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Abstract. We present a general formalism which allows us to derive the
evolution equations describing one-dimensional (1D) and isotropic 2D interface-
like systems, that is based on symmetries, conservation laws, multiple scale
arguments, and exploits the relevance of coarsening dynamics. Our approach
becomes especially significant in the presence of surface morphological
instabilities and allows us to classify the most relevant nonlinear terms in the
continuum description of these systems. The formalism applies to systems ranging
from eroded nanostructures to macroscopic pattern formation. In particular, we
show the validity of the theory for novel experiments on ion plasma erosion.
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1. Introduction

Many surfaces and interfaces, which are very different in nature and occur at very different length
scales, produce interfaces which are startlingly similar. This similarity stems from the competition
between stabilizing and destabilizing physical mechanisms that are insensitive to the specific
value of the interface heighth(x, t) (this function provides the height of an interface above position
x on a one-dimensional (1D) substrate, at time t). Namely, such mechanisms are invariant under
global height translations of the form h(x, t) → h(x, t) + ξ, with ξ an arbitrary constant (shift
symmetry [1]). For instance, interesting ((sub)micrometric) surface features develop by growth or
erosion using various techniques, such as electrochemical deposition (ECD) [2], chemical vapour
deposition (CVD) [3], ion beam sputtering (IBS) [4] or molecular beam epitaxy (MBE) [5], but
remarkably also in macroscopic systems, such as aeolian sand dunes [6] or underwater (vortex)
ripples in sand [7].

For cases in which dynamical instabilities are irrelevant or absent, the shift symmetry has
been argued to induce scale-invariant surface morphologies in the presence of noise. This is the
generic scale invariance [8] associated with the universality classes [9] of kinetic roughening.
However, the situation differs in the presence of morphological instabilities, that are the landmark
of pattern formation. In these cases, if the height field is seen as a measure of the amplitude of
perturbations around a reference homogeneous state, the conservation law associated with the
shift symmetry leads to a large-scale instability [10]. This might prevent a unified description by
means of a universal equation, such as the Ginzburg–Landau equation is for the case of short-
wavelength instabilities [10, 11]. Thus, although the systems mentioned above are seemingly
governed by similar equations, a general theory of evolving interfaces in which patterns arise is
still lacking. Actually, it seems that for every experimental system a specific theory needs to be
developed.

In this paper, we present a general formalism for pattern formation in 1D and isotropic
2D surfaces, that relates to previous approaches in the theory of dynamic scaling of rough
interfaces [1, 12, 13], systematically exploiting the formulation of the interface evolution within
the assumption of a (generalized) relaxational dynamics. Through symmetries and multiple
scale arguments, our approach helps to understand why some effective equations presenting a
morphological instability appear almost ubiquitously in the experimental systems mentioned
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above. Our method enables classification of the most relevant nonlinear terms for these systems,
and stresses the relevance of the phenomenon of coarsening to their continuum description. We
have also performed some experiments on ion plasma erosion to explore nontrivial implications
of our theory. Moreover, we have applied it to other relevant and diverse fields, ranging from
thin film production to surface patterns in macroscopic systems, such as fluid waves or some
granular systems.

In principle, we consider that the evolution of h is local and takes the form ∂th = G({h}) + η,
where {h} stands for h and its spatial derivatives, and η is a noise term that we will neglect
hereafter. Previous phenomenological proposals for the functional G have been built upon
geometry arguments [12] or upon symmetry and conservation requirements [9]. In the first
case, the evolution is governed by the local curvature and its derivatives along the interface. This
excludes contributions to G that are due to, e.g. anisotropies [14]. Likewise, the second approach
can be misleading. For instance, if one considers nonconserved interface dynamics under the
shift symmetry, namely, if G cannot be derived from a current, one could naively drop terms
like 1

2∂
2
xh

2 (because it can be written as ∂xj) or h∂2
xh (because it is not shift invariant). However,

G could contain a term proportional to (∂xh)2, namely, the sum of both terms. This may be
innocuous in the presence of generic scale invariance, but not in the presence of instabilities;
therefore, a systematic method is needed to classify the terms in the equation.

2. Theory

2.1. Nonconserved dynamics

We proceed by studying separately systems with nonconserved and conserved dynamics. As
in [1, 13], we assume that the dynamics of the systems is relaxational in a generalized sense
(namely, with a nonconstant mobility). Although this assumption is not strictly necessary, it
greatly clarifies the interpretation of the coefficients of the nonlinear terms below. Hence,

∂th = −�({h})δF({h})
δh

, (1)

where � and F are a function and a functional of the height field and its spatial derivatives,
respectively. Hereafter, we restrict {h} to be {h, ∂xh, ∂2

xh, ∂3
xh}.5

If the relaxation rate � is a constant, symmetry under global shifts forbids any explicit
dependence of F on h; otherwise, what needs to be independent of h is the right-hand side of
equation (1). Consequently, one can write (note our difference in sign convention from [1]):

F(h, ∂xh, ∂2
xh, ∂3

xh) = e−shF1(∂xh, ∂2
xh, ∂3

xh), (2)

�(h, ∂xh, ∂2
xh, ∂3

xh) = esh�1(∂xh, ∂2
xh, ∂3

xh), (3)

where the height scale s is the generator of the group of symmetry under translations in h, and we
have written F({h}) = ∫

F({h}) dx. We have to emphasize that F({h}) will be a proper Lyapunov

5 Dependence on higher order derivatives, e.g. ∂4
xh, only changes β and K in equation (6), but modifies neither the

nonlinear terms nor the general discussion.
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functional for equation (1)—in the sense that dynamics minimizes F({h})—only provided the
nonconstant mobility �({h}) is a positive definite function. This will not be the case for many of
the systems we study, in which the mobility depends on the height field and its derivatives in a
way that does not necessarily preserve positiveness (see equation (4) below); such a dependence
will in general break the global relaxational character of the dynamics described by (1).

Close to the instability threshold, we can assume that local slopes are small, |∂xh| � 1, and
we can expand �1 and F1 in power series. Therefore,

�1 =
∑
i,j,k

γ(ijk)(∂xh)i(∂2
xh)j(∂3

xh)k, (4)

F1 =
∑
i,j,k

f (ijk)(∂xh)i(∂2
xh)j(∂3

xh)k. (5)

Using these expansions in equation (1), we obtain a list of terms compatible with the shift
symmetry. As mentioned above, in general this dependence eliminates the relaxational character
of the dynamics, with the result that the formal Lyapunov functional no longer governs the
asymptotic behaviour of the system. The resulting equations are quite involved. Hence, we
first consider the linear terms. We will include the most relevant nonlinear terms later. Thus,
we find

∂th = V⊥ + V‖∂xh + ν∂2
xh + β∂3

xh − K∂4
xh + · · · , (6)

where

V⊥ = sγf, V‖ = sγ(100)f, (7)

ν = sγ(010)f + 2sγf (010) + 2γf (200), (8)

β = sγ(001)f, K = −2γf (020) + 2γf (101), (9)

and γ ≡ γ(000), f ≡ f (000). The real part of the dispersion relation for single mode solutions
of equation (6), h(x, t) ∼ exp [ωqt + ikx], reads Re(ωq) = −νq2 − Kq4; consequently, a
morphological instability arises if ν < 0 and K > 0. The characteristic length scale for the
ensuing pattern will be roughly given by the wavelength of the mode maximizing ωq, namely,
l = 2π

√
2K/|ν|. When nonlinear terms are incorporated into equation (6), this length scale can

grow giving rise to a coarsening process [15], that will help us to identify which nonlinear
contributions are actually playing a role in the full dynamics. Close to the instability threshold
ν = 0, equation (8) can be written as ν = −2γf (200)(s − sc)/sc ≡ −2γf (200)ε, with ε a small
dimensionless parameter, and sc = −2γf (200)/(γ(010)f + 2γf (010)). Note that the length scale
l diverges as ε−1/2 in the limit ε → 0, as K is s-independent, according to equation (9).
Consequently, we can rescale length, time and height as x → x/l, t → t/ lz and h → h/lα,
and, using the multiple scales method, look for the most relevant nonlinear term. As in the theory
of dynamic scaling [9], we find that this term is the celebrated Kardar–Parisi–Zhang (KPZ)
nonlinearity λ(s, s2)(∂xh)2, with λ(s, s2) ≡ sfγ(200) − s2γf (010) − sγf (200), where the notation
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stresses the polynomial dependence of λ on s. The KPZ interface equation is a paradigm of
non-equilibrium systems, so that its appearance within our present (formally, ‘equilibrium’)
formulation may seem paradoxical. However, as first shown by [1], thanks to the dependence
of the generalized mobility on the height field, it is indeed possible to derive explicitly the KPZ
equation for simple choices of F1 and �1 in (2) and (3). For instance, if

�1 = γ + γ(200)(∂xh)2, F1 = f + f (200)(∂xh)2 + f (020)(∂2
xh)

2
,

one obtains the KPZ equation in the form

∂th = sγf + 2γf (200)(∂2
xh) − 2γf (020)(∂4

xh) + (sfγ(200) − sγf (200))(∂xh)2, (10)

where we have dropped higher order nonlinearities that are irrelevant in the hydrodynamic limit
but that otherwise follow from the formally relaxational form of equation (1). However, as long
as we do not keep all terms that follow from �1 and F1, the variational character is broken,
as expected by the fact that the Kuramoto–Sivashinsky (KS) equation, for instance, is known
to exhibit spatiotemporal chaos, and this would contradict the fact that the equation would be
obtained from a variational principle.

For many experimental situations, however, this limit may lie beyond practical reach [16, 17],
in which case the final structure depends crucially on subdominant terms that must be included
in the evolution equation in order to capture essential features of the original nonlinear system.
This can be done within our multiple scale framework: for instance, the ratio between (∂xh)2 and
(∂xh)(∂2

xh) scales as
(∂xh)2

(∂xh)(∂2
xh)

∼ l,

so that, in the limit l → ∞, the former term dominates the latter. This calculation can be
reproduced for every term resulting in the series expansion, with the following results for the
first correcting terms, in order of relevance:

λ110(1, s, s2)(∂xh)(∂2
xh), λ300(1, s, s2)(∂xh)3, λ2(1, s)∂2

x(∂xh)2,

λ101(s)(∂xh)(∂3
xh), λ210(1, s, s2)(∂xh)2(∂2

xh), λ400(s, s
2)(∂xh)4, (11)

where

λ110 = sfγ(1,1,0) + 2sγ(1,0,0)f (0,1,0) + 2γ(1,0,0)f (2,0,0) + 3sγf (1,1,0) + 3s2γf (0,0,1) + 6γf (3,0,0), (12)

λ300 = s(−sγ(1,0,0)f (0,1,0) − γ(1,0,0)f (2,0,0) − s2γf (0,0,1) − sγf (1,1,0) − 2γf (3,0,0) + γ(3,0,0)f),

(13)

λ101 = 5sγf (0,2,0)/2 − 5sγf (1,0,1)/2 + sγ(1,0,1)f − sγ(0,2,0)f/2 − sγ(0,1,0)f (0,1,0) − γ(0,1,0)f (2,0,0)

(14)

λ2 = sγf (0,2,0)/2 − 3sγf (1,0,1)/2 + 3sγ(0,2,0)f/2 + sγ(0,1,0)f (0,1,0) + γ(0,1,0)f (2,0,0)

λ210 = −2s2[f (0,1,0)γ(0,1,0) − 3f (0,0,1)γ(1,0,0) + γ(2f (0,2,0) − 6f (1,0,1))] + 4f (2,0,0)γ(2,0,0)

+s(6γ(1,0,0)f (1,1,0) − 2γ(0,1,0)f (2,0,0) + 4f (0,1,0)γ(2,0,0)

+8γf (2,1,0) + 2fγ(2,1,0)) + 12γ(1,0,0)f (3,0,0) + 24γf (4,0,0), (15)
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λ400 = s(−sγ(2,0,0)f (0,1,0) − γ(2,0,0)f (2,0,0) − s2γ(1,0,0)f (0,0,1) − sγ(1,0,0)f (1,1,0)

−2γ(1,0,0)f (3,0,0) − s2γf (1,0,1) − sγf (2,1,0) − 3γf (4,0,0) + fγ(4,0,0)), (16)

and we have used that (∂2
xh)2 = [

∂2
x(∂xh)2 − ∂xh∂3

xh
]
/2.

An example is provided by the so-called dissipation-modified Korteweg–de Vries equation,

∂th = ν∂2
xh + β∂3

xh − K∂4
xh + λ(∂xh)2 + λ110∂

2
xh∂xh, (17)

proposed [18] as the generic amplitude equation for weakly nonlinear waves, appearing in
contexts ranging from Marangoni or Rayleigh convection to periodic waves in binary fluid
mixtures (see references in [18]). In our surface context, it describes for example the dynamics
of (1D) ion-sputtered interfaces under oblique incidence, see references in [19]. In general, while
the term (∂xh)2 dominates asymptotically, it interrupts coarsening [20, 21]. This is actually the
case for equation (17). Consequently, eventual coarsening of the pattern must be due to other
terms in equation (11). For instance, if one adds the λ2 term in equation (11) to the right-hand
side of equation (17), (interrupted) coarsening indeed occurs [22]. Further details and examples
are provided below in section 3.1.

2.2. Conserved dynamics

In the case of conserved dynamics for the interface, we can write [1]

∂th = ∂x

(
�({h})∂x

δF({h})
δh

− jnr

)
. (18)

The assumption of (generalized) relaxational dynamics is now stronger than in the nonconserved
case, the operator between � and δF/δh constrains the form of the possible terms in a multiple
scale expansion (see below). In order to make the problem as general as possible, we need
to include the non-relaxational current, jnr, in the right hand side of equation (18). The
origin of this type of current has been widely discussed for example in the context of mound
formation in homoepitaxial growth [5, 23]. Assuming that jnr depends only on derivatives of h in
the form

jnr =
∑
i,j,k

J (ijk)(∂xh)i(∂2
xh)j(∂3

xh)k, (19)

and using equation (4)–(5) as above, equation (18) becomes

∂th = νc∂2
xh + βc∂3

xh − Kc∂4
xh + λc

110(∂xh)(∂2
xh) + λc

2∂
2
x(∂xh)2 + λc

210(∂xh)2(∂2
xh), (20)

where all the coefficients in equation (20) depend on γ(ijk), f (ijk) and J(ijk). Thus,

νc = s2γf − J(1,0,0), (21)

βc = −J(0,1,0), (22)
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Kc = J(0,0,1) + 2sγf (0,1,0) + γf (2,0,0), (23)

λc
110 = 2s2γ(1,0,0)f − J(2,0,0), (24)

λc
2 = s(sγ(0,1,0)f + 4sγf (0,1,0) + 2γf (2,0,0))/2, (25)

λc
210 = s2(−3sγf (0,1,0) − 3γf (2,0,0)/2 + 3γ(2,0,0)f/2). (26)

An interesting result derived from the above equations is that, whenever jnr = 0, the
condition for unstable growth reads ε ∝ s2, so that power counting (with l ∼ ε−1/2, t ∼ lz and
h ∼ lα) provides terms which give a divergent scaling of the local slope, namely, |∂xh| scales
with a positive power of l. This means that the small-slope approximation breaks down and the
expansions above are no longer valid, in analogy, e.g. to the so-called superrough scaling in
the context of surface kinetic roughening [9], occurring specifically in the case of conserved
dynamics. In these conditions, detailed knowledge of system characteristics is needed and a
strongly nonlinear analysis must be performed in order to obtain the correct interface equation,
as in [24].

3. Results

Thus far, we have derived the most general and relevant interface equations compatible with
the shift symmetry. We proceed by testing the validity of the theory and, more importantly,
its capability to identify the right terms of the evolution equation in each situation, based on
experimental or theoretical evidence, through our procedure that accounts for conservation,
symmetries and coarsening in systems where a surface instability is present. To illustrate this
method of analysis, we discuss several 1D examples of systems—with length scales ranging from
microscopic to macroscopic—for each type of dynamics, both nonconserved and conserved.
Moreover, some of the examples correspond to isotropic 2D surfaces.

3.1. Application to 1D systems

To begin with, we consider nonconserved growth of nanometric sized patterns by IBS. In this
technique, the surface of a solid target is isotropically bombarded with a flux of energetic
ions. Experimentally, a typical length scale develops at early times and is seen to grow later
(coarsening). The system is not conserved due to the mass loss as a consequence of the
bombarding process. Finally, the experimentally obtained surfaces do not develop steep slopes
(so a small slope approximation is well justified). With these ingredients in mind, our theory
predicts that the evolution equation for these systems must contain the term proportional to λ

due to the nonconserved nature of the experiment and terms λ2, λ101 and λ210 due to the presence
of coarsening. Hence,

∂th = ν(∂2
xh) − K(∂4

xh) + λ(∂xh)2 + λ2∂
2
x(∂

2
xh) + λ101(∂xh)(∂3

xh) + λ210(∂xh)2(∂2
xh). (27)
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Consistent with the above expectation, a hydrodynamic theory of erosion has been reported
[20] which couples a fast field describing the density of mobile particles at the surface with
a slow one which corresponds to the observed experimental surface. This theory allows us to
relate experimental magnitudes to the corresponding equation parameters and, precisely, leads
to equation (27).

At intermediate length scales (microns to millimetres), we can take growth by ECD [2],
where the surface of an aggregate grows by incorporation of cations from a solution. The
assumption of locality above is reasonable for a small sticking probability, i.e. if the cations do
not attach to the first visited surface site but are, rather, allowed to diffuse further until aggregation
occurs. The cation flux at any surface point is isotropic, hence the system is reflection (x → −x)
symmetric. Finally, the characteristic length of the unstable structures observed experimentally
does not grow in time, i.e. there is no coarsening. These data suggest that surface dynamics for
ECD is described by the KS equation, namely, V‖ = β = 0, due to the reflection symmetry, and
that all the terms in equations (11) are negligible, compatible with the absence of coarsening.
The same scenario is observed in surface growth by CVD [3]. Indeed, the KS equation has been
derived explicitly for both ECD and CVD from constitutive equations, in agreement with our
results [16].

Our final example of nonconserved interface growth is taken from surface instabilities in
fluids due to surface tension gradients (see [25] for a comprehensive reference), a standard
example being provided by Marangoni–Bénard convection [26]. In this system, a thin fluid layer
is subject to an external transverse temperature gradient, there being nonconserved fluxes that
implement the dissipation in the system. When heating from below, a convective instability sets
in whose spatial characteristics do not coarsen in time. This instability leads to travelling waves
on the free surface of the system which break the x → −x reflection symmetry. An asymptotic
study of the corresponding hydrodynamic problem leads to the equation [25, 26]

∂th = ν(∂2
xh) − K(∂4

xh) + λ(∂xh)2 + λ110(∂xh)(∂2
xh), (28)

in agreement with the general expectation from our approach under the constraints considered.
As an important example of conserved interface dynamics at nanometric scales, we consider

the growth by MBE of surfaces that are vicinal to a high symmetry crystalline orientation [27].
In this type of experiments, the molecules incorporated from the chamber arrive isotropically at
the surface (and hence reflection symmetry is fulfilled), the relevant 1D interface being given by
the location of the step separating one terrace from an adjacent one. Under conditions in which
the rate of adatom evaporation from the terrace is vanishingly small, the dynamics is conserved.
It is precisely in this case that the small slope approximation has been seen to break down [24], as
for equation (18) for jnr = 0. However, if adatom desorption occurs on the terraces, the system
becomes nonconserved and the relevant interfacial description is provided by the KS equation
[28], as expected from our above arguments.

Finally, an example of conserved interface growth in a macroscopic system is provided by
the formation of macroscopic ripples in aeolian sand dunes [12]. In this case, the wind direction
breaks the reflection symmetry and, as the surface dynamics at the sand bed is conserved due
to the conservation of the number of sand grains, one would expect equation (20) to hold as the
relevant continuum equation. Indeed, this has been shown to be the case within the so-called
hydrodynamic approach to pattern formation in these systems [12].

The results in this section, as well as some other experimental systems that can be analysed
along similar lines, are summarized in table 1, where we provide references to the experimental

New Journal of Physics 9 (2007) 102 (http://www.njp.org/)

http://www.njp.org/


9 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Table 1. Physical examples. Nonconserved (NC), conserved (C), strongly-
nonlinear (SN). RS means reflection symmetry (x → −x), and ‘Coars.’
is coarsening.

System Type RS Coars. Nonlinearities Exp. Theor.

ECD/CVD NC Yes No λ [29] [16]
IBS NC Yes Yes λ, λ2,101, 210 [30] [20]
Thin films NC Yes Yes λ, λ2 [31] [32]
Fluid waves NC No No λ, λ110 [25] [25]
MBE (singular) C Yes Yes λc

210 [27] [5]
MBE (vicinal) C Yes No SN [27] [24]
Sand ripples C No Yes λc

2, 110, 210 [33] [6]
Vortex ripples C Yes Yes SN [34] [7]

observations and to theoretical derivations compatible with our conclusions. We provide the
reader with broader references when connection with specific experiments is less unambiguous.

3.2. Application to novel experiments

The examples in the last subsection show how, based on general considerations, one can
construct a general equation in good agreement with current specific theories. Notwithstanding,
we want to emphasize the wide range of generality of our method by applying it to novel
experiments on ion plasma erosion. Thus, a Si(100) wafer (2 inches diameter) was immersed in
a magnetically confined argon plasma at a pressure of 5 × 10−3 mbar. Under these conditions
the flux of incoming ions on the central part of the wafer is mainly isotropic. The only parameter
changed in the experiments was the immersion (i.e. sputtering) time. After the sputtering
process, the central part of the wafer was analysed by atomic force microscopy operating
in tapping mode with a silicon cantilever. We plot two snapshots of the surface taken at 3 h
(figure 2(a)) and 6 h (figure 2(b)). Moreover, we have measured a nonzero coarsening exponent
n = 0.53 ± 0.02 in � ∼ tn, � being the mean cell diameter. Given the isotropy of the system,
we can generalize our results above to this case. Out of the most relevant subdominant terms in
equation (11) (once generalized to two dimensions) compatible with isotropy, λ2 [21, 32] and
λ210 [35, 36] are known in the literature to induce coarsening behaviour when taken in combination
with λ100 and a KS dispersion relation. Extensive numerical simulations [22] show that the term
λ101 also induces coarsening, but the term λ400 does not. Hence, thus far we are left with an
equation of the following form:

∂th = −ν∇2h − K∇4h + λ(∇h)2 + λ2∇2(∇h)2 + λ101∇h · ∇(∇2h) + λ210(∇h)2(∇2h). (29)

From the experimental data we can extract some quantitative information about the coefficients
in equation (29). Thus, a closer inspection of the experimental surface cross-section (figure 1)
reveals that cell shape can be approximated by

(ν2/Kλ210)
1/2 log(cosh [(2K/ν)1/2x]), (30)
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Figure 1. (a) Cross-section of figure 2(a) morphologies, both numerical (lower
curve) obtained with ν = 1, K = 0.11, λ210 = 0.052 and λ = −0.05 and
experimental (upper curve). Dashed line stands for a fit of the experimental cell
shape to equation (30), which allows us to obtain the parameters used in the
numerical simulations. Dotted line is a translation of the dashed line to stress
the self-consistency of the parameter extraction. (b) Fit to equation (30) of seven
valleys extracted from top curve in figure 1(a). Red solid line stands for the dashed
and dotted lines in figure 1(a). (c) Fit to equation (30) of eight valleys extracted
from bottom curve in figure 1(a). Blue solid line stands for the dashed and dotted
lines in figure 1(a).

which is a solution of equation (29) in 1D with λ2 = λ101 = 0 (and, therefore, approximately
valid for large cells in the isotropic 2D case). This suggests that λ2 and λ101 are negligible, since
large values for them would rather lead to parabolic cells [20].

Consequently, equation (29) reduces effectively to

∂th = −ν∇2h − K∇4h + λ(∇h)2 + λ101∇h · ∇(∇2h), (31)

the so-called convective Cahn–Hilliard equation [36]. For short times (linear regime), the typical
length scale allows determination of the K/ν value, while the remaining parameters are estimated
by trial and error in order to improve the resemblance to the experimental morphologies.
Results of such numerical simulations are compared with experiments in figure 2 showing an
excellent agreement between them. Thus, the small panels (upper insets) display two snapshots
of the numerical integration of equation (31) and the large panels the equivalent results from
experiments.

4. Discussion and conclusions

Although table 1 is not meant to be exhaustive, it leads to some general observations. As
anticipated above, the occurrence of coarsening is an important property in guiding the
identification of the appropriate nonlinear terms of a given system. This phenomenon was
associated with the seeming inability to describe patterns that are stable both in wavelength
and amplitude by means of local height equations [7, 15]. However, there may exist now
counterexamples [20, 21] for this shortcoming, at least for an order range that is much larger
than the single cell size. As a consequence, the task of determining the necessary and sufficient

New Journal of Physics 9 (2007) 102 (http://www.njp.org/)

http://www.njp.org/


11 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

(a) (b)

Figure 2. (a) Ion plasma eroded Si(100) at te = 3 h. Inset: numerical simulation
of equation (31) at ts = 35 with ν = 1, K = 0.11, λ210 = 0.052 and λ = −0.05.

The lateral size of the image is 50 µm. (b) Ion plasma eroded Si(100) at te = 6 h.
Inset: simulation as in (a) for ts = 70. The lateral size of the image is 50 µm.

conditions for coarsening [15], as well as the possible values (universality classes) for the
coarsening exponent n, remains to be completed, lying outside the scope of this paper. Note
that, once coarsening occurs, the fact that it interrupts [15] or not, and the value of exponent n,
both depend on the type of leading and subleading nonlinearities that appear in the evolution
equation. Hence, these provide additional criteria in order to propose a continuum description
for a given physical system; nevertheless it can be the case that two different subleading terms
lead to the same coarsening exponent value, such as in the case of λ2 and λ210, both of them
yielding n = 1/2 [35, 37]. Moreover, system dimensionality and the (possibly related) relevance
of noise may influence the value of the coarsening exponent in the corresponding universality
classes.

In summary, we have provided a systematic method to obtain and classify the relevant
nonlinear terms in interfacial systems which present morphological instabilities and the shift
symmetry. Besides, we have applied our method to some reported systems in the literature as
well as to novel experiments on ion plasma erosion performed for this purpose.
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[12] Csahók Z, Misbah C and Valance A 1999 Physica D 128 87
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