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Abstract: In this paper we prove weighted martingale-ergodic and weighted ergodic-martingale theorems.
Furthermore, analogous dominant and maximal inequalities for weighted martingale ergodic sequences and
weighted ergodic martingale averages are also obtained.
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INTRODUCTION

General theories unifying ergodic averages and martingales were reported by Kachurovskii [1-3]. Four different
variants for theories unifying ergodic averages and martingales have been reported in [4-7]. Besides, one parameter
weighted ergodic theorem and multiparameter weighted ergodic theorems have been investigated by Baxter J.H.
Olsen [8] and R.L. Jones, J.H. Olsen [9], respectively. In [10], M. Lin and M. Weber considered weighted ergodic
theorems and strong laws of large numbers. General ergodic theory is reported in [11].

In this paper we prove weighted martingale-ergodic and weighted ergodic-martingale theorems. Furthermore,
analogous dominant and maximal inequalities for weighted martingale ergodic sequences and weighted ergodic
martingale averages are also obtained.

Preliminaries: Let (Q,%,A) be a space with a finite measure, L, = Ly,(Q2) be a space of complex measurable
functions on Q,

Ly = (f € Lo: [ IfIPdd < ea)
Q

’
IIfII=< |f|vd/1>
~(]

iflsp <ol flle=sup{|f(w)]:weEQ}if p =
Let {A,}n=, be a monotone sequence of c-subalgebras of % A, T A, (Or A, Ax) E:L,—L, be the
expectation operator, T L, —»L,, be the Dunford-Schwartz operator. Put

p=>1, with the norm

1 n
Sa(f.T) = =D THLf = lim S, (T fi = B(F L)
k=1
1 n
Sa(f 1) =2 ) TEFf = lim S, (T fo = B(F1A)
k=1

In [1] it is proved the following
Theorem 1.1
1) Letfel, pe[l, o). Then E(S,(f,T)|A,) = fo in Ly, inthis case || foo l,<Il f I,
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2) Letf €Ly, pe(l, ). Then

E(Sa(f,TIAR) S £ in Ly,
3) Let fely, suppas | So(f,T)| € Ly. Then E(S,,(f, TY|A,) 3 £ in Lo.
PUt foo = E(f1An), Su(foor T) = 3 BRZE T foo, fi5 = i S (fo T)-
Theorem 1.2: [2]

1) Letfel,,pe[l, «). Then S, (E(f|A,),T) = fs in L, as n—.
2) Letfel,pe(l, ). Then

© .
Sp(E(flAn), T) = fw in L,

3) Letfel,,sup |E(f|A)| € Ly. Then S,(E(f|A,), T) (izf;; in L.
Lemma 1: [2, 12] Let {f,} €L,, p[1, 0) and f;, = f*in Ly, as n—co. Then E(fy|Ay) = E(f"|A) in L, as n—c.
Lemma 2: [2, 12] Let £, (2 frasn—»wand sup,sq | fn| € Ly- Then

© . .

E(fulAn) = E(f*|Ac) in L.
( (0) .

Lemma 3: [11] Let f, 3]” as n—oo and supy,sq | ful € L1. Then S, (£, T) if* in Ly as n—o where f* =
lim, S, (f,T).

Definition 1.3: The sequence numbers «(k) is called Besicovich sequences such that given &> 0, there is a
trigonometric polynomial 1, (k) such that lim,,_,, supn%zz;g |a(k) — Y (k)| <e.
A sequence a(k) is called bounded Besicovich if {a(k)}el™. In [9] it was proved the following

Theorem 1.4: Let T be denoted the Dunford-Schwartz operator. Then there exists
n—-1
1
lim —Z @ (OT(f)
nren k=0

a.e. for every felL, 1 <p < coand all bounded Besicovich sequences a(k). In this case, if pe(1, ), then
A (f,T) = %2;;;; a (k)T*(f) (o) -converges in L, and if p = 1, then A, (f,T) (0)-converges in L.
In this paper we prove theorems analogous to 1.1 and 1.2 in the case of weighted averages.

WEIGHTED MARTINGALE-ERGODIC THEOREMS

Let {A,}n=1 be a monotone sequence of c-subalgebras of 2, A, T A (0r A, | Ax), a(k) be a Besicovich
bounded sequence, T: L, —L, be the Dunford-Schwartz operator. We put,

A, (f,T) = %Zﬁ;éa (T, f* = limy e Ay (f, T), foo = E(f*|Ac).
Theorem 2.1

1) LetfeL,, pe(l,«). Then E(An(f, T)lAn) 3 £ in Ly,

2) If fel, and sup,ay Ay (f, T) € Ly, then E(A, (f, T)A,) 3 £ in Lo.
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Proof:
1) Since
1n—l 1n—1 1n—1
sup| Ay ()] = sup |5 > @ (OTH(F, )] < sup=- > [aIITI(Sf) < bsup—- > T,
nz1 nz1 N e~ nz1 N e nz1 N e~

where b = sup | a(k)|, by the Akcoglu’s theorem we have sup, | A (f, T)| € Ly.

According to Theorem 1.2 [9], A,(f,T) (Qf*. Therefore Lemma 2 implies E(A,,(f, T)|A,) (2 E(f*|Ax) =
fos I Ly @S N—o0.
Let supnsi|Ax(f,T)|=h. Then E(A,(f,T)|A,) <E(h|A,) for all n. By Theorem 2 [13]

SUpps>1 E (h|A,) € L,. Hence, suppsq | E(An(f, T)|Ay,)| € L. Therefore E(A,(f, T)|A,) © foinL,.

2) By Theorem 1.4 [9] we have A,(f,T) = f* ae. AS sup,s14,(f,T) € L;, by Lemma 2 we obtain
E(A,(f,T)|A,) = f» a.e. Since the convergence a.e. is the (0)-convergence in L,, we obtain E (A,,(f, T)|A,)

(2 foo IN L.
WEIGHTED ERGODIC-MARTINGALE THEOREM

Let, as in Section 2, {A, }5=1 be a monotone sequence of c-subalgebras of % A, T A, (OF A, L Aw), a(k)
be a Besicovich bounded sequence, T: L, —L,, is the Dunford-Schwartz operator. We put

fo = E(1A)
1
An(forT) == > € (OTH(£),
k=0

fir = lim Ay (£, T).

Lemma 3.1: Let f, (2 f,h=sup, | ful € Ly, and f* =1lim,_,, A, (f,T). Then A,,(f,, T) (2 frinLy.
Proof: Let h,, = supsn | fn — |-

Obviously,

An(fe T) = f71 S [An(f T) = An(f, D + A (£, T) = f7] [An(f T) = 71 < [An (e T) — An(f, ] +
[An(£,T) = f7I.

By theorems 1.2 and 1.4 [9], A,.(f,T) (2 frasn—oin Ly. We will prove that

(0) .
An(f T) = An(f, T) = 0 as n—aoin Ly,
Itis clear,

1n—1
|4n (s T) = An(f, )| = [An(fo = £, T < ;Z la(OTI(fn = 1) <
k=0

11’1—1
b ';Z ITI“Ufa = FD < b Su(lfa = FLITD.
k=0
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. (0) . (0)
Since |f, — f| 250 and sup, | fn — f1 < 2h € L;, we obtained from Lemma 3, that S,,(|f, — f1,IT]) 250 as
(0) ) ..
n—so0, Therefore A,,(f,, T) — A (f, T) > 0 and A, (f,, T) — £* in Ly.

Theorem 3.2
1) Let p (1, 20). Then A, (E(f|A,),T) (iz fo INL,, as n—co.
() .
2) Letp = landsup,|E(f|A,)| < h€L;. Then A, (E(f|AL),T) i>fo’; inL,.

Proof:
1) According to Theorem 2 [13], sup,»; E (|f||Ay) € L. Therefore by Lemma 3.1, we have

AnESIAD)T) D frin Lo,

Let sup,sq E (If[|An) = h. Then E(If]|4,) < h and Ap(E(If||A), IT]) < An(h, IT]). As by the Akcoglu’s
theorem sup,»; A, (h, |T|) € Ly, we have suppsy An (E(|f||AR)IT]) € Ly and suppsy | Ap(E(f|AR), T)| € Ly,

Hence, A, (E(f|A,)T) (2 foo-

2) By the Theorem 3 [13], we have

E(flA) DE(f, A.)

in Ly As sup,sq | E(f|Axl € Ly, by Lemma 3.1 we obtain

© _,
An(E(flAIT) = foo
in Ly.

WEIGHTED DOMINANT AND MAXIMAL INEQUALITIES
Theorem 4.1: Let pe(1, ) and A, 1 A. Then for f L, the following inequality holds:
I sup | E(Ay(f, T)|An| I, < bg? 1l f 1l
n=1
where b = supy|a(k)].

Proof: Let g = supps1 | A, (f,T)|. Then

lAn(£, DI < g, suppat | E(An(f, TIAR)| < suppat E (g147) |4 (f, T < g, SUPnaq | E(An(f, TIAR)| <

Supnzl E (glAn)
and therefore

I sup | ECA(f, T A N, < sup E(glAn) N,
nz nz
By the dominant inequality for submartingale [12] we have

I sup E (glA,) I, < q I E(gleA) I,

nz1

Since the conditional expectation operator is contracting in L,, we obtain, that

IE(glAs) I, <l g llp,,.
Therefore
I sup |E(An(f, DA I,< q | su;la|An(f,T)| Iz,
nz n=

73



Middle-East J. Sci. Res., 13 (Mathematical Applications in Engineering): 70-76, 2013

It follows from Akcoglu’s theorem that || sup,sq | A, (f, T)| I, < b-qlf e, Thus, for f €L, the inequality

I sup | E(An(f, DA N, < bg? Il f I,
nz1
holds.

Theorem 4.2: Let f €L,, pe(1, «0) and A,, | A. Then for any & > 0 the following inequality holds

1
Msup | E(An(f, T AD} 2 e} < — - bP I f I,
n=1 ep P
where b = supy|a(k)]..

Proof: Let g = supys1 | A, (f, T)|. Then
AMsup | E(An(f, T)|AR)| = €} < A{sup E (g|An) = €}. A{sup | E(An(f, T)|An)| = €} < A{sup E (g|A,) = €}

By the maximal inequality for for submartingale E(g|A,) [12] we have, that

ME14,) = €} < 55 I E(g Il A) I,
Applying the contracting property of the conditional expectation operator in L,, we obtain
I E(gleAn) I7,<Il g I, =I ix;?mn(f, I IZ, <l ilg)A (FLIT IZ,.
Now applying the inequality Il suppa Ay (If L IT1) L, < b - q Il £ ll,, we have

A{supn1 | E(An(f, T)|AR)| 2 €} < fpb" qP Il fIIE. b = sup| (k).
The following theorems can be proved analogously to theorems 4.1 and 4.2.

Theorem 4.3: Let pe(1, «). Then for f €L, the following inequality holds

I'sup | Ap(EGFIADT] I, < b - a2 11 f Il
nz1
where b = supy|a(k)]|.

Theorem 4.4: Let p e(1, o). Then for any ¢ > 0 and f L, the following inequality holds
1 P
Msup [ An(E(flAn), T 2 e} < 5 bP - qP I f I,
n=1 & 4
where b = supy|a(k)].
MULTIPARAMETER WEIGHTED MARTINGALE ERGODIC THEOREMS
In this section we define the d-dimensional case of martingale ergodic averages and consider convergence

theorems for such averages.

Let {a(k): k € Z}} be the class of weights and

k = (ky kg kg),N = (Ny,No,...,Ng), IN| = Ny - Ny -..- Ny, 0 = (0,0,...,0). k = (ky, ks, .., kg), N =
(Ny,Ny,...,Ng),IN| = Ny - Ny -...- Nz, 0 = (0,0,...,0).
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For N = (Ny,N,,...,N;) N—»comeans that Ni—»coforanyi = 1,2,...,d.

Definition 5.1: [9] The sequence {a(k):k € Z} is called r-Besicovich if for every &> 0 there is a sequence of
trigonometric polynomials in d variables, 1, (k), such that limy,_,., sup I%I N-Ya(k) =y (k)| < e.

This class is denoted by B(r). The sequence a(k) is called r-bounded Besicovitch if {a(k)} € B(r) n I, If
{a(k)} € B(1) n 1™ then {a(k)} is called a bounded Besicovich sequence.
Let Ty, Ty, ..., T; denote a family of d linear operators in L,,. We consider averages

N
1
an(Df = > aGOTYf,
k=0

where f € L, TK = T/ - T, ... T}
In [9] it is proved the following

Theorem 5.2: Let T = (T4, Ty, ..., T;) denoted d Dunford-Schwartz operators. Then Ay (T)f converges a.e. for
every feL,,1 < p<coand all bounded Besicovich sequences a(k).

Let, as in the Section 2 {A,}n=; be a monotone sequence of o-subalgebras of ¥ and A, | A,. We put
fr=limy,o Ay (Df, foo = E(f"|Aw).

Theorem 5.3: Let feL,, 1<p<ow, a(k) be a bounded Besicovich sequence, N, = (N{*,N;',...,Nj) — o as
n—»c, Then

© _,
E(An,(Df|An) = fa

in Ly.
The proof of Theorem 5.3 is analogous to the proof of Theorem 2.1 1).

Theorem 5.4: Let A; I A, fel,, 1<p=<o,a(k) bounded Besicovich sequence, b = supi|a(k)| , N, =
(N}, N,...,N)) - o0 as e Then

1) Isups | EGw,(DFIAD] Ip< b - g% 1 £ I
2) Afsupi | E(Ay,(D)fIAD] = e} < b - qrd L.

&b

Proof
1) Letg; = supm,s; | Ay, (T)f]. Then

|E(An, (Df|AD| < E(ﬂlﬂ | An,,, (D) f A = E(gilAr)
and )
sup; | E(An, (D f|A)| < sup; E (gi]A). 1)
Therefore
I sup | E (A, (TF 1401 =1 sup £ (gilA) I
By the dominant inequality,
I sng GulAD 1< q I E(galAd) .

Since the conditional expatiation operators is contracting in L,, we have

I ECg1lAL) 1<l g1 . )
Thus
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Il Slllp [EAn,(DfIAD 1= g 11 91 =

=q lsupAy, (DIfI1,<q-q* bl fll,=
m

=b-q™ I f .
2) By the inequality (1) we have

/1{Slllp | E(An, (D f|A)] 2 €} < A{SlllpE (GilA) 2 8}-/1{Slllp | E(An, (D f|AD] 2 €} < A{SlllpE (GulA) = €}

According to the maximal inequality
1
/1{5111pE GilA) = e} < e I ECgilA) 115
Applying inequality (2), we obtain

1 p 1 p 1 p
o 1 E@ilAD Ip< 1 gy <l srlipANm MIfI .
Since Il sup,, Ay, (DIf] I1I5< bPq% || £ |, we obtain

I f Iy
Msup | E(A (D) 14| = £} < b - Uk
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