
Using ABC2 in the RoboCup Domain

Vicente M atellan , Daniel Borrajo, and Camino Fernndez

e-mail: {vrno.dborrajo.camino}l.!!ia.uc3rn.es
Departmento de Informatica

Universidad Carlos m de Madrid
28911, Leganes, Espaiia

Abstract. This paper presents an architecture for the control of autono­
mus agents that allows explicit cooperation among them. The structure
of the software agents controlling the robots is based on a general pur­
pose multi-agent architecture based on a two level approach. One level is
composed of reactive skills capable of achieving simple actions by their
own. The other is based on an agenda used as an opportunistic plan­
ning mechanism to compound, activate and coordinate the basic skills.
This agenda handles actions both from the internal goals of the robot or
from other robots. This paper describes the work already accomplished,
as well as the issues arising from the implementation of the architecture
and its use in the RoboCup domain.

1 Introduction

The aim of this paper is to present the multi-agent architecture we are developing
at University Carlos Ill.. This architecture (named ABC2) is based on pre­
defined skills that each robot composes in an opportunistic way to achieve an
intelligent behavior. The way these basic actions can be combined to get more
sophisticated behaviors is also pre-defined. This means that we are not using
classical search-based planning to combine the actions. We use instead an agenda
to keep a list of pending actions, where each action can require (or not) pre­
defined simpler actions.

Actions can be inserted into the agenda by other actions, by events from the
environment or by requests received from other robots. Similarly, actions can
be accomplished as a result of the execution of other actions, by another robot
actions or simply by changes in the world. Let us think, for instance, in an action
of the RoboCup [4] domain, like get-the-ball. The robot can get the ball, either
by its own actions (movements), asking another robot to pass the ball, or by any
other event in the world (the opponent accidentally kicked the ball towards the
robot).

For the definition of the skills, different types of controllers can be used, such
as fuzzy controllers, mathematical calculus, or learned behaviors. For instance,
we will use our previously developed software for building fuzzy behaviors. The
cooperative part of this architecture is theoretically based on the Speech Acts
theories [3].

1

Cita bibliográfica
Published in: RoboCup-97: Robot Soccer World Cup I. Springer, 1998. (Lecture notes in computer sciences, vol. 1395), p. 475-482.

476

In this area, our contribution will be in two aspects. First, we will extend
these ideas to cope both with a highly dynamic environment (robotic soccer) and
with a real world environment (in the sense of a sensors and actuators approach).
Second, we will apply fuzzy logic both to define basic controllers and to write
the heuristics that will control the robots.

We are not worried, by now, about any kind of learning, neither we do not
try to figure out what the other team is trying to do, or doing. We also think
that any kind of search-based planning is unuseful in such a highly dynamic
environment.

In the next section the architecture is presented in more depth, discussing the
skills that will be used. Section 3 describes the execution of the whole system,
specially the role of the agenda in the control of the robot actions. The last
section describes the current state of system development, and future work.

2 Description of the architecture

We have just introduced the goals of the architecture: allow explicit cooperation
among the team mates, use opportunistic planning to combine robot actions,
and use pre-defined basic reactive skills.

This section presents the general architecture we are developing, which is
shown in Figure 1. This architecture is made up of different parts that will be
explained in the following subsections.

2.1 Skills

The box labelled as Skills represents a set of simple and reactive controllers.
These controllers implement pre-defined behaviors that the robot can accom­
plish. In Figure 1 some of these behaviors are shown.

The popularity reached by Rodney Brooks' work on the subsumption archi­
tecture [2] increased the interest in systems based on the composition of reactive
behaviors. However, the idea of achieving intelligent behavior in robots using a
bottom-up approach was not new. There had been many other work in the liter­
ature using the same approach, such as V. Braitenberg work [1]; neural networks
based behaviors; or the most classical mathematical controllers. We have used
fuzzy controllers to implement our behaviors. The main reason for this election
was our previous experience using this controllers. We already had general fuzzy
reasoning libraries so that we can easily design new controllers.

The design of the behaviors bas been done heuristically. This means that
we have chosen the rules by hand. However, many "automatic" methods for
designing this type of rules can be found in the literature, ranging from the
mathematical methods to neural networks or genetic algorithms. For instance,
we have obtained good results using the last method [5]. However, most of these
methods have been designed to learn in well-defined environments, with few
dynamic objects, and they are highly time consuming. Besides, most of them
do not bother about the multi-agent aspects of the soccer environment, though

2

Agenda

Act-l
Act-2

Fuzzy Rule 1
Fuzzy Rule 2

••••

LOOK FOR BALL

477

Info-l: <value>

Info-2: <value>

••••

••••

::.·.oii;~~·R~b·~.is·:: .

:: ~.~~~~~~.~.~~ .. --.. > ::::".--~~?~~~.~-:,
Communications

<~
:>

Yellow Pages

Robot-I: Skill-l-J
Skill-t-2

Robot-2: Skilt-2-t

••••

Fig. 1. Architecture of the Robots.

there are some new interesting work in this area [8]. We have decided to used
hand-made fuzzy behaviors, because we can easily design them using high level
rules, they perform well in the presence of uncertainty, and they can cope with
multi-agent problems [6].

2.2 Yellow Pages

The repository named Yellow Pages in Figure 1 represents the information that
an agent has about the other agents that form its team. This information basi­
cally consists of a table made by the name of its team mates, and the name of
the skills they can accomplish. These skills will be used in the same way as its
own skills.

A skill can be considered as an abstraction of an action that will be accessible
to other team-mates. In fact, this means that we are considering that the robot

3

478

has met a-knowledge about itself (through its skills definition) and its team-mates
(using the yellow pages).

2.3 Information

Classical reactive behaviors compute the outputs for the actuators of an agent
directly from the raw numerical data perceived by its sensors. In other environ­
ments, like the RoboCup simulator, the inputs are not numerical data obtained
from the sensors, but a mixture of linguistic and numerical information. In order
to be able to handle this information we will use a reduced language that allows
the agent to define the inputs of the skills and to keep significant information
about the current state of the world. So, the skills previously defined use this
language to represent the information used in the robot inputs. As an example,
each agent keeps information about the distance and orientation to the goal.

2.4 Communications

One of the distinctive capabilities of agents is their ability to communicate with
other agents. In order to be able to manage the intrinsic complexity of the
communication (protocols, queues, etc.) we provide our agents with a specialized
entity to cope with it.

Besides, in the RoboCup simulator [7], communication happens among two
different agents, but also between an agent and its sensors and actuators. And
both types of communication use the same channel in this case (a socket between
the agent and the simulator). So, the entity in charge of the communication with
the RoboCup simulator will have to be able to distinguish the different types of
messages.

2.5 The Agenda

The Agenda is a dynamic structure that contains items named acts. These acts
represent the potential actions that the robot is considering at a moment. We
have considered four kinds of acts:

- REQUESTED, to indicate that the action in the argument of the act has been
requested by another robot in order to be performed by this one.

- REQUEST, to ask another agent a particular action.
- INFORMED, presenting a piece of information sent by other robot.
- SUPPLY _ INFO, to point out that some information has to be sent to another

robot.
- DO, that represent potential skills that the robot can perform by itself. In

the next section, the fundamentals of these behaviors are presented.

4

479

2.6 Heuristics

Heuristics decide at any time what act to select from the agenda. We have used
fuzzy rules for the current implementation. The input variables of these rules
can be, for instance:

- The priority of the skill associated to an act.
- The time that an act has been in the agenda.
- Number of acts that require an act to be evaluated.
- Information from the environment.
- The type of agent (defender, forward, etc.).

The output will be the weight of each act in the agenda. Once the acts have
been weighted, the eligible act to be executed will be the one with the highest
weight.

2.7 Agent Model

In summary, from the point of view of our model, the robot can be considered
as a knowledge structure defined as a set of statical and dynamical attributes.
Among the static Olles we can quote the name of the robot (N), the list of
its skills (S), the knowledge about its team-mates names and skills, (Y), the
language to represent the information about the current state of the world (L),
and the set of heuristic rules that governs the behavior of the agent (H). So, an
agent (A) can be represented as the tuple: A =< N, S, Y, L, H >. 1n the same
way, the team of agents can be represented as < N, S, Y, L, If > +, given that a
team is made up of at least one agent.

Among the dynamic information that defines the current situation of an
agent, we can cite the agenda (Ag) that contains the acts currently under con­
sideration, the queues of messages (Q) received or pending to be sent and the
information (1) about the current state of the world, defined using the language
L. So, an agent in a given moment is defined by < A, Ag, I, Q >, and the situa­
tion of the whole team as < A, Ag , I, Q

3 System Execution

The definition of a particular skill (top right box on figure 2) consists first on
the design and implementation of the controller that performs the desired action
(this is represented as the function Exec'ute in the figure). Then, a condition for
triggering the controller (named Ready in the figure) is established in order to
know if the controller can be executed. In the case of the skill being evaluated but
not being able to execute its associated controller (the Ready function returns
a FALSE value), the skill provides a list of skills that can make it "executable".
This list has been named Needs in the figure. The remaining slot of the box is
the Priority assigned to the behavior. This value can be used in the heuristic
rules to select acts from the agenda.

5

cGccMS
: ""

" " " "
Lookjoc Goal

480

"

• Needs: GeCBall
Look_for_ Goal

• Priority

• Ready()
: '\-:-.

" "
(Goal.Pos.known) & (Ball.Dist<2)

" " " ,
• Execute()

send (kick pow dir)

DO

• Skill: Kick_Goal

• Time: 1
• Called:
• Expanded: True

• Evaluate()
//'-______________ -J/

,;,; "I'
A .. /
G DO : DO I DO / / /

E GeCB~ll: Lookjor~Goal: Kick_Goal /
N,","'
~ 2 1 False: 2 1 False 1 1 True "' "'
~L_ __________________ ~ ______ _J."'

Fig. 2. Relations among the skills and the agenda.

.. ...

Once the skills of the robot have been designed, (in this example we will
consider only the four skills that appear in the top-left tree of figure 2), the
heuristics have to be defined. Let us suppose that we settle up a simple heuristic:
"Select from the agenda the act whose Priority value is the highest from the ones
that are Ready". Let us also suppose that the information that the robot has
about the world is the raw data that it gets from the RoboCup simulator and
that it does not concern other team-mates skills. So, in this environment, we are
considering only acts of type DO.

In such a simplified environment, the robot is only able to look for the ball
and to kick it towards the opponent goal, according to the Kick_Goal skill. In
order to do that, the robot has to be "stimulated" to do it. This means that the
robot has to be initialized to pursue the goal Kick_Goal. This initialization is
performed by inserting the act [DO: Kick_Goal] into the agenda.

The components of an act (as shown in Figure 2) are: the type of the act
(DO, REQUESTED, etc.); the name of the associated skill; the counters Called,

6

481

that indicate the number of acts that require it, and Time that keeps the time
when the act was inserted into the agenda; the switch Expanded, that indicates
if the needs of the associated skill have been added to the agenda or not; and the
function Evaluate, that indicates what has to be done when the act is selected
(for example, execute its associated skill if the type of the act is DO).

The way the control cycle works is as follows: first, the applicable acts are
selected. This is achieved by consulting the Ready function of the skill associ­
ated to each DO act. If the act is not applicable, then the Expanded switch is
checked. If it has not been expanded its needs are inserted into the agenda like
[DO: <need>] acts. This addition checks if that act had been previously added
to the agenda by other acts. If the act already was in the agenda, the counter
Called of the act is increased. Otherwise, a new act is added to the agenda.
On the other hand, if the act is applicable and had been expanded, the counter
Called is decreased. At the same time that the applicable acts are selected, the
acts whose Called counter is equal to zero (no other act requires them) are re­
moved from the agenda. Once the applicable acts have been selected, the domain
heuristics are applied to select the one that will be evaluated.

The state of the agenda in Figure 2 shows that the act [DO: Kick_Goal]
was inserted in the agenda at time 1 and it has been expanded. As a result
of its expansion, the acts [DO: Look_for _Goal] and [DO: Get_Ball] were in­
serted at time 2. These acts have not been expanded, and are called by the act
[DO: Kick_Goal]. This means that the agenda shows both the current state of
the agent goals and part of the history of its activity.

The treatment of the other types of acts will be similar. Only the evaluation of
these acts will be different. For instance, if an act [REQUESTED: Look_f or _ Goal]
is evaluated, it can result in the evaluation of the skill Look_for _Goal and the
insertion of its result as a [SUPPLY _INFO: <result>] act into the agenda.

4 Conclusion and Further Works

At Cm'los III University we had been using preliminary versions of ABC2 on
our Khepera mini-robots [6]. As we had experience on designing reactive low
level behaviors, we expected the main problem to be the design of the complex
behaviors. So we began to work with the RoboCup simulator and the software
we had previously built, which implements fuzzy controllers and the main part
of the agenda-based control architecture, and we did not find many problems
integrating both softwares.

The architecture was tested in the RoboCup'97 simulation track. The team
lost its first match against CMUnited (9-1). It beat RMKnights (10-0) and lost
against one of the teams of Kinki Universtiy.

The first conclusion we can get from these results is that if a team is better
than another one in some particular tasks, then the results are really large. This
is due to the fact that the competition is held on a simulator. So, we should try
to focus on the issues that made a team better and not ill the numerical results.

7

482

The first one was really a well tuned team. They had been working on this
specific domain for a long time [8], and they had wen-performing players and
a nice global strategy. In summary, they actually have a good team. The only
objection from our point of view is that they used a very specific approach. The
second one, RMKnights, was also testing a general architecture in this domain.
Its main drawback was that its players were too slow. We have less information
about the third one, but we consider that the main reason for its victory was
their control of the stamina parameter. This made them able to move faster in
some periods of the match.

Now we are mainly working in two aspects of our architecture: Refining
the basic behaviors and improving the cooperation mechanisms in order to use
different attack strategies. In the first aspect we are studying, for instance, how
to improve the basic skills using some kind of mathematical prediction about
the robot moments (to know its position at any moment), the ball moments (to
predict its position), etc.

References

1. Valentino Braitenberg. Vehicles. Experiments in Synthetic Psychology. MIT Press,
Cambridge, MA (USA), 1984.

2. Rodney A. Brooks. A robust layered control system for a mobile robot.' IEEE Jour­
nal of Robotics and Automation, RA-2(1), 1986.

3. Philip R. Cohen and C. Raymond Perrault. Elements of a plan-based theory of
speech acts. Cognitive Science, RA-2(3):177-212, 1986.

4. Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi. Osawa.
Robocup: The robot world cup initiative. In Proceedings of the IJCAI-95 Workshop
on Entertainment and AI/Life, pages 19-24, 1995.

5. Vicente Matellan, Jose Manuel Molina, and Camino Fernandez. Learning fuzzy be­
haviors for autonomous robots. In Fourth European Workshop on Learning Robots,
Karlsruhe, Germany, December 1995.

6. Vicente Matellan, Jose Manuel Molina, and Lorenzo Sommaruga. Fuzzy cooperation
of autonomous robots. In Proceedings of the Fourth International Symposium on
Intelligent Robotic Systems, Lisboa, Portugal, July 1996.

7. Itsuki Noda. Soccer server: A simulator of robocup. In Proceedings of AI Sympo­
sium'95. Japanese Society for Artificial Intelligence, December 1995.

8. Peter Stone and Manuela Veloso. Towards collaborative and adversariallearning: A
case study in robotic soccer. Technical report, School of Computer Science. CMU­
CS-95-207. Carnegie Mellon University, 1995.

8

