Middle-East Journal of Scientific Research 13 (Mathematical Applications in Engineering): 70-76, 2013 ISSN 1990-9233 © IDOSI Publications, 2013 DOI: 10.5829/idosi.mejsr.2013.13.mae.99924

Weight Martingale-Ergodic and Ergodic-Martingale Theorems

Ganiev I.G. and Othman R.

Faculty of Engineering, International Islamic University Malaysia, 57528, P.O. 10, Kuala-Lumpur, Malaysia

Abstract: In this paper we prove weighted martingale-ergodic and weighted ergodic-martingale theorems. Furthermore, analogous dominant and maximal inequalities for weighted martingale ergodic sequences and weighted ergodic martingale averages are also obtained.

Key words: Ergodic averages . martingale . ergodic-martingale . martingale-ergodic averages

INTRODUCTION

General theories unifying ergodic averages and martingales were reported by Kachurovskii [1-3]. Four different variants for theories unifying ergodic averages and martingales have been reported in [4-7]. Besides, one parameter weighted ergodic theorem and multiparameter weighted ergodic theorems have been investigated by Baxter J.H. Olsen [8] and R.L. Jones, J.H. Olsen [9], respectively. In [10], M. Lin and M. Weber considered weighted ergodic theorems and strong laws of large numbers. General ergodic theory is reported in [11].

In this paper we prove weighted martingale-ergodic and weighted ergodic-martingale theorems. Furthermore, analogous dominant and maximal inequalities for weighted martingale ergodic sequences and weighted ergodic martingale averages are also obtained.

Preliminaries: Let $(\Omega, \Sigma, \lambda)$ be a space with a finite measure, $L_0 = L_0(\Omega)$ be a space of complex measurable functions on Ω ,

$$L_p = \{ f \in L_0 : \int_{\Omega} |f|^p d\lambda < \infty \},\$$

 $p \ge 1$, with the norm

$$\| f \|_{p} = \left(\int_{\Omega} |f|^{p} d\lambda \right)^{\frac{1}{p}}$$

if $1 \le p < \infty$, $|| f ||_{\infty} = \sup \{ |f(\omega)| : \omega \in \Omega \}$ if $p = \infty$.

Let $\{\mathcal{A}_n\}_{n=1}^{\infty}$ be a monotone sequence of σ -subalgebras of Σ , $\mathcal{A}_n \uparrow \mathcal{A}_{\infty}$ (or $\mathcal{A}_n \downarrow \mathcal{A}_{\infty}$) $E: L_p \to L_p$ be the expectation operator, $T: L_p \to L_p$ be the Dunford-Schwartz operator. Put

$$S_{n}(f,T) = \frac{1}{n} \sum_{k=1}^{n} T^{k} f, f^{*} = \lim_{n \to \infty} S_{n}(f,T), f_{\infty}^{*} = E(f^{*} | \mathcal{A}_{\infty}),$$

$$S_{n}(f,T) = \frac{1}{n} \sum_{k=1}^{n} T^{k} f, f^{*} = \lim_{n \to \infty} S_{n}(f,T), f_{\infty}^{*} = E(f^{*} | \mathcal{A}_{\infty})$$

In [1] it is proved the following

Theorem 1.1

1) Let $f \in L_p$, $p \in [1, \infty)$. Then $E(S_n(f, T) | \mathcal{A}_n) \to f_\infty^*$ in L_p , in this case $|| f_\infty^* ||_p \le || f ||_p$.

Corresponding Author: Ganiev I.G., Faculty of engineering, International Islamic University Malaysia, 57528, P.O. 10, Kuala-Lumpur, Malaysia

Middle-East J. Sci. Res., 13 (Mathematical Applications in Engineering): 70-76, 2013 2) Let $f \in L_n$, $p \in (1, \infty)$. Then

$$E(S_n(f,T)|\mathcal{A}_n) \xrightarrow{(o)} f_{\infty}^* \text{ in } L_p.$$

3) Let $f \in L_1$, $\sup_{n \ge 1} |S_n(f,T)| \in L_1$. Then $E(S_n(f,T)|\mathcal{A}_n) \xrightarrow{(o)} f_{\infty}^*$ in L_0 .

Put
$$f_{\infty} = E(f|\mathcal{A}_{\infty}), S_n(f_{\infty}, T) = \frac{1}{n} \sum_{k=0}^{n-1} T^k f_{\infty}, f_{\infty}^* = \lim_{n \to \infty} S_n(f_{\infty}, T).$$

Theorem 1.2: [2]

1) Let $f \in L_p$, $p \in [1, \infty)$. Then $S_n(E(f|\mathcal{A}_n), T) \to f_\infty^*$ in L_p as $n \to \infty$.

2) Let $f \in L_p$, $p \in (1, \infty)$. Then

$$S_n(E(f|\mathcal{A}_n),T) \xrightarrow{(o)} f_\infty^* \text{ in } L_p.$$

3) Let $f \in L_1$, $\sup |E(f|\mathcal{A}_n)| \in L_1$. Then $S_n(E(f|\mathcal{A}_n), T) \xrightarrow{(o)} f_{\infty}^*$ in L_0 .

Lemma 1: [2, 12] Let $\{f_n\} \in L_p$, $p \in [1, \infty)$ and $f_n \to f^*$ in L_p , as $n \to \infty$. Then $E(f_n | \mathcal{A}_n) \to E(f^* | \mathcal{A}_\infty)$ in L_p as $n \to \infty$.

Lemma 2: [2, 12] Let $f_n \xrightarrow{(o)} f^*$ as $n \rightarrow \infty$ and $\sup_{n \ge 1} |f_n| \in L_1$. Then

$$E(f_n|\mathcal{A}_n) \xrightarrow{(o)} E(f^*|\mathcal{A}_\infty)$$
 in L_0

Lemma 3: [11] Let $f_n \xrightarrow{(o)} f^*$ as $n \to \infty$ and $\sup_{n \ge 1} |f_n| \in L_1$. Then $S_n(f_n, T) \xrightarrow{(o)} f^*$ in L_0 as $n \to \infty$ where $f^* =$ $\lim_n S_n(f,T).$

Definition 1.3: The sequence numbers $\alpha(k)$ is called Besicovich sequences such that given $\varepsilon > 0$, there is a trigonometric polynomial $\psi_{\varepsilon}(k)$ such that $\lim_{n\to\infty} \sup_{k\to\infty} \sup_{k\to\infty} \frac{1}{n} \sum_{k=0}^{n-1} |\alpha(k) - \psi_{\varepsilon}(k)| < \varepsilon$. A sequence $\alpha(k)$ is called bounded Besicovich if $\{\alpha(k)\} \in l^{\infty}$. In [9] it was proved the following

Theorem 1.4: Let T be denoted the Dunford-Schwartz operator. Then there exists

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}\alpha(k)T^k(f)$$

a.e. for every $f \in L_p$, $1 and all bounded Besicovich sequences <math>\alpha(k)$. In this case, if $p \in (1, \infty)$, then $A_n(f,T) = \frac{1}{n} \sum_{k=0}^{n-1} \alpha(k) T^k(f) \text{ (o) -converges in } L_p \text{ and if } p = 1, \text{ then } A_n(f,T) \text{ (o)-converges in } L_0.$ In this paper we prove theorems analogous to 1.1 and 1.2 in the case of weighted averages.

WEIGHTED MARTINGALE-ERGODIC THEOREMS

Let $\{\mathcal{A}_n\}_{n=1}^{\infty}$ be a monotone sequence of σ -subalgebras of Σ , $\mathcal{A}_n \uparrow \mathcal{A}_{\infty}$ (or $\mathcal{A}_n \downarrow \mathcal{A}_{\infty}$), $\alpha(k)$ be a Besicovich bounded sequence, $T: L_p \rightarrow L_p$ be the Dunford-Schwartz operator. We put,

$$A_n(f,T) = \frac{1}{n} \sum_{k=0}^{n-1} \alpha(k) T^k(f), f^* = \lim_{n \to \infty} A_n(f,T), f^*_{\infty} = E(f^* | \mathcal{A}_{\infty}).$$

Theorem 2.1

- 1) Let $f \in L_p$, $p \in (1, \infty)$. Then $E(A_n(f, T) | \mathcal{A}_n) \xrightarrow{(o)} f_{\infty}^*$ in L_p .
- 2) If $f \in L_1$ and $\sup_{n \ge 1} A_n(f, T) \in L_1$, then $E(A_n(f, T) | \mathcal{A}_n) \xrightarrow{(o)} f_{\infty}^*$ in L_0 .

Proof:

1) Since

$$\sup_{n\geq 1} |A_n(f)| = \sup_{n\geq 1} |\frac{1}{n} \sum_{k=0}^{n-1} \alpha(k) T^k(f,T)| \le \sup_{n\geq 1} \frac{1}{n} \sum_{k=0}^{n-1} |\alpha(k)| |T|^k(|f|) \le b \sup_{n\geq 1} \frac{1}{n} \sum_{k=1}^{n-1} |T|^k(f),$$

where $b = \sup |\alpha(k)|$, by the Akcoglu's theorem we have $\sup_{n\geq 1} |\mathcal{A}_n(f,T)| \in L_p$.

According to Theorem 1.2 [9], $A_n(f,T) \xrightarrow{(o)} f^*$. Therefore Lemma 2 implies $E(A_n(f,T)|\mathcal{A}_n) \xrightarrow{(o)} E(f^*|\mathcal{A}_\infty) = f_\infty^*$ in L_0 as $n \to \infty$.

Let $\sup_{n\geq 1} |A_n(f,T)| = h$. Then $E(A_n(f,T)|\mathcal{A}_n) \leq E(h|\mathcal{A}_n)$ for all n. By Theorem 2 [13] $\sup_{n\geq 1} E(h|\mathcal{A}_n) \in L_p$. Hence, $\sup_{n\geq 1} |E(A_n(f,T)|\mathcal{A}_n)| \in L_p$. Therefore $E(A_n(f,T)|\mathcal{A}_n) \xrightarrow{(o)} f_{\infty}^*$ in L_p .

2) By Theorem 1.4 [9] we have $A_n(f,T) \to f^*$ a.e. As $\sup_{n \ge 1} A_n(f,T) \in L_1$, by Lemma 2 we obtain $E(A_n(f,T)|\mathcal{A}_n) \to f_{\infty}^*$ a.e. Since the convergence a.e. is the (o)-convergence in L_0 , we obtain $E(A_n(f,T)|\mathcal{A}_n) \to f_{\infty}^*$ in L_0 .

WEIGHTED ERGODIC-MARTINGALE THEOREM

Let, as in Section 2, $\{\mathcal{A}_n\}_{n=1}^{\infty}$ be a monotone sequence of σ -subalgebras of Σ , $\mathcal{A}_n \uparrow \mathcal{A}_{\infty}$ (or $\mathcal{A}_n \downarrow \mathcal{A}_{\infty}$), $\alpha(k)$ be a Besicovich bounded sequence, $T: L_p \to L_p$ is the Dunford-Schwartz operator. We put

$$f_{\infty} = E(f | \mathcal{A}_{\infty}),$$

$$A_n(f_{\infty}, T) = \frac{1}{n} \sum_{k=0}^{n-1} \alpha(k) T^k(f_{\infty})$$

$$f_{\infty}^* = \lim_{n \to \infty} A_n(f_{\infty}, T).$$

Lemma 3.1: Let $f_n \xrightarrow{(o)} f$, $h = \sup_n |f_n| \in L_1$, and $f^* = \lim_{n \to \infty} A_n(f, T)$. Then $A_n(f_n, T) \xrightarrow{(o)} f^*$ in L_0 .

Proof: Let $h_n = \sup_{m \ge n} |f_m - f|$.

Obviously,

$$\begin{aligned} |A_n(f_n,T) - f^*| &\leq |A_n(f_n,T) - A_n(f,T)| + |A_n(f,T) - f^*| \cdot |A_n(f_n,T) - f^*| \leq |A_n(f_n,T) - A_n(f,T)| + \\ &|A_n(f,T) - f^*|. \end{aligned}$$

By theorems 1.2 and 1.4 [9], $A_n(f,T) \xrightarrow{(o)} f^*$ as $n \to \infty$ in L_0 . We will prove that

$$A_n(f_n,T) - A_n(f,T) \xrightarrow{(o)} 0 \text{ as } n \to \infty \text{ in } L_0$$

It is clear,

$$\begin{aligned} |A_n(f_n,T) - A_n(f,T)| &= |A_n(f_n - f,T)| \le \frac{1}{n} \sum_{k=0}^{n-1} |\alpha(k)| |T|^k (|f_n - f|) \le \\ b \cdot \frac{1}{n} \sum_{k=0}^{n-1} |T|^k (|f_n - f|) \le b \cdot S_n (|f_n - f|, |T|). \end{aligned}$$

Middle-East J. Sci. Res., 13 (Mathematical Applications in Engineering): 70-76, 2013

Since $|f_n - f| \xrightarrow{(o)} 0$ and $\sup_n |f_n - f| \le 2h \in L_1$, we obtained from Lemma 3, that $S_n(|f_n - f|, |T|) \xrightarrow{(o)} 0$ as $n \to \infty$. Therefore $A_n(f_n, T) - A_n(f, T) \xrightarrow{(o)} 0$ and $A_n(f_n, T) \xrightarrow{(o)} f^*$ in L_0 .

Theorem 3.2

1) Let $p \in (1, \infty)$. Then $A_n(E(f|\mathcal{A}_n), T) \xrightarrow{(o)} f_{\infty}^* \text{ in } L_p$ as $n \to \infty$.

2) Let p = 1 and $\sup_n |E(f|\mathcal{A}_n)| \le h \in L_1$. Then $A_n(E(f|\mathcal{A}_n), T) \xrightarrow{(o)} f_{\infty}^*$ in L_0 .

Proof:

1) According to Theorem 2 [13], $\sup_{n \ge 1} E(|f||\mathcal{A}_n) \in L_p$. Therefore by Lemma 3.1, we have $A_n(E(f|\mathcal{A}_n), T) \xrightarrow{(o)} f_{\infty}^*$ in L_0 .

Let $\sup_{n\geq 1} E(|f||\mathcal{A}_n) = h$. Then $E(|f||\mathcal{A}_n) \leq h$ and $A_n(E(|f||\mathcal{A}_n), |T|) \leq A_n(h, |T|)$. As by the Akcoglu's theorem $\sup_{n\geq 1} A_n(h, |T|) \in L_p$, we have $\sup_{n\geq 1} A_n(E(|f||\mathcal{A}_n)|T|) \in L_p$ and $\sup_{n\geq 1} |A_n(E(f|\mathcal{A}_n), T)| \in L_p$. Hence, $A_n(E(f|\mathcal{A}_n)T) \xrightarrow{(o)} f_{\infty}^*$.

2) By the Theorem 3 [13], we have

$$E(f|\mathcal{A}_n) \xrightarrow{(o)} E(f, \mathcal{A}_\infty)$$

in L_0 As $\sup_{n\geq 1} | E(f | \mathcal{A}_n | \in L_1$, by Lemma 3.1 we obtain

$$A_n(E(f|\mathcal{A}_n)T) \xrightarrow{(o)} f_{\infty}^*$$

in L_0 .

WEIGHTED DOMINANT AND MAXIMAL INEQUALITIES

Theorem 4.1: Let $p \in (1, \infty)$ and $\mathcal{A}_n \downarrow \mathcal{A}_\infty$. Then for $f \in L_p$ the following inequality holds:

 $\| \sup_{n \ge 1} | E(A_n(f, T) | \mathcal{A}_n) | \|_{L_p} \le bq^2 \| f \|_{L_p},$

where $b = sup_k |\alpha(k)|$.

Proof: Let $g = \sup_{n \ge 1} |A_n(f, T)|$. Then

$$|A_n(f,T)| \le g, \quad \sup_{n\ge 1} |E(A_n(f,T)|\mathcal{A}_n)| \le \sup_{n\ge 1} E(g|A_n) |A_n(f,T)| \le g, \quad \sup_{n\ge 1} |E(A_n(f,T)|\mathcal{A}_n)| \le \sup_{n\ge 1} E(g|A_n)$$

and therefore

$$\|\sup_{n\geq 1} |E(A_n(f,T)|\mathcal{A}_n)| \|_{L_p} \leq \|\sup_{n\geq 1} E(g|\mathcal{A}_n)\|_{L_p}$$

By the dominant inequality for submartingale [12] we have

$$\| \sup_{n \ge 1} E(g|\mathcal{A}_n) \|_{L_p} \le q \| E(g|\mathcal{A}_1) \|_{L_p}$$

Since the conditional expectation operator is contracting in L_p we obtain, that

$$\| E(g|\mathcal{A}_1) \|_{L_n} \leq \| g \|_{L_n}$$

Therefore

$$\|\sup_{n\geq 1} |E(A_n(f,T)|\mathcal{A}_n)| \|_{L_p} \le q \|\sup_{n\geq 1} |A_n(f,T)| \|_{L_p}.$$

It follows from Akcoglu's theorem that $\|\sup_{n\geq 1} |A_n(f,T)| \|_{L_p} \leq b \cdot q \| f \|_{L_p}$. Thus, for $f \in L_p$ the inequality

$$\|\sup_{n\geq 1} |E(A_n(f,T)|\mathcal{A}_n)| \|_{L_p} \leq bq^2 \|f\|_{L_p}$$

holds.

Theorem 4.2: Let $f \in L_p$, $p \in (1, \infty)$ and $\mathcal{A}_n \downarrow \mathcal{A}_\infty$. Then for any $\varepsilon > 0$ the following inequality holds

$$\lambda \{ \sup_{n \ge 1} | E(A_n(f, T) | \mathcal{A}_n|) \} \ge \varepsilon \} \le \frac{1}{\varepsilon^p} \cdot b^p \cdot || f ||_{L_p}^p$$

where $b = sup_k |\alpha(k)|$..

Proof: Let $g = \sup_{n \ge 1} |A_n(f, T)|$. Then

 $\lambda\{\sup | E(A_n(f,T)|\mathcal{A}_n)| \ge \varepsilon\} \le \lambda\{\sup E(g|\mathcal{A}_n) \ge \varepsilon\}. \lambda\{\sup | E(A_n(f,T)|\mathcal{A}_n)| \ge \varepsilon\} \le \lambda\{\sup E(g|\mathcal{A}_n) \ge \varepsilon\}.$

By the maximal inequality for for submartingale $E(g|\mathcal{A}_n)$ [12] we have, that

$$\lambda\{E(g|A_n) \ge \varepsilon\} \le \frac{1}{\varepsilon^p} \parallel E(g \parallel \mathcal{A}_1) \parallel_{L_p}^p$$

Applying the contracting property of the conditional expectation operator in L_p , we obtain

$$\| E(g|\mathcal{A}_n) \|_{L_p}^p \le \| g \|_{L_p}^p = \| \sup_{n \ge 1} |A_n(f,T)| \|_{L_p}^p \le \| \sup_{n \ge 1} A(|f|,|T|) \|_{L_p}^p.$$

Now applying the inequality $\|\sup_{n\geq 1} A_n(|f|, |T|)\|_{L_p} \leq b \cdot q \|f\|_{L_p}$, we have

$$\lambda\{\sup_{n\geq 1} | E(A_n(f,T)|\mathcal{A}_n)| \geq \varepsilon\} \leq \frac{1}{\varepsilon^p} b^p \cdot q^p \cdot ||f||_{L_p}^p \cdot b = \sup_k |\alpha(k)|.$$

The following theorems can be proved analogously to theorems 4.1 and 4.2.

Theorem 4.3: Let $p \in (1, \infty)$. Then for $f \in L_p$ the following inequality holds

$$\|\sup_{n\geq 1} |A_n(E(f|\mathcal{A}_n)T)| \|_{L_p} \leq b \cdot q^2 \|f\|_{L_p},$$

where $b = sup_k |\alpha(k)|$.

Theorem 4.4: Let $p \in (1, \infty)$. Then for any $\varepsilon > 0$ and $f \in L_p$ the following inequality holds

$$\lambda\{\sup_{n\geq 1}|A_n(E(f|\mathcal{A}_n),T)|\geq \varepsilon\}\leq \frac{1}{\varepsilon^p}b^p\cdot q^p \parallel f \parallel_{L_p}^p,$$

where $b = sup_k |\alpha(k)|$.

MULTIPARAMETER WEIGHTED MARTINGALE ERGODIC THEOREMS

In this section we define the d-dimensional case of martingale ergodic averages and consider convergence theorems for such averages.

Let $\{a(k): k \in Z_d^+\}$ be the class of weights and

$$k = (k_1, k_2, \dots, k_d), \mathbf{N} = (N_1, N_2, \dots, N_d), |\mathbf{N}| = N_1 \cdot N_2 \cdot \dots \cdot N_d, \mathbf{0} = (0, 0, \dots, 0). \ k = (k_1, k_2, \dots, k_d), \mathbf{N} = (N_1, N_2, \dots, N_d), |\mathbf{N}| = N_1 \cdot N_2 \cdot \dots \cdot N_d, \mathbf{0} = (0, 0, \dots, 0).$$

For $N = (N_1, N_2, ..., N_d) N \rightarrow \infty$ means that $Ni \rightarrow \infty$ for any i = 1, 2, ..., d.

Definition 5.1: [9] The sequence $\{a(k): k \in Z_d^+\}$ is called *r*-Besicovich if for every $\varepsilon > 0$ there is a sequence of trigonometric polynomials in d variables, $\psi_{\varepsilon}(k)$, such that $\lim_{|N|\to\infty} \sup \frac{1}{|N|} \sum_{k=0}^{N-1} |a(k) - \psi_{\varepsilon}(k)| < \varepsilon$.

This class is denoted by B(r). The sequence $\alpha(k)$ is called *r*-bounded Besicovitch if $\{a(k)\} \in B(r) \cap l^{\infty}$. If $\{a(k)\} \in B(1) \cap l^{\infty}$ then $\{\alpha(k)\}$ is called a bounded Besicovich sequence.

Let $T_1, T_1, ..., T_1$ denote a family of d linear operators in L_p . We consider averages

$$A_N(T)f = \frac{1}{|N|} \sum_{k=0}^N a(k)T^k f,$$

where $f \in L_p$, $\mathbf{T}^k = T_1^{k_1} \cdot T_2^{k_2} \cdot \ldots \cdot T_d^{k_d}$ In [9] it is proved the following

Theorem 5.2: Let $T = (T_1, T_1, ..., T_1)$ denoted d Dunford-Schwartz operators. Then $A_N(T)f$ converges a.e. for every $f \in L_p, 1 and all bounded Besicovich sequences <math>\alpha(k)$.

Let, as in the Section 2 $\{\mathcal{A}_n\}_{n=1}^{\infty}$ be a monotone sequence of σ -subalgebras of Σ and $\mathcal{A}_n \downarrow \mathcal{A}_{\infty}$. We put $f^* = \lim_{N \to \infty} \mathcal{A}_N(T) f, f_{\infty}^* = E(f^* | \mathcal{A}_{\infty}).$

Theorem 5.3: Let $f \in L_p$, $1 , <math>\alpha(k)$ be a bounded Besicovich sequence, $N_n = (N_1^n, N_2^n, \dots, N_d^n) \to \infty$ as $n \to \infty$. Then

$$E(A_{N_n}(T)f|\mathcal{A}_n) \xrightarrow{(o)} f_{\infty}^*$$

in L_p .

The proof of Theorem 5.3 is analogous to the proof of Theorem 2.1 1).

Theorem 5.4: Let $\mathcal{A}_l \downarrow \mathcal{A}_{\infty}$, $f \in L_p$, $1 bounded Besicovich sequence, <math>b = sup_k |\alpha(k)|$, $N_l = (N_l^l, N_2^l, \dots, N_d^l) \to \infty$ as $l \to \infty$. Then

sр

1)
$$\|\sup_{l} |E(A_{N_{l}}(T)f|\mathcal{A}_{l})|\|_{p} \le b \cdot q^{d+1} \|f\|_{p};$$

2)
$$\lambda \{ \sup_{l} | E(A_{N_{l}}(T)f|\mathcal{A}_{l})| \ge \varepsilon \} \le b \cdot q^{pa}$$

Proof

1) Let $g_l = \sup_{m \ge l} |A_{N_m}(T)f|$. Then

$$|E(A_{N_l}(\mathbf{T})f|\mathcal{A}_l)| \le E(\sup_{m\ge l}|A_{N_m}(\mathbf{T})f|\mathcal{A}_l) = E(g_l|\mathcal{A}_l)$$

and

$$\sup_{l} |E(A_{N_{l}}(\mathbf{T})f|\mathcal{A}_{l})| \le \sup_{l} E(g_{l}|\mathcal{A}_{l}).$$
⁽¹⁾

Therefore

$$\|\sup_{l} |E(A_{N_{l}}(T)f|\mathcal{A}_{l})| \|_{p} \leq \|\sup_{l} E(g_{l}|\mathcal{A}_{l})\|_{p}$$

By the dominant inequality,

$$\|\sup_{l} E\left(g_{l} | \mathcal{A}_{l}\right)\|_{p} \leq q \| E\left(g_{1} | \mathcal{A}_{1}\right)\|_{p}$$

Since the conditional expatiation operators is contracting in L_p , we have

$$\| E(g_1 | \mathcal{A}_1) \|_p \le \| g_1 \|_p.$$
 (2)

Thus

 $\begin{aligned} \text{Middle-East J. Sci. Res., 13 (Mathematical Applications in Engineering): 70-76, 2013} \\ & \|\sup_{l} | E(A_{N_l}(T)f | \mathcal{A}_l)| \|_p \leq q \|g_1\|_p = \\ &= q \|\sup_{m} A_{N_m}(T)|f| \|_p \leq q \cdot q^d \cdot b \|f\|_p = \\ &= b \cdot q^{d+1} \|f\|_p. \end{aligned}$

2) By the inequality (1) we have

$$\lambda\{\sup_{l} | E(A_{N_{l}}(T)f|\mathcal{A}_{l})| \geq \varepsilon\} \leq \lambda\{\sup_{l} E(g_{l}|\mathcal{A}_{l}) \geq \varepsilon\}. \lambda\{\sup_{l} | E(A_{N_{l}}(T)f|\mathcal{A}_{l})| \geq \varepsilon\} \leq \lambda\{\sup_{l} E(g_{l}|\mathcal{A}_{l}) \geq \varepsilon\}.$$

According to the maximal inequality

$$\lambda \{ \sup_{l} E\left(g_{l} | \mathcal{A}_{l}\right) \geq \varepsilon \} \leq \frac{1}{\varepsilon^{p}} \parallel E(g_{l} | \mathcal{A}_{l}) \parallel_{p}^{p}$$

Applying inequality (2), we obtain

$$\frac{1}{\varepsilon^p} \parallel E(g_l \mid \mathcal{A}_l) \parallel_p^p \leq \frac{1}{\varepsilon^p} \parallel g_1 \parallel_p^p \leq \frac{1}{\varepsilon^p} \parallel \sup_m A_{N_m}(T) \mid f \mid \parallel_p^p.$$

Since $\| \sup_m A_{N_m}(\mathbf{T}) \| f \|_p^p \le b^p q^{dp} \| f \|_p$, we obtain

$$\lambda\{\sup_{l} |E(A_{N_{l}}(T)f|\mathcal{A}_{l})| \geq \varepsilon\} \leq b^{p} \cdot q^{pd} \frac{\|f\|_{p}^{p}}{\varepsilon^{p}}.$$

ACKNOWLEDGEMENT

This work has been supported by IIUM-RMC through project EDW B 11-185-0663.

REFERENCES

- 1. Kachurovskii, A.G., 2007. General theorems unifing ergodic averages and martingales. Prosedings of the Steklov Institute of Mathematics, 256: 160-187.
- 2. Kachurovskii, A.G., 1998. Martingale ergodic theorem. Math. Notes, 64: 266-269.
- 3. Kachurovskii, A.G., 2001. Convergence of averages in the ergodic theorem for groups Z^d . J. Math. Sci., 107 (5): 4231-4236.
- 4. Jerson, M., 1959. Martingale formulation of ergodic theorems. Proc. Am. Math. Soc., 10 (4): 531-539.
- 5. Rota, G.C., 1961. Une theorie unifiee des martingales et des moyennes ergodiques. C.R. Acad. Sci. Paris. 252 (14): 2064-2066.
- 6. Ionescu Tulcea, A. and C. Ionescu Tulcea, 1963. Abstract ergodic theorems. Trans. Amer. Math. Soc., 107 (1): 107-124.
- 7. Vershik, A.M., 1982. Amenability and approximation of infinite groups. Sel. Math. Sov., 2 (4): 311-330.
- 8. Baxter, J.R. and J.H. Olsen, 1983. Weighted and subsequential ergodic theorems. Can. J. Math., 35: 145-166.
- 9. Jones, R.L. and J.H. Olsen, 1994. Multiparametr weighted ergodic theorems. Can. J. Math., 46 (2): 343-356.
- Lin, M., 2007. Veber M.Weighted ergodic theorems and strong laws of large nambers. Ergod. Th. and Dynam. Sys., 27: 511-543.
- 11. Krendel, U., 1985. Ergodic Theorems. Walter de Grugwer. Berlin, New York, pp: 357.
- 12. Doob, J.L., 1956. Stochastic Processes, Wiley, New York, 1953, Inostrannaya Literatura, Moscow.
- 13. Shiryaev, A.N., 1995. Probability. Nauka, Moscow, 1980, Springer, New York.