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Abstract: In this paper we prove weighted martingale-ergodic and weighted ergodic-martingale theorems. 

Furthermore, analogous dominant and maximal inequalities for weighted martingale ergodic sequences and 

weighted ergodic martingale averages are also obtained.  

 

Key words: Ergodic averages  martingale  ergodic-martingale  martingale-ergodic averages 

 

INTRODUCTION 

 

 General theories unifying ergodic averages and martingales were reported by Kachurovskii [1-3]. Four different 

variants for theories unifying ergodic averages and martingales have been reported in [4-7]. Besides, one parameter 

weighted ergodic theorem and multiparameter weighted ergodic theorems have been investigated by Baxter J.H. 

Olsen [8] and R.L. Jones, J.H. Olsen [9], respectively. In [10], M. Lin and M. Weber considered weighted ergodic 

theorems and strong laws of large numbers. General ergodic theory is reported in [11].  

 In this paper we prove weighted martingale-ergodic and weighted ergodic-martingale theorems. Furthermore, 

analogous dominant and maximal inequalities for weighted martingale ergodic sequences and weighted ergodic 

martingale averages are also obtained.  

 

Preliminaries: Let         be a space with a finite measure,          be a space of complex measurable 
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In [1] it is proved the following  
 

Theorem 1.1 

1) Let             . Then                 
  in   , in this case    
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2) Let              . Then 
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Theorem 1.2: [2] 
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  in    as    . 
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Lemma 1: [2, 12] Let                 and       in   , as    . Then                   in    as    . 

 

Lemma 2: [2, 12] Let   
   
→    as     and                Then 
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Lemma 3: [11] Let   
   
→    as     and                Then         
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           .  

 

Definition 1.3: The sequence numbers      is called Besicovich sequences such that given    , there is a 

trigonometric polynomial       such that           
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A sequence      is called bounded Besicovich if          . In [9] it was proved the following  

 

Theorem 1.4: Let   be denoted the Dunford-Schwartz operator. Then there exists  
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a.e. for every            and all bounded Besicovich sequences       In this case, if        , then 
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            (o) -converges in    and if      , then         (o)-converges in   .  

In this paper we prove theorems analogous to 1.1 and 1.2 in the case of weighted averages.  

 

WEIGHTED MARTINGALE-ERGODIC THEOREMS 
 

 Let        
  be a monotone sequence of -subalgebras of  ,       (or             be a Besicovich 

bounded sequence,          be the Dunford-Schwartz operator. We put,  
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Theorem 2.1 

1) Let     ,        . Then              
   
→   

  in   .  

2) If      and                 , then              
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Proof: 

1) Since  
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where               by the Akcoglu’s theorem we have                      

 

 According to Theorem 1.2 [9],        
   
→     Therefore Lemma 2 implies              

   
→          

  
  in    as n  . 

 Let                    Then                       for all n. By Theorem 2 [13] 

                  Hence,                         . Therefore              
   
→   

  in   .  

 

2) By Theorem 1.4 [9] we have            a.e. As                   by Lemma 2 we obtain 
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WEIGHTED ERGODIC-MARTINGALE THEOREM 

 

 Let, as in Section 2,        
  be a monotone sequence of -subalgebras of  ,       (or             

be a Besicovich bounded sequence,          is the Dunford-Schwartz operator. We put  
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Lemma 3.1: Let   
   
→                  and                 . Then         
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Proof: Let                   

 

Obviously,  

 

                                                                                

              
 

By theorems 1.2 and 1.4 [9],        
   
→    as     in   . We will prove that 
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 Since       
   
→   and                 , we obtained from Lemma 3, that               
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n  . Therefore                 
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Theorem 3.2 

1) Let          . Then              
   
→   
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2) Let       and                   . Then              
   
→   

  in   . 

 

Proof: 

1) According to Theorem 2 [13],                   . Therefore by Lemma 3.1, we have 
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theorem                     we have                           and                            

Hence,             
   
→   

    

 

2) By the Theorem 3 [13], we have  
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in     As                  , by Lemma 3.1 we obtain  
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WEIGHTED DOMINANT AND MAXIMAL INEQUALITIES 

 

Theorem 4.1: Let         and      . Then for      the following inequality holds:  
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By the dominant inequality for submartingale [12] we have  

 

    
   

          
             

  

 

Since the conditional expectation operator is contracting in    we obtain, that  
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It follows from Akcoglu’s theorem that                    
         

  Thus, for      the inequality  

 

    
   

                  
         

 

holds.  

 

Theorem 4.2: Let              and        Then for any     the following inequality holds  
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Proof: Let                  . Then  

 

                                                                                      
 

By the maximal inequality for for submartingale         [12] we have, that  

 

                               
 

  
           

 
  

 

Applying the contracting property of the conditional expectation operator in   , we obtain 

 

           

 
      

 
     

   
            

 
     

   
             

 
  

 

Now applying the inequality                      
         

, we have  
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The following theorems can be proved analogously to theorems 4.1 and 4.2.  

 

Theorem 4.3: Let         . Then for      the following inequality holds  
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Theorem 4.4: Let        . Then for any     and      the following inequality holds  

 

     
   

                   
 

  
          

 
  

where               .   

 

MULTIPARAMETER WEIGHTED MARTINGALE ERGODIC THEOREMS 

 

 In this section we define the  -dimensional case of martingale ergodic averages and consider convergence 

theorems for such averages.  

Let           
   be the class of weights and  
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For                        means that      for any               
 

Definition 5.1: [9] The sequence           
   is called  -Besicovich if for every     there is a sequence of 

trigonometric polynomials in d variables,      , such that             
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 This class is denoted by       The sequence  (k) is called  -bounded Besicovitch if               . If 

               then        is called a bounded Besicovich sequence.  

Let            denote a family of d linear operators in   . We consider averages  
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In [9] it is proved the following  

 

Theorem 5.2: Let                   denoted d Dunford-Schwartz operators. Then        converges a.e. for 

every            and all bounded Besicovich sequences     .  

 Let, as in the Section 2        
  be a monotone sequence of -subalgebras of   and        We put 

                  
             

 

Theorem 5.3: Let      ,      ,      be a bounded Besicovich sequence,       
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in    .  

The proof of Theorem 5.3 is analogous to the proof of Theorem 2.1 1).  

 

Theorem 5.4: Let             ,            bounded Besicovich sequence,                ,    
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By the dominant inequality,  

    
 

                         

 

Since the conditional expatiation operators is contracting in     we have  
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2) By the inequality (1) we have  

 

     
 

      
                  

 
                 

 
      

                  
 

             

 

According to the maximal inequality  

     
 

            
 

  
           

 
  

Applying inequality (2), we obtain  
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