear zone of the empirical cost, is used, and true or-
ders for both numerator and denominator are introduced into
the model. An extremely low value of leads to a higher em-
phasis on minimizing the losses so that overfitting can occur.
Then, we select a moderately high . The appropriate
choice of can be addressed by considering that according to
(35) and (36), the solution is a function of Lagrange multipliers
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Fig. 3. (a) Insensitivity of SVM-ARMA to outliers. Histogram of the residuals
and control of the outlier impact on the solution by means of C . (b) MSD
between true and estimated impulse response for SVM (continuous line) and
ARX (dashed line) for different powers of impulsive noise (averaged for 100
realizations).

and data. Besides, (22) reveals that a high amplitude residual,
corresponding to an outlier, will produce a high amplitude mul-
tiplier, which will distort the solution, but if the maximum value
that the multiplier can take is properly limited by , the impact
of the outlier on the solution is weakened. Fig. 3(a) shows that

should be low enough to exclude residual amplitudes that
are greater than a base level. In our case, we fix single value

for all the simulations to be able to deal with high-am-
plitude and low-amplitude outliers.

The merit figure chosen for comparison purposes is the mean
squared deviation (MSD) between the ten first samples of the
true and the estimated impulse response

MSD (40)

Fig. 4. (a) Comparison between SVM (solid), ARX (dashed), and true (dotted)
impulse responses for � = 0 dB. (b) Averaged squared deviation between the
true impulse response and SVM (solid) ARX (dashed) estimates for the example
in (a).

where and are the true and the estimated impulse re-
sponses, respectively. Results are compared with the conven-
tional LS algorithm (ARX model).

Fig. 3(b) shows MSD for the true and the estimated impulse
response for both SVM and ARX algorithms, averaged over 100
realizations. For ARX approach, MSD is very high for high
values of impulsive noise power, whereas MSD of SVM re-
mains around 22 dB. Fig. 4(a) shows a realization for 0 dB,
and Fig. 4(b) shows the squared deviation between
true and estimated impulse responses along the ten first samples
for both ARX and SVM, averaged over 1000 realizations.

B. Feedback’s Process Trainer

Feedback’s Process Trainer, a classical example, is a variable
heating-controller device governed by a binary voltage. The ob-
jective proposed in [9] is the identification of an LTIS relating
the input (binary voltage) and the output (outlet air temperature).
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A delay of three samples is introduced in input DTP. As far
as a previous study in [9]shows, this represents the best delay
for modeling LTIS. First, samples of both input and
output DTPs are used as training series in order to work with a
low number of data, and the next 800 samples are used as the
validation set.

SVM-ARMA free parameters were fixed by the following
procedure. Initially, 40 samples are used to build a model with
a given set of free parameters, and 40 samples are used as a
test set to evaluate the prediction error. Explored ranks are

(logarithmic scale), , and
, using 20 points for each parameter

exploration. Once appropriate free parameters have been se-
lected for a model, the whole 80-sample set is used to obtain
the model coefficients. Comparison with several methods is re-
ported: ARX, output error (OE), and Iv4. A variety of model
orders was explored, which are with fixed ,
and with fixed .

Fig. 5 shows the prediction error in the validation set of sam-
ples. Both OE and Iv4 provide poor models in terms of predic-
tion error, whereas ARX and SVM-ARMA exhibit better per-
formances. Besides, there is no significant difference between
both methods, and in fact, the free parameters of SVM-ARMA
that are found ( , and ) lead to a cost
function that is very close to the ARX one. However, note that,
for , SVM-ARMA does not provide the best model. This
is due to a failure in the free parameter selection strategy.

Fig. 6 shows the prediction error in the validation set in terms
of the free parameters when 40 or 80 length sequences are used
to train the model. We can see that the heuristic choice (usually

) is not the best one, due to the fact that very few
samples are available, and in this case, it would lead to a loss
of 5 dB in the prediction capabilities. As there are no outliers,

is appropriate. In addition, is the best value for
both training data sets, and a different value could lead to severe
losses.

Therefore, we may conclude that SVM-ARMA provides as
good results in this example as the best method (ARX). How-
ever, special care must be taken with the free parameter selec-
tion strategy, and more sophisticated approaches than those used
here should be developed.

Finally, we should note that QP optimization presents some
numerical problems in this case because the low value of is
comparable with the order of magnitude of algorithmic toler-
ances. Its careful control increases the required time for conver-
gence. This effect could be avoided by using weighted LS to
train SVMs, as proposed in [22].

C. Heart Rate and Systolic Blood Pressure

The control of the cardiovascular system by the autonomous
nervous system can be studied from its effect on the cardiac
rhythm [which causes the so-called heart rate variability (HRV)]
and from its effect on the diastolic blood pressure (DBP). In
this setting, system identification techniques have been used to
model the relationship between HRV and DBP [4]. However,
a very common problem of the HRV signal is the presence of
anomalous data, which can be due to missing sinusal (normal)

Fig. 5. Results for Feedback’s Process Trainer example. (a) Validation
prediction error for Q = 6 and P 2 (1; 10). (b) Validation prediction error for
P = 5 and Q 2 (1; 10).

beats, ectopic (nonsinusal originated) cardiac beats, or noncar-
diac artifacts. The manual detection of these beats is a time-con-
suming task, and a robust analysis method is very desirable.
SVM-ARMA system identification properties make this algo-
rithm a useful approach for this application.

Fig. 7 shows two simultaneous HRV and DBP signals. The
aim consists of obtaining an ARMA model where DBP and
HRV are considered its input and output, respectively. The
training, test, and validation samples are indicated in this figure.
In brief, the training samples of HRV contain a significant
number (over 15%) of anomalous measurements, with either
too-high or too-low amplitudes, due to electrocardiographic
acquisition failure during some time intervals.

A comparison like that in the preceding example is shown in
Fig. 8, where different model orders and system identification
procedures are shown as a function of the prediction error in
the validation set. SVM-ARMA clearly outperforms ARX and
Iv4, and it provides almost the same performance for all the
presented model orders.
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Fig. 6. Free parameter selection for Feedback’s Process Trainer. Prediction error in the validation set by using 40 (left) and 80 (right) training samples.

Fig. 7. Signals of blood pressure (up) and heart rate (down) used as training,
test, and validation sets for the example in C.

However, we must point out that the OE method reaches a
better model than all the other methods, though only occasion-
ally. The reason is that this method gives an output estimate that
is better than the extremely noisy observations. This suggests
the possibility of an algorithm that can exhibit the advantages of
both SVM-ARMA and OE models by using auxiliary variables
representing LTIS output and including additional constrains re-
lating the output model and the observations.

V. CONCLUSION

A new approach to estimate ARMA models based on SVM
has been introduced. The corresponding algorithm has been
formulated, and a statistical interpretation of this SVM-ARMA
has been presented. Theoretically, the SVM-ARMA algorithm
allows the reduction of residual and data cross-correlation.
Simulation and application examples have been used to test
the method and to compare it with classical algorithms for
ARMA identification, showing that insensitivity to outliers can
be achieved by an appropriate choice of the free parameters of
SVM-ARMA algorithm.

The application of more efficient and adaptive SVM training
schemes [22], [23], as well as the extension of this approach
to other signal processing problems, are obvious research lines.
Using nonlinear kernels, which allows us to obtain a transfor-
mation of the input and the output state, is also an interesting
possibility that will lead to robust, nonlinear system identifica-
tion procedures.

APPENDIX A
REGULARIZED COST FUNCTION

Our objective is to find the dual problem of the minimization
of (21) under constrains (5)–(7). The primal-dual functional is
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Fig. 8. Results for the heart rate and blood pressure example. (a) Validation
prediction error for Q = 5 and P 2 (1; 20). (b) Validation prediction error for
P = 5 and Q 2 (1;10).

(41)

constrained to

(42)

By zeroing the derivative of with respect to the primal
variables, we obtain the expression for the prediction coeffi-
cients as a function of Lagrange multipliers. However, a dif-
ference appears when calculating the derivatives with respect to

with , for which

(43)

It is clear that and, necessarily, , so that

(44)

and denoting by the constant value

(45)

it is easy to see that

(46)

where is given by (19). This reveals that both functions
reach the minimum at the same values of Lagrange multipliers.

APPENDIX B
RESIDUALS AND LAGRANGE COEFFICIENTS

The analytical relationship presented in (22) must be sepa-
rately shown for three different cases, according to the different
KKT conditions for each one.

Case 1) For , we find that and .
In the solution, the values reached by the primal and
the dual functional are equal. Therefore, taking into
account (11) and (12), the following equation holds:

(47)

Derivatives of the constraints corresponding to
vanish at the solution. Thus, using the chain rule, we
obtain, by zeroing the derivative of (47)

(48)

and hence

(49)

The derivation is similar for ,
just considering that, in this case, , and

.
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Case 2) When , it is straightforward to see that
corresponding vanish.

Case 3) When , the Lagrange multiplier direction
cannot be greater than , and hence, . Sim-
ilar considerations can be made for .
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