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A real valued neural network (RVNN) based energy detector (ED) is proposed and analyzed for cognitive radio (CR) application.
This was developed using a known two-layered RVNNmodel to estimate the model coefficients of an autoregressive (AR) system.
By using appropriate modules and a well-designed detector, the power spectral density (PSD) of the AR system transfer function
was estimated and subsequent receiver operating characteristic (ROC) curves of the detector generated and analyzed. A high
detection performance with low false alarm rate was observed for varying signal to noise ratio (SNR), sample number, and model
order conditions. The proposed RVNN based ED was then compared to the simple periodogram (SP), Welch periodogram (WP),
multitaper (MT), Yule-Walker (YW), Burg (BG), and covariance (CV) based ED techniques. The proposed detector showed better
performance than the SP, WP, and MT while providing better false alarm performance than the YW, BG, and CV. Data provided
here support the effectiveness of the proposed RVNN based ED for CR application.

1. Introduction

The energy detector (ED) has been widely proposed for
spectrum sensing (SS) in cognitive radio (CR) owing to
its design simplicity, fast sensing periodicity, and ability to
detect primary user (PU) signal without a priori knowledge
of its waveform structure (except for the knowledge of noise
statistics) [1–11]. However, the demand for fast sensing and
high detection accuracy in CR has revealed particular limi-
tations with the ED. In fast sensing, the ED tends to obtain
fewer samples for spectral estimation which leads to reduced
resolution and invariably poor detection performance [12–
15]. Also, it is known that the ED performs poorly in low
signal to noise ratio (SNR) conditions and fluctuating noise
environments [12–14] which results in increased false alarm
rate. These challenges have compelled the need for new
improved ED techniques capable of providing better local
sensing results at acceptable detection and false alarm rates
in both low and high SNR conditions. This serves as the
motivation for our research.

Towards developing an ED, several usable spectrum
estimation techniques are well-known and these can be
broadly divided into parametric and nonparametric tech-
niques. Some examples of these nonparametric techniques
include the simple periodogram (SP), Welch periodogram
(WP), and the multitaper (MT), while parametric techniques
include the Yule-Walker (YW), Burg (BG), and covariance
(CV) techniques. Generally, the ED has been widely assumed
to be based on the periodogram approach (developed either
in time or in frequency domain) and this could be presum-
ably responsible for its poor performance owing to known
limitations of the periodogram, for example, large noise
variance [13, 14]. On the other hand, few works have been
identified on the use of parametric techniques, particularly
the autoregressive (AR) technique, in CR [16–22]. Also, these
few works have focused more on its use in spectrum hole
prediction rather than as an ED for CR application.

In this work, the focus is not on developing a new spec-
trum estimation technique but rather on proposing the use of
a real valued neural network (RVNN) based autoregressive
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Figure 1: (a) Absence of PU signal permitting CR nodes to negotiate and utilize free band. (b) Presence of PU signal triggers CR nodes to
renegotiate and vacate band.
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Figure 2: Energy detection in time domain.
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Figure 3: Energy detection using the simple periodogram (frequency domain approach).
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Figure 4: A two-layered RVNN network system.
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Figure 5: The newly proposed RVNN based ED.
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Figure 6: Wideband spectrum sensing of 4KHz showing two PU signals at 600Hz and 1.5 KHz in AWGN (occupancy = 10%).
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Figure 7: Narrowband spectrum sensing of 100Hz showing PU bandwidth of 60Hz and guardbands of 20Hz on both sides.
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Figure 8: Probability of false alarm for different thresholds using the
RVNN based ED in wideband sensing.

(AR) spectrum estimation technique for ED application in
CR. The choice of the RVNN based AR technique was based
on its advantage over the popular BG technique in solving
the challenge of spectral line splitting at high SNR and large
model order conditions [23]. Consequently, it was observed
here that such an advantage would lead to an improved
ED with less probability of false alarms for CR application.
Results of this contribution are presented in Section 5. Also,
while authors in [23] developed the RVNN technique and
applied it in voice activity detection, in our own work, we
propose necessary additions to standardize the approach as a
fully functional ED using an empirical threshold estimation
technique for CR application. The RVNN based AR model
coefficient estimator developed in [23] has never been applied
as an ED for CR application; hence, its application was
considered here to exploit its inherent advantage. Therefore,
once developed as a functional ED, it was tested using
simulated data particularly in low and high SNR conditions
and varying model order values as described in Section 4
and results obtained with corresponding implications are
presented in Section 5. Appropriate conclusions are drawn in
Section 6.

2. Brief Review of Energy Detector Techniques

Energy detectors (ED) sense the presence or absence of
PU signals by estimating the energy content of a specified

band using the power spectral density (PSD) measurements
and comparing with predetermined thresholds [12, 14]. This
aids the CR device in vacating PU occupied bands to avoid
interference and use vacant bands to improve spectrum
utilization. Figures 1(a) and 1(b) provide a representation of
this process. Towards this goal, signals above the threshold
typically signify PU presence, 𝐻1, and below threshold
as noise, 𝐻0. These hypotheses 𝐻0 and 𝐻1 are typically
represented as

𝐻0 : 𝑥 (𝑛) = 𝑤 (𝑛) (1)

𝐻1 : 𝑥 (𝑛) = 𝑠 (𝑛) + 𝑤 (𝑛) , (2)

where 𝑤(𝑛) represents samples of additive white Gaussian
noise (AWGN), 𝑠(𝑛) denotes samples of PU signal, and𝑥(𝑛) denotes samples of received signal at the CR input
considering a perfect channel.

EDs are typically developed to decide on these hypotheses
either in time or in frequency domain. In time domain, it
consists of an input noise prefilter, a magnitude square law
device, an integrator, and a detector as shown in Figure 2.This
approach has been used in several works [12–15] and well-
known for its simplicity and low design and development
cost. However, it is based on the super heterodyne technique
which is limited by its slow voltage ramping response time [6].
Such a delay might be intolerable for CR operation. Another
approach is to realize the ED in the frequency domain
using the well-known periodogram as shown in Figure 3.
This provides an opportunity to achieve full digitization of
the detection process; however, this approach constrains the
sensing bandwidth owing to known limitations of typical fast
Fourier transform (FFT) realizations [8].

Another method identified for the ED in CR is the
Welch periodogram (WP) approach [24]. Particularly, in [25],
performance analysis was carried out on the use of WP in
Rayleigh fading channels while [26, 27] used WP for OFDM
systems in CR. These authors observed that WP operates
well for narrowband sensing; however, they conclude that
the approach is limited by the excessive variance around
the true mean PSD value. This increases the probability
of false alarm of the system. Another approach using the
Multitaper (MT) technique was proposed in [28] with basic
descriptions provided from filter-bank theory point of view.
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Figure 9: ROC for RVNN based ED in narrowband sensing under low SNR (0 dB) and sample number𝑁 = 250.
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Figure 10: ROC for RVNN based ED in narrowband sensing under high SNR (10 dB) and sample number𝑁 = 250.

This technique was extended in [29] for signal detection
in CR and results were compared with the time domain
based ED. It was observed that MT performed better in low
SNR conditions under Raleigh fading channels. This was
based on the technique’s dependence on both magnitude
and phase of received samples. Also, [30] provided an
improvedMTmethod forCR application inwhich a recursive
method to improve the accuracy of estimates while keeping
real-time properties uncompromised was proposed. Authors
compared their technique with the SP and ordinary MT and
observed better performance for their improved MT.

On the other hand, the use of autoregressive (AR) meth-
ods has been sparsely pursued, especially for energy detection
in CR. The AR methods present a class of techniques
popularly classified as parametric techniques. Though not
widely used in CR, we observed that [19–21] proposed AR
for spectrum hole detection in CR using time series forecast-
ing. Authors reported on the performance of the proposed
approach; however, it remains unclear how well such an
approach would perform in typical deployment conditions.
Also, authors in [21, 22] used particle andKalman filtering for
spectrum availability forecasting. In [17], authors presented a

comparison of SP and Yule-Walker (YW) AR techniques and
argued that better performance could be achieved by the YW
if large model orders are considered. However, most of these
applications have not considered AR application for ED in
CR, andhence, it remains unknownhowwell such techniques
would perform if employed. Consequently, we considered
the use of a real valued neural network (RVNN) AR model
estimator [23] to develop a detector for CR application. This
approach provides data reported in [23] which was leveraged
upon here to develop an improved ED for CR. Consequently,
it is the focus here to develop, evaluate, and analyze its
performance for CR application.

3. Development of the Real Valued Neural
Network Based Energy Detector

3.1. An Overview of the RVNN Based Autoregressive Model
Estimation Technique. Theworking principles of the real val-
ued neural network (RVVN) autoregressive (AR) coefficient
estimation technique were based on [23]. Thus, we present
here only specific details needed to develop the ED for CR
application; however, for further details, we refer to [23].
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Figure 11: ROC for RVNN based ED in wideband sensing under low SNR (0 dB) and sample number𝑁 = 250.
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Figure 12: ROC for RVNN based ED in wideband sensing under high SNR (10 dB) and sample number𝑁 = 250.

It is known that an AR system driven by white noise 𝑥(𝑛)
produces an output sequence 𝑦(𝑛) given as

𝑦 (𝑛) = − 𝑃∑
𝑘=1

𝑎𝑘𝑦 (𝑛 − 𝑘) + 𝑏0𝑥 (𝑛) , (3)

where 𝑎𝑘, 1 ≤ 𝑘 ≤ 𝑃 and 𝑏0 denotes themodel coefficients and𝑃 is the model order. By taking the 𝑧-𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 of (3) and
rearranging the terms therein, the transfer function 𝐻(𝑧) of
the AR-system can be obtained as

𝐻(𝑧) = 𝑌 (𝑧)𝑋 (𝑧) = 𝑏01 + ∑𝑃𝑘=1 𝑎𝑘𝑧−𝑘 (4)

By assigning 𝑏0 = 1, 𝑧 = 𝑒−𝑗𝑤 and taking the square of
(4), we obtain the SNR as

SNR = 
𝑌 (𝑗𝑤)
𝑋 (𝑗𝑤)


2 = 11 + ∑𝑃𝑘=1 𝑎𝑘𝑒−𝑗𝑤𝑘2

. (5)

To estimate the model coefficient 𝑎𝑘, we used a two-
layered RVNN as shown in Figure 4.

By observing Figure 4, the output sequence of the RVNN
system can be obtained as

𝑦 (𝑛) = 𝛼F(𝑀∑
𝑙=1

𝑤𝑙1𝜃𝑙 + ℎ01) , (6)

where F denotes the representation of a linear transfer
function, 𝑀 is the number of neurons in the hidden layer,𝑤𝑙1 represents the weight connecting node 𝑙 in the hidden
to output layer, ℎ01 is the bias term of the output neuron,𝜃𝑙 denotes the output of the hidden node 𝑙, and 𝛼 is the
adaptive coefficient of the linear output activation function.
The hidden node output 𝜃𝑙 is obtained as

𝜃𝑙 = 𝛽𝑙F( 𝑃∑
𝑘=1

V𝑘𝑙𝑦 (𝑛 − 𝑘) + 𝑔0𝑙) , (7)

where V𝑘𝑙 is the weight connecting input nodes 𝑘 to hidden
node 𝑙,𝑔0𝑙 is the bias of the hidden node, and𝛽𝑙 is the adaptive
coefficient of the hidden node linear transfer function. By
using linear transfer activation functions in both hidden and
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Figure 13: ROC for RVNN based ED in narrowband sensing under high SNR (10 dB) and 𝑃 = 50.
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Figure 14: ROC for RVNN based ED in wideband sensing under high SNR (10 dB) and 𝑃 = 20.

output layer, that is, F(⋅) is linear, and substituting (7) into (4),
the output sequence is obtained as

𝑦 (𝑛)
= 𝛼F(𝑀∑

𝑙=1

𝑤𝑙1 (𝛽𝑙F( 𝑃∑
𝑘=1

V𝑘𝑙𝑦 (𝑛 − 𝑘) + 𝑔0𝑙)) + ℎ01) . (8)

By rearranging terms in (8) and comparing with (4), the
model coefficients 𝑎𝑘 can be expressed as

𝑎𝑘 = 𝛼𝑀∑
𝑙=1

𝑤𝑙1𝛽𝑙V𝑘𝑙. (9)

Thus, the AR model coefficients can be estimated from
the synaptic weights and coefficients of the adaptive acti-
vation function of a properly trained two-layered RVNN.
Furthermore, by assuming that the model order 𝑃 is known a
priori, then the number of neurons in the hidden layer can
be determined by using the priori data length information
at the input. To formulate the necessary constraints for
proper evaluation of the system, the solution to a set of
linear equations that gives the best performance over the a

priori fixed model order was obtained. We obtained this by
considering a data set of length 𝑁, for which the required
number of training data set 𝐿 was obtained as

𝐿 = 𝑁 − 𝑃 + 1. (10)

The required number of training equations 𝑁eq is
expressed as

𝑁eq = 𝑃 × 𝐿 (11)

and for 𝑀 hidden nodes, the number of unknowns for the
network was obtained as

𝑁un = (𝑃 + 1)𝑀 +𝑀 + 1. (12)

It is known from [23] that the case of𝑁eq ≫ 𝑁un produces
better results with respect to the unseen data. Therefore, by
putting (11) and (12) into the inequality (𝑁eq ≫ 𝑁un), we
obtained the optimum number of neurons𝑀 to satisfy

𝑀 ≪ (𝑃 × 𝐿) − 1𝑃 + 2 . (13)

With these necessary parameters well established, the
algorithm used for the RVNN system is as follows.
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Figure 15: ROCs compared for different parametric based EDs using 𝑃 = 50 in narrowband sensing.
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Figure 16: ROCs compared for different parametric based EDs for 𝑃 = 20 in wideband sensing.

(1) We normalized the input data sequence to band-limit
the acquired signal using the Z-score normalization
technique. Other techniques that could be used are
the Min–Max, sigmoidal, or unitary data normaliza-
tion techniques.

(2) The data were formatted using frame blocking and
appropriate windowing of data sequencing.

(3) The optimum number of neurons was determined
using (13).

(4) The model coefficient was estimated using (9).
(5) Finally, training of the RVNN system was done

using the back propagation (BP) supervised learning
algorithm.

3.2. The RVNN Based Energy Detector. With the RVNN
model estimator in place, we developed the RVNN based ED
using the proposed schematic of Figure 5. This was achieved
by generating the power spectral density (PSD) of the system
using (5) and introducing a well-designed detector based

on an empirical threshold estimation technique (details of
method in Section 4.2). An overview of the design process is
as follows.

(1) A simple analogue-digital-converter (ADC) was used
for digitization. Here the number of samples was
determined using the known Nyquist rate of 8KHz
for a maximum bandspan of 4KHz for wideband
simulation and 100Hz for narrowband simulation.

(2) The fast Fourier transform (FFT) was used for
the frequency response estimation. Appropriate zero
padding was employed for cases of fewer samples for
FFT operation.

(3) The transfer function estimator was realized using the
frequency response vector obtained from appropriate
adaptive filtering of the FFT samples.

(4) A simple square law device was introduced for per-
forming the squaring operation.

(5) The detector analyzer was realized using empirically
deduced thresholds (details in Section 4.2).
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Figure 17: Comparison of probability of false alarm for different parametric based techniques for the case of narrowband sensing at𝑁 = 250.
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Figure 19: ROCs compared between RVNN based ED and other nonparametric techniques for wideband sensing for 𝑃 = 20.
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(6) Our proposed detector of Figure 5 can be used for CR
application anddetails ofmethods used for its analysis
are presented in the next section.

4. Method of Modelling and Simulation

In this section, we provide details of simulation parameters
and analytical models used for evaluating the performance of
our proposed detector and other methods for comparison.

4.1. Hypothesis Testing. Additive white Gaussian noise
(AWGN) with zero mean and unit variance was used
and the probability of false alarm 𝑃FA conditioned for the
null hypothesis (1) was obtained using the expression for
large time-bandwidth product given in [31]. The 𝑃FA for
noise samples distributed according to a Gaussian variate𝑁(2𝑇𝑊, 4𝑇𝑊) is given as [31]

𝑃𝐹𝐴 = 1√8𝜋𝑇𝑊 ∫∞
𝑉𝑇

exp[−(𝑦 − 2𝑇𝑊)2
8𝑇𝑊 ]𝑑𝑦 (14)

= 12 erf 𝑐 [𝑉𝑇 − 2𝑇𝑊
2√2√𝑇𝑊] , (15)

where 𝑇 denotes the observation interval, 𝑊 the bandwidth
being sensed, 𝑉𝑇 the threshold, and 𝑇𝑊 the time-bandwidth
product. These were translated appropriately as follows: 𝑇𝑊
is known as the total number of samples𝑁 (at Nyquist rate),2𝑇𝑊 is the sample mean 𝜇 of the noise PSD, and 4𝑇𝑊 is
the sample variance �̂�2 of the noise PSD (the noise power).
Hence, we rewrite (15) as

𝑃𝐹𝐴 = 12 erf 𝑐 [𝑉𝑇 − 𝜇√2�̂�2 ] . (16)

We note that the particular use of (15) according to
[31] was based on the condition of a large time-bandwidth
product, meaning large sample number. Next, to estimate
the probability of detection 𝑃𝐷, we considered a modulated
discrete signal 𝑆(𝑛𝑇) given as

𝑆 (𝑛𝑇) = 𝐴 (𝑡) cos (2𝜋𝑓𝑐𝑛𝑇) ∀𝑛 = 0, 1, . . . , 𝑁 − 1, (17)

where 𝐴(𝑡) represents the expression for the modulating
signal, 𝑓𝑐 the carrier frequency, 𝑁 the total number of
samples, and 𝑇 the sampling time.

For examination of the effect of wideband sensing, we
considered two PU signals with equal amplitudes 𝐴1 =𝐴2 = 10 dB, and frequencies 𝑓𝑐1 = 600Hz, 𝑓𝑐2 = 1500Hz
estimated over a relatively wide sensing span of 4Hz using a
wideband occupancy of 10% as shown in Figure 6. We note
that though low frequencies were used, the setup could easily
apply to high frequency bands with the same concept being
applicable.

For narrowband sensing, a typical PU signal of band-
width 𝑊 = 60Hz was simulated for a narrowband sweep of100Hzas shown in Figure 7 using theRVNNbasedED.These
input data were kept constant for all simulation conditions

and other EDs compared herein. Then the 𝑃𝐷 was estimated
using [31]

𝑃𝐷 = 12 erf 𝑐 [𝑉𝑇 − 2𝑇𝑊 − 𝜆
2√2√𝑇𝑊 + 𝜆] , (18)

where 𝜆 denotes the SNR for the estimated spectrum.

4.2. Threshold Estimation. An empirical threshold selection
method was employed here and 𝑃FA for each threshold was
estimated using (16). This was done by varying the threshold
values𝑉𝑇 over the noise PSD and Figure 8 provides the result
obtained using the RVNN based ED in wideband sensing. By
comparing the threshold line in Figure 6 with Figure 8, it can
be easily observed that at a threshold of −35 dB/Hz, less noise
samples crossed the threshold (Figure 6) resulting in 𝑃FA <0.01 as seen in Figure 8. This provided a suitable threshold
for estimating the detector performance.

5. Results and Discussion

5.1. Varying AR Model Order on RVNN Based ED. The effect
of varying ARmodel order on the performance of the RVNN
based EDwas analyzed by inspecting the outcome of different
ROCs under varying model order values. This examination
was essential to aid in the choice of optimum model order
for CR operation. Furthermore, this effect was investigated
in both narrow and wideband sensing to determine which
scenario best supports the detector. The detector was also
examined in low (0 dB) and high (10 dB) SNR conditions,
respectively. It can be observed from Figures 9 and 11
that the ROCs for different orders remained approximately
equal for low SNR in both narrow and wideband sensing.
This confirmed that, at low SNR, the PU signal is totally
submerged in noise and cannot be differentiated by the
use of energy levels alone resulting in 𝑃FA ≈ 𝑃𝐷. This
also indicated that irrespective of the approach, the ED
typically performs poorly in low SNR conditions. However, in
narrowband sensing, high SNR, and varying model order of
Figure 10, the RVNNbased EDwas observed to performwell,
particularly for model order 𝑃 = 50. We also observed that
the difference in performance becomes practically negligible
for 𝑃 ≥ 40. Hence, a minimum order of 𝑃 = 40 was
observed to achieve high detection performance. For the
case of wideband sensing, high SNR, and varying model
order, Figure 12 revealed a reverse in performance for the
model order values investigated here. In this case, model
order 𝑃 = 50 was observed to perform poorly while 𝑃 =20 provided better performance. We note that this outcome
was based on the increased spectral leakage at lower order
which resulted in more samples crossing the threshold than
at 𝑃 = 50. This effect is evident owing to the large spectrum
considered under wideband sensing as compared to the
percentage occupancy of the signal within the band. Hence,
it can be inferred that the probability of false alarm would
consequently increase for such lower model orders than the
higher orders, thus making it uncertain to strictly rely on the
results of an ROC curve alone. However, this observation
would be further studied and analysed in future works.
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By comparison, it was observed that narrowband sensing
produces better performance than wideband for the RVNN
based ED. This can be conclusive if the sensing bandwidth
of the narrowband detector corresponds typically to the
transmission bandwidth of the PU signal. The implication
of these results means that to use the RVNN based ED for
CR, narrowband sensing at 𝑃 = 50 for short data length
(fast sensing time) will be ideal to produce the best detection
performance.

5.2. Varying SampleNumber onRVNNBasedED. To examine
this effect, a fixed choice of AR model order 𝑃 = 50 was
selected for narrowband sensing while 𝑃 = 20 was chosen
for wideband sensing. This ensured that the best model
order values were used to examine the effect of sensing time,
that is, varying sample number. Here we examined only
for the high SNR case (10 dB) knowing that performance
remains the same in low SNR conditions (seen in Figures
9 and 11). By observing Figure 13, it was seen that detection
performance of RVNN based ED improved with increase in
sample number𝑁. However, this increase became negligible
for𝑁 ≥ 2000.Wenote that this performancewas achieved for𝑃 = 50. Furthermore, by using 𝑃 = 20 for wideband sensing,
Figure 14 revealed that high performance was sustained even
with a slight performance drop in comparison to narrowband
sensing.This implied that to use the RVNN based ED for fast
sensing in CR, narrowband sensing for 𝑃 = 50 remains ideal.

5.3. Comparison with Other Parametric Based ED Techniques.
The RVNN based ED was compared with the Yule-Walker
(YW), Burg (BG), and covariance (CV) based approaches.
Narrowband sensing was examined using model order 𝑃 =50 while 𝑃 = 20 was chosen for wideband sensing.
Figure 15 revealed a close comparative performance between
all techniques for fasting sensing time (𝑁 = 250). Further
comparison was conducted for long sensing time (𝑁 = 2000)
and once again, performance level was close. However, it was
observed that performance increased for all techniques with
increase in sample number. This implied that long sensing
time improved the performance of the RVNN based ED and
other techniques. For wideband sensing, Figure 16 revealed
a close detection performance between RVNN based ED and
other parametric techniques; however, a 2%drop in detection
performance was observed with respect to BG, YW, and
CV. Comparatively, the RVNN based ED produced similar
detection performance to acceptable specifications (𝑃𝐷 > 0.9
at 𝑃FA = 0.1) along with other techniques. In addition, it is
shown in Figure 17 that the proposed technique provides a10% average reduction in 𝑃FA at thresholds below −20 dBm
than YW, BG, andCV.This revealed a possible 1 dB reduction
in threshold level to achieve 𝑃FA = 0.1 as compared to
other parametric techniques studied here. This means that
the RVNN based ED provides better sensitivity than YW, BG,
and CV based approaches. Also, we note that YW, BG, and
CV have tendencies to overestimate the magnitude response
of a signal which resulted in the observed better ROC per-
formance of YW, BG, and CV over the proposed technique
in Figures 15 and 16. Nevertheless, higher SNR estimation

and consequently improved ROC can be achieved for the
RVNNbased EDby including appropriate amplifiers after the
square law device in Figure 5. On the other hand, false alarms
are more difficult to address and cannot be solved by simple
amplification as proposed because both noise and signals will
be amplified accordingly, except if noise reduction techniques
are used. Consequently, reducing 𝑃FA could depend more
on threshold selection or on the underlying nature of the
detector.Therefore, Figure 17 emphasizes a critical advantage
of the RVNN based ED over other parametric techniques
especially in providing an inherent capacity to reduce the 𝑃FA
level and prevent possible interference to primary user (PU)
signals.This is a highly desirable feature of any good detector
for CR application.

5.4. Comparison with Nonparametric Techniques. Finally,
the RVNN based ED was compared with nonparametric
techniques such as the simple periodogram (SP), Welch
periodogram (WP), and multitaper (MT). For narrowband
sensing, Figure 18 revealed that the RVNN based ED per-
formed better than the nonparametric techniques compared
here except for WP which performed slightly better. This
was due to the high variance estimation obtained in the
WP which made more noise samples to cross the threshold
than in the RVNN based ED. In wideband sensing, Figure 19
revealed that the RVNN based ED performed better than
other nonparametric techniques.

6. Conclusion

In this paper, a real valued neural network (RVNN) based
energy detector (ED) has been proposed, simulated, and
analyzed. The choice of the RVNN method for estimating
the coefficients of an autoregressive (AR) system was based
on its inherent ability to solve the challenge of line splitting
and spectral shifting as reported in [23]. Thus, our developed
RVNN based ED was examined using different simulation
parameters for different sensing conditions. We observed
that, for model order 𝑃 = 50, the proposed detector provided
a high detection performance in narrowband sensing and
similar performance in wideband sensing for 𝑃 = 20. Fur-
thermore, the detector was compared with other parametric
based techniques like the Yule-Walker (YW), Burg (BG), and
covariance (CV)methods. A close performance was achieved
between our proposed ED and others with less than 5%
drop in ROC performance observed with respect to YW,
BG, and CV. However, a 10% reduction in false alarm was
observed for the RVNN based ED over other parametric
techniques. This result presents an important advantage in
using the proposed technique for CR application because
techniques with less false alarms are highly desirable. Finally,
it was compared with some nonparametric techniques like
the simple periodogram (SP),Welch periodogram (WP), and
the multitaper (MT). Our proposed detector provided a 10%
detection performance gain over these techniques except in
narrowband and fast sensing case where WP provided about2% detection increase than the RVNN based ED. This was
attributed to the high estimated noise variance level which
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consequently resulted in increased false alarm rates in WP.
The study reported here indicates that the RVNN based ED
provides a new option for spectrum sensing in CR. However,
we note that attention was not given here to the degree of
design complexity with respect to choice of higher model
order. Though it has been shown in [17] that computational
demand in terms of number of multiplications is less than
the periodogram, likewise for the storage demand, no closed
form model exists to describe complexity for higher model
order. This might not necessarily affect detection or false
alarm performance but might affect timing performance.
However, this remains to be studied and provides an oppor-
tunity for future research investigations in the field of AR
application in CR.
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