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Abstract

Three term recurrence relations yn+1 +bnyn +anyn−1 = 0 can be used
for computing recursively a great number of special functions. Depending
on the asymptotic nature of the function to be computed, different re-
cursion directions need to be considered: backward for minimal solutions
and forward for dominant solutions. However, some solutions interchange
their role for finite values of n with respect to their asymptotic behaviour
and certain dominant solutions may transitorily behave as minimal. This
phenomenon, related to Gautschi’s anomalous convergence of the contin-
ued fraction for ratios of confluent hypergeometric functions, is shown to
be a general situation which takes place for recurrences with an nega-
tive and bn changing sign once. We analyze the anomalous convergence
of the associated continued fractions for a number of different recurrence
relations (modified Bessel functions, confluent and Gauss hypergeometric
functions) and discuss the implication of such transitory behaviour on the
numerical stability of recursion.
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1 Introduction

Three term recurrence relations (TTRRs)

yn+1 + bnyn + anyn−1 = 0 (1.1)

are satisfied by a large number of special functions, including confluent and
Gauss hypergeometric functions.

For computing a solution of a TTRR different strategies should be considered
depending on the asymptotic character of the solution. When the recurrence
admits a minimal solution, fn (limn→∞ fn/gn = 0 for any gn independent of fn)
forward computation of fn (increasing n) is a bad conditioned process, at least
asymptotically, and only backward recursion should be considered. Contrary,
for dominant solutions forward recursion is the right choice. A simple recipe for
computing with TTRR would be: if one direction fails, the opposite will usually
work well.

This simple recipe is true asymptotically when there exists a minimal solu-
tion; however, some results indicate that it may dramatically fail for finite n.
Gautschi’s anomalous convergence [3] and the instability of certain confluent
hypergeometric recurrences found by N.M. Temme [8] point in this direction.

Pincherle’s theorem [2] states that a three term recurrence relation (1.1)
admits a minimal solution if and only if the associated continued fraction

H(k) ≡
−ak

bk+

−ak+1

bk+1+

−ak+2

bk+2+
... (1.2)

converges; the continued fraction converges to the ratio of minimal solutions
fk/fk−1. In 1977, W. Gautschi found that the continued fraction H(k) associ-
ated to the recurrence for fn =1F1(a+n; c+n; x) (which is the minimal solution)
initially appears to converge to a value different from fk/fk−1, particularly for
large x.

Gautschi’s result and Pincherle’s theorem suggest that there may exist dom-
inant solutions of the recurrence that behave as a minimal solution transitorily.
As we will see, gn = (−1)nΓ(c + n)U(a + n, c + n, x) is a transitory minimal
solution of the confluent recurrence and, indeed, the approximants of the CF
H(k) initially tend to the ratio gk/gk−1 particularly when x is large.

Far from being a special case, we will show that the existence of transitory
minimal solutions (for short, pseudominimal solutions) is a quite ubiquitous
property. Other examples are provided by the modified Bessel function recur-
rence, the recurrence satisfied by the confluent family 1F1(a + n; c; x) (the case
described in [8]) as well as some Gauss hypergeometric recursions. We will
restrict the analysis to real variables.

The paper is organized as follows. In Section 2, we reinterpret Gautschi’s
anomalous convergence [3] in terms of the existence of transitory minimal so-
lutions. We identify the minimal solution and a transitory minimal solution
which, together with asymptotic expansions (large x) for these solutions allows
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us to obtain explicit approximations for the accuracy of the continued frac-
tion; we prove that the smallest relative error when the CF approaches the
ratio gk/gk−1 decreases exponentially as x increases. In Section 3 we establish
that these transitory behaviours are common to a wide family of recurrences,
which we call symmetrical; the simplest example is provided by modified Bessel
functions. By using the characterization of symmetrical recurrences and, in
particular, the modified Bessel function case, we identify additional examples
of transitory behaviour. In Section 4 we provide additional examples of re-
currences exhibiting transitory behaviour. In 4.1 the instabilities described by
N.M. Temme [8] in the recurrent evaluation of the confluent hypergeometric
functions U(a + n, c, x) are explained in terms of the existence of pseudomini-
mal solutions; in 4.2 we provide examples of continued fractions associated to
Gauss hypergeometric functions and we will obtain Gautschi’s phenomenon as
the confluent limit of a Gauss hypergeometric case. The last section describes
the implications of anomalous transitory behaviours in the numerical computa-
tion through three-term recurrence relations when finite precision arithmetic is
used.

In the sequel, the recurrence satisfied by a set of hypergeometric functions
yn =2F1(a + ε1n, b + ε2n; c + ε3n; x) with εi integer numbers (not all equal to
zero), will be named (ε1 ε2 ε3)-recurrence, as done in [4]. The same notation
is adopted for the recurrences for confluent functions M(a + ε1n, c + ε3n, z).
Because we will restrict to |εi| ≤ 1, we will further simplify the notation by
writing only the signs of εi.

2 Gautschi’s anomalous convergence revisited

Let us study in detail the case of the recurrence satisfied by yn =1F1(a + n; c +
n; x) ≡ M(a + n, c + n, x) and the associated continued fraction.

The (+ +) confluent recurrence relation yn+1 + bnyn + anyn−1 = 0 has coef-
ficients

bn = −
(c + n)(1 − c − n + x)

(a + n)x
, an = −

(c + n)(c + n − 1)

(a + n)x
, (2.1)

and two independent solutions are

fn = M(a + n, c + n, x), gn = (−1)nΓ(c + n)U(a + n, c + n, x), (2.2)

where U(a+n, c+n, x) is a second solution of the confluent differential equation
[1, Eq. 13.1.3]. As it is well known [7], fn is the minimal solution and therefore
the associated continued fraction H(k) converges to the ratio fk/fk−1. However,
as Gautschi described [3], for large x the CF initially appears to converge to a
different value. The next result [6, Theorem 7.24] gives an specific meaning to
this anomalous behaviour when x is large.
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Theorem 1 Let a, c and k be fixed parameters, c + k − 1 $= 0,−1,−2, . . ., the
continued fraction (1.2) with the coefficients (2.1) corresponds at x = 0 to the
ratio

1F1(a + k; c + k; x)
1F1(a + k − 1; c + k − 1; x)

(2.3)

and converges to this function for x ∈ R.

At x = ∞ the continued fraction (1.2) corresponds to the following ratio of
formal series

−c + k − 1
x

2F0(a + k, a − c + 1; ;−1/x)
2F0(a + k − 1, a − c + 1; ;−1/x)

. (2.4)

Therefore, the ratio

−(c + k − 1)
U(a + k, c + k, x)

U(a + k − 1, c + k − 1, x)
. (2.5)

corresponds asymptotically (as x → ∞) to the continued fraction (1.2).

Theorem 1 is essentially Theorem 7.24 of [6], but with the inclusion of the
U functions.

In the first part, correspondence means that the Taylor series around x = 0
of the approximants of the CF coincides with the (convergent) Taylor series of
the ratio of 1F1 confluent series (to higher order as higher approximants are
considered). In the second case, the correspondence for the ratio of 2F0 series is
in powers of x−1 and the formal expansion is divergent. Finally, by asymptotic
correspondence we mean that, by considering the asymptotic expansions as x →
∞, there is correspondence in powers of x−1. Indeed, the complete asymptotic
expansion of the U function can be expressed in terms of 2F0 divergent series
because [1, Eq. 13.5.2]:

U(α, γ, x) = x−α

(
J−1∑

j=0

(α)j(α − γ + 1)j

j!
(−x)−j + O(x−J )

)
. (2.6)

Theorem 1 explains why for large enough x the continued fraction H(k) gives
asymptotic estimations for the ratio of the dominant solutions gn (2.2); however,
because the continued fraction converges to the minimal solution, this can only
be true for a finite number of approximants. An initial apparent convergence
to gk/gk−1 is possible while for a large enough number of approximants the CF
will finally approach fk/fk−1.

2.1 Error estimation of CFs from solutions of recurrence
relations

A more quantitative description can be obtained by analyzing the relation be-
tween the continued fraction and backward recursion [2, 5, 6]. This will enable
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us to estimate the relative accuracy of the CF [5], both for approximating ratios
of transitory minimal solutions (pseudoconvergent regime) and ratios of the true
minimal solution fn.

The m-th approximant to the continued fraction H(k) (1.2) is equal to the
ratio of solutions yk/yk−1 which are obtained from the backward application of
the recurrence relation with starting values

yk+m−1 = 1 , yk+m = 0. (2.7)

This is shown by iterating m times the following relation (which is equivalent
to the application of one backward step of the recurrence):

yk

yk−1

=
−ak

bk +
yk+1

yk

. (2.8)

Let us denote N = k + m. Given an independent pair of solutions of the
recurrence relation {fn, gn}, we can write yN = αfN + βgN = 0, yN−1 =
αfN−1 + βgN−1 = 1. Solving for α and β (which is possible because {fn, gn} is
an independent pair) the m-th approximant to H(k) = fk/fk−1 reads:

Hm(k) =
yk

yk−1

=
αfk + βgk

αfk−1 + βgk−1

=
gNfk − fNgk

gNfk−1 − fNgk−1

. (2.9)

Therefore, the continued fraction converges if and only if either fN/gN or
gN/fN have a finite limit as N → +∞, which means that the recurrence admits
a minimal solution (essentially, this proves Pincherle’s theorem [5]).

We observe that when |fN/gN | becomes small, the m-th approximant to the
continued fraction approaches the ratio fk/fk−1. In particular, when neither fk

nor fk−1 vanish we can compute the relative error

εfr (k, m) = 1 −
fk−1

fk

Hm(k) =
1/rk − 1/rk−1

1/rN − 1/rk−1

(2.10)

where
rn ≡ fn/gn. (2.11)

Notice that rk/rk−1 $= 1 because the solutions fn and gn are independent.
As |rN/rk−1| becomes small the error |εfr (k, m)| tends to decrease. Of course,

when rN → 0 (fn minimal) we have true convergence to fk/fk−1 as N → ∞.
Even if rN → 0 as N → +∞ (which implies that the CF converges to

fk/fk−1), for a finite number of approximants the CF may appear to converge
to another ratio of solutions (that is, it pseudoconverges). Indeed, it may happen
that gn is such that initially rN (N = k+m) increases and becomes much larger
than rk−1; in this case, the sequence of approximants will initially approach
gk/gk−1 and we will say that gn is transitorily minimal or pseudominimal. The
corresponding expression for the relative error is:
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εgr(k, m) =
rk

rN

εfr (k, m) =
rk − rk−1

rN − rk−1

. (2.12)

|εgr(k, m)| will become small when |rN/rk−1| is large. This expression will be
used for estimating the accuracy of the CF when it approximates a transitory
minimal solution (pseudoconvergence regime).

Differently to minimal solutions which are unique up to constant factors,
transitory minimal solutions are not unique. However, not all dominant solu-
tions are transitorily dominant: if the CF is transitorily converging to the ratio
gk/gk−1, because gk/gk−1 $= fk/fk−1, it will not approach (gk + Cfk)/(gk−1 +
Cfk−1) for C large enough. However, although transitory minimal solutions are
not unique, we can expect that there exists a dominant solution (or several)
which is (are) optimally pseudominimal in the sense that the CF appears to
converge to this ratio of dominant solutions with the best possible accuracy.

2.2 Asymptotic error estimates for Gautschi’s pseudocon-
vergence

Some asymptotic estimates suffice to predict the convergence properties (transi-
tory or not) of the associated continued fraction. In [7], asymptotic expansions
for large x are given for the M(a, c, x) and U(a, c, x) functions, which are uni-
formly valid with respect to µ = a/x when c and a are comparable in size. The
dominant terms provide the following estimation for rN = fN/gN

rN ∼ (−1)NK
xN

Γ(a + N)

(
1 +

a + N − 1
x

)a−c (
1 +

a + N
x

)a−c+1

(2.13)

where K = exx2a−c. Just by considering the factor xN/Γ(a + N) we see that
rN will initially grow rapidly as N increases, particularly for large x, although
rN → 0 as N → ∞. This points toward initial pseudoconvergence to the ratio
of U functions and final convergence to the ratio of M functions.

Figure 1 confirms this situation for the evaluation of the continued fraction
associated to the ratio

f1

f0

=
M(a + 1, c + 1, x)

M(a, c, x)
, (2.14)

which initially converges to

g1

g0

= −c
U(a + 1, c + 1, x)

U(a, c, x)
, (2.15)

and shows the accuracy of the errors estimated from Eqs. (2.10), (2.12) and
(2.13).
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Figure 1 Left: the function |rN/r0| is shown for the values a = 12.4, c = 1.3,

x = 60. Center: convergence of the successive approximants Hm of the continued

fraction for f1/f0 (Eq. (2.14)); an abrupt change in the value of the CF is observed
when |rN/r0| ! 1. Right, the estimated analytical relative error together with the

computed errors obtained from the relative deviation of successive approximants are

shown.

The relative error for pseudoconvergence to the wrong limit, |εgr(1, m)| de-
creases until the maximum rN (N = 1 + m) is reached. For large x, it is easy
to obtain the following estimate for the value of N for which |rN | is maximal:

N∗ = x − c + O(1/x). (2.16)

The best relative error for pseudoconvergence will then be attained at the
[x− c] approximant ([x− c] denoting the integer part of x− c). We can estimate
the error when x is large and N = N ∗ = x − c using (2.12); this will estimate
the best attainable error in the pseudoconvergent regime. We have

|εgr(1, m)| =

∣∣∣∣∣
r1 − r0

rN∗ − r0

∣∣∣∣∣ ≈

∣∣∣∣∣
r1

rN∗

∣∣∣∣∣ ≡ εp,

where the approximation holds because |rN∗ | >> |r0|, r1/r0 ∼ −x/a and we
consider large x. Using (2.13) we have that as x → +∞

εp ∼

√
π

2
4c−a

1

Γ(a + 1)
xa+1/2e−x(1 + O(x−1)). (2.17)

From this error analysis and the comparison with the error estimates, we see
that gn = (−1)nΓ(c + n)U(a + n, c + n, x) is a consistent candidate for being
optimally pseudominimal. Indeed, the explicit error estimations agree very well
with the relative deviation between successive approximants (Figure 1, right).

After [x − c] iterations, pseudoconvergence worsens. |rN/r0| starts to de-
crease and the successive approximants will eventually start to converge to the
ratio of minimal solutions. A rough estimate of the iteration for which this
happens can be obtained by considering:

|εfr (1, m)| =

∣∣∣∣∣
1/r1 − 1/r0

1/rN − 1/r0

∣∣∣∣∣ ≈

∣∣∣∣∣
1

r0/rN − 1

∣∣∣∣∣ ≡ ε.
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When |rN | < |r0| convergence to f1/f0 begins. Taking then |rN/r0| = 1 in
the estimation rN/r0 ≈ xNΓ(a)/Γ(a + n) gives, for large x, N ∼ ex + (a −
1/2) log(x)+O(1). This is in agreement with the observed numerical behaviour.

A clear and quantitative picture of the “dip-and-peak” effect [3] emerges
from the combined used of the error formulas (2.10) and (2.12) and asymptotic
approximations for the solutions of the recurrence. The dip (see Figure 1) is
reached at N = [x−c], where the best accuracy for pseudoconvergence is reached
(2.17) and the peak corresponds to the value of N for which |rN | ≈ |r0|, when
the continued fraction starts to converge to the ratio of minimal solutions.

Depending on how deep is the dip, accuracy in the evaluation of the ratio
of minimal solutions will suffer loss of accuracy when finite precision arithmetic
is used. Typically, the loss of accuracy in the computation of ratios of minimal
solutions will be reciprocal to the attainable accuracy in the pseudoconvergent
region. We postpone this analysis until section 5.5. By the moment, we do not
consider restrictions on the available number of significant digits (we use Maple
with a high enough number of digits).

3 Symmetrical recurrences and pseudoconver-
gence

In this section we will show that the sign properties which take place for the
coefficients of the (+ +) confluent recurrence (negative an coefficient and co-
efficient bn which changes sign) are clear signatures of transitory anomalous
convergence. Also, the fact that the pattern of signs of the minimal solution
does not change, as happens for the (+ +) case, is characteristic of transitory
behaviour. When both conditions are satisfied the minimal solution changes its
role, causing anomalous behaviour of the CF.

Perron’s theorem [2] can be used for determining the pattern of signs of
minimal solutions. We write Perron’s theorem [2] in a form suitable for analyzing
the cases for which the theorem gives positive results regarding the existence of
a minimal solution [5].

Theorem 2 (“Intuitive” Perron’s theorem) Let yn+1+bnyn+anyn−1 = 0,
an and bn being rational functions of n such that b2

n − 4an > 0 for large n; let
λ1(n) and λ2(n) be the solutions of λ2+bnλ+an = 0. If limn→+∞ |λ1(n)/λ2(n)| $=
1 then there exists a pair of independent solutions {fn, gn} such that

lim
n→+∞

1

λ1(n)

fn

fn−1

= 1 , lim
n→+∞

1

λ2(n)

gn

gn−1

= 1

and the minimal solution is the one corresponding to the smallest |λ(n)|, namely:

λ1(n) = −
2an

bn + sign(bn)
√

b2
n − 4an

.
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As a consequence of this result, the characteristic roots λ1(n) and λ2(n) will
have opposite patterns of signs because we will assume that an < 0. This implies
that the minimal solution will be asymptotically alternating when bn < 0 for
large enough n or it will have constant sign if bn > 0. Any dominant solution will
have an asymptotic pattern of signs opposite to that of the minimal solution.

3.1 A canonical example: modified Bessel functions

The simplest examples of recurrences displaying transitory behaviour are those
of the form

yn+1 − yn−1 = bnyn , n ∈ N,

bn = −b−n,
(3.1)

or the slightly more general case wn+1−awn−1 = Bnwn , n ∈ N, a > 0, Bn0+p =
−Bn0−p, p, n0 ∈ N, which can be transformed to the previous case with the
changes wn = an/2yn−n0 , bn = a−1/2Bn−n0 . We will say that this type of
recurrences are symmetrical around n0. The value n0 will play a central role.
For simplicity let us consider (3.1), that is, n0 = 0, a = 1.

All the solutions of the recurrence (3.1) are symmetrical, that is, they verify
yn = y−n for all n ∈ N.

Without loss of generality, we can consider that bn > 0 when n > 0 (if the
sign is opposite, we can consider the recurrence satisfied by (−1)nyn). When
Theorem 2 applies, the minimal solution is alternating for large enough n while
the dominant solutions have constant sign. Furthermore, if a solution fn is
alternating as n → +∞ ((−1)nfn with constant sign) then it is alternating
for all n and |fn| decreases as |n| increases; this is seen by applying backward
recursion for positive n. In addition, using forward recursion we see that all
solutions gn with g0 > 0, g1 > 0 are positive for all n and therefore dominant;
furthermore, |gn| increases as |n| increases.

Therefore, if gn is a positive (or negative) dominant solution, |rn| = |fn/gn|
reaches its maximum at n = n0 = 0 and it is strictly monotonic for n > 0
and n < 0. This is the type of situation leading to pseudoconvergence of the
associated continued fraction.

For non-integer n − n0 this complete symmetry of the solutions is lost but
the change of behaviour around n0 may remain. The simplest case is that of
modified Bessel functions. The recurrence relation

yν+1(x) −
2ν

x
yν(x) − yν−1(x) = 0 (3.2)

has as a pair of independent solutions Kν(x) and (−1)[ν]Iν(x) the first being
dominant and the second minimal as ν → +∞ (a more standard notation for
the minimal solution is eiπνIν(x), but we prefer to use real notation only). For
integer orders, as is true for the general case above described, we have that
Kn = K−n and In = I−n and the transitory behaviour certainly takes place.
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Pseudoconvergence takes place for real orders ν as well. The associated
continued fraction, F , reads

H(ν) = lim
m→+∞

Hm(ν), Hm(ν) =
1

bν+

1

bν+1+
...

1

bν+m−1

, (3.3)

and br = −2r/x. Although converging to −Iν(x)/Iν−1(x), this CF initially
approaches the ratio Kν(x)/Kν−1(x) when ν is negative. After the N -th ap-
proximant, N = [ν], the continued fraction does no longer pseudoconverge to
this ratio and, for a large enough number of approximants m, the sequence
{Fm(ν)} starts to converge to −Iν(x)/Iν−1(x).

-80 -60 -40 -20 0 20 40 60
n

10 12

100

1012

1024

|I n+
0.

1(3
0)

/K
n+

0.
1(3

0)
|

Figure 2 Plot of the ratio In+0.1(30)/Kn+0.1(30) as a function of n ∈ Z. Several

regions can be distinguished

Similarly as happened for the confluent hypergeometric case, the accuracy
reached in the pseudoconvergent regime can be very high (see Figure 3, center).
Three features take place for the modified Bessel function case which explain the
transitory behaviour of the CF (3.3): the central coefficient of the recurrence
bn changes sign at some n0 (n0 = 0 in this case), the coefficient an is negative
and the minimal solution keeps the same pattern of signs around n0 (for the
particular case of Fig.2, the minimal solution is alternating when n > −46).
This features are also shared by the confluent case previously described. In the
next section we prove that these three conditions are enough to guarantee the
appearance of transitory behaviour.

The transitory behaviour is usually limited to a finite range of parameters.
We will not consider the detailed analysis of the parameter regions for which
anomalous behaviour takes place but we give some indications for the case of
modified Bessel functions. For modified Bessel functions, pseudoconvergence of
the CF (3.3) occurs when ν < 0 but the effect tends to disappear for very nega-
tive ν because −Iν(x)/Iν−1(x) and Kν(x)/Kν−1(x) become very similar; then,
the change from apparent convergence to Kν(x)/Kν−1(x) to true convergence
to the ratio of minimal solutions as ν → +∞, −Iν(x)/Iν−1(x), becomes less
noticeable. This can be observed in Figure 3 (center, right), where the peak
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preceding convergence to the minimal solution tends to disappear as smaller ν
(ν < −50) is considered.

The fact that the ratios −Iν(x)/Iν−1(x), Kν(x)/Kν−1(x) approach each
other for very negative ν /∈ Z can be understood by noticing that

Iν(x) = I−ν(x) −
2

π
sin νπKν(x) (3.4)

together with the fact that Kν(x) = K−ν(x) and Iν(x)/Kν(x) → 0, ν → ∞.
Additionally, this also shows that (−1)[ν]Iν(x) is dominant as ν → −∞ for ν
non-integer (the minimal solution as ν → −∞ is (−1)[ν]I−ν(x)).
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0.3
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H m
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/H
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|1-
H m
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m

-1
|

Figure 3 Left: The successive approximants to the CF of Eq. (3.3) for ν = −45.9,

x = 30. Center: relative deviation |1 − Hm/Hm−1| between successive approximants

for ν = −45.9, x = 30. Right: same but for ν = −59.9, x = 30.

This gradual disappearance of transitory effects due to a change in the be-
haviour of one of the solutions is also observed in the (+ +) confluent recurrence
and the (+ + +) Gauss recurrence to be studied later. The anomalous conver-
gence properties are then limited to finite range of parameters. Also, anomalous
convergence will disappear if the solutions of the recurrence enter an oscillatory
region (as happens for the (+ 0) confluent recurrence). As commented before,
we will not study in detail which are the ranges of parameters for which pseu-
doconvergence takes place.

In section 4, we will use the modified Bessel function case as a reference for
determining the existence of transitory behaviour.

In the next section, we analyze general conditions (shared by the Bessel case)
under which anomalous convergence can be expected.

3.2 General symmetrical recurrences

Let us now consider the more general case of recurrences yn+1+bnyn+anyn−1 =
0 with an < 0 and such that bn changes sign at n0 (we call this a general
symmetrical recurrence). Furthermore, we will assume that the recurrence has
a minimal solution fn as n → +∞
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When Theorem 2 applies, because an < 0, the minimal and dominant solu-
tions have opposite patterns of signs for large n (one alternating and the other
one with constant sign). When, for large enough n, bn > 0 the minimal solution
is alternating and when bn < 0 it has constant sign. Furthermore, it is easy to
check that the condition an < 0 necessary holds when the solutions have this
pattern of signs (one with constant signs, the other one alternating).

We will analyze the appearance of the following type of transitory behaviour
for the quantity:

Rn ≡ |rn| = |fn/gn|, (3.5)

fn being minimal.

Definition 1 Given a TTRR with fn the minimal solution as n → +∞, a
dominant solution gn is transitorily minimal for n ≤ nt if {Rn} is an increasing
sequence for n ≤ nt (Rn−1 < Rn) and decreasing for n ≥ nt + 1 (Rn > Rn+1)

We will consider that bn may change its sign only once. Provided that the
pattern of signs of the minimal solution does not change, we will check that
transitory behaviour takes place if and only if bn changes of sign and that,
furthermore, the change of sign of bn coincides with the change of tendency of
Rn = |fn/gn|, gn being a dominant solution with a pattern of signs contrary
to the minimal solution. Therefore, the behaviour observed for the modified
Bessel function and the confluent (+ +) recurrences, are general for symmetrical
recurrences.

First, we prove that when transitory minimal solutions exist the change of
sign of bn coincides with the change of behaviour of the functions.

Theorem 3 Let yn+1 + bnyn + anyn−1 = 0 with an < 0. Let fn and gn be
solutions with fixed and opposite pattern of signs (one of them with constant sign
and the other one alternating). If Rn = |fn/gn| reaches an absolute extremum
at n = n0 and it is strictly monotonic when n ≥ n0 and n ≤ n0 then the sign of
bn for n ≤ n0 − 1 is opposite to the sign for n ≥ n0 + 1.

Proof. Let us assume, for instance, that fn is alternating and that Rn reaches
a maximum at n0. We define

∆n =
∣∣∣∣
gn+1

gn

∣∣∣∣ −
∣∣∣∣
fn+1

fn

∣∣∣∣ =
gn+1

gn
+

fn+1

fn
. (3.6)

Using the recurrence relation we have

∆n + λn∆n−1 = −2bn, (3.7)

where

λn ≡ an

fn−1

fn

gn−1

gn

> 0.
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Because Rn−1 < Rn for n ≤ n0 and Rn > Rn+1 for n ≥ n0 then ∆n < 0 if
n ≤ n0 − 1 and ∆n > 0 if n ≥ n0. From Eq. (3.7) bn > 0 if n ≤ n0 − 1 and
bn < 0 in n ≥ n0 + 1. !

Now, we prove that the existence of transitorily minimal solutions is guar-
anteed when the minimal solution of a symmetrical recurrence maintains its
pattern of signs. We also prove that the change of behaviour of the solutions
takes place at the point where bn changes sign.

In the sequel, we will say that bn (or any other function depending on n)
changes sign at n = n0 if its sign when n ≤ n0 (excluding n = n0 when bn0 = 0)
is opposite to the sign when n ≥ n0 + 1.

Theorem 4 Let yn+1+bnyn+anyn−1 = 0 be a recurrence such that, for n ≥ n−,
an < 0 and bn changes sign at n0 > n− +1. Suppose that there exists a solution
fn with fixed pattern of signs for all n ≥ n−, the pattern being alternating if
bn < 0 for large n or with constant sign if bn > 0 for large n (fn may be
minimal). Let gn be any solution (not minimal) such that

gn0+1

gn0

= −γ
fn0+1

fn0

, γ > 0,

and let Rn = |fn/gn|, then for n ≥ n− the following holds depending on the
value γ:

1. If γ > 1 then Rn < Rn0 if n $= n0; Rn−1 < Rn if n ≤ n0.

2. If γ < 1 then Rn < Rn0+1 if n $= n0 + 1; Rn > Rn+1 if n ≥ n0 + 1.

3. If γ = 1 then Rn < Rn0 = Rn0+1 if n $= n0, n0 + 1; Rn−1 < Rn if n ≤ n0

and Rn > Rn+1 if n ≥ n0 + 1.

Proof. Let us consider the case for which bn < 0 for large n (and there-
fore fn has alternating sign). Clearly, it is enough to consider the cases with
starting values G0 ≡ (gn0 , gn0+1) = (|fn0 |,λ|fn0+1|) for the first case and
G0 = (λ|fn0 |, |fn0+1|) for the second, λ > 1.

We analyze the first possibility; for the second case, the proof is similar
and the third case is also obtained in a very similar way. Let us consider the
generation of the solution yn = gn − fn, which, given G0, has starting values
yn0 ≥ 0, yn0+1 ≥ 0 (not both equal to zero). Forward recursion

yn+1 = −bnyn − anyn−1

for n ≥ n0 +1 provides positive values for yn, n ≥ n0 +2 because an < 0, bn < 0
if n ≥ n0 + 1. Similarly, the solution yn = gn + fn is also positive. Therefore
gn − fn > 0 and gn + fn > 0 when n ≥ n0 + 2, that is |fn| < gn = |gn| for
n > n0 (also for n = n0 + 1 because of the definition of gn0).

Considering now backward recursion:

yn−1 = −
1

an

(bnyn + yn+1),

13



it is also clear that gn − fn > 0 and gn + fn > 0 when n ≤ n0 − 1. Therefore,
|fn| < |gn| if n < n0.

In summary, Rn = |fn/gn| < 1 = Rn0 for n $= n0, which completes the proof
of the first case.

In addition, because Rn < Rn0 when n < n0, then in particular
∣∣∣∣∣

gn0

gn0−1

∣∣∣∣∣ >

∣∣∣∣∣
fn0

fn0−1

∣∣∣∣∣ .

Therefore, we can repeat the same argument as before and we have that Rn <
Rn0−1, n < n0 − 1, and by induction Rn−1 < Rn, n ≤ n0.

The rest of cases can be proved in a similar way. !
When Perron’s theorem is positive with respect to the existence of a min-

imal solution, the fn in the previous theorem is necessarily minimal because
the rest of solutions (all of them dominant) have asymptotically the opposite
pattern of signs. On the other hand, it is easy to see that the minimal solutions
do not change their pattern of signs (at least when Perron’s theorem provides
information) for n ≥ n0.

Theorem 5 let yn+bnyn−1+anyn−1 = 0 with negative an and such that bn only
changes sign at n = n0. Then, if bn < 0 (bn > 0) for n > n0 and the minimal
solution is alternating (of constant sign) for large n, then it is alternating for
all n ≥ n0 (of constant sign).

Proof. Let us, for instance, consider the case bn > 0 for large n, then
yn−1 = −(yn+1 + bnyn)/an, which, for n > n0, is positive if yn and yn+1 are
positive. And because, if Perron’s theorem applies, the solution is positive (or
negative) for large n, the theorem is proved. !

The situation in which the pattern for the minimal solution is kept for n < n0

depends on the specific coefficients an, bn, but it is a common situation (as the
confluent and the modified Bessel functions case show and as further examples
will illustrate). When this takes place, the minimal solution as n → +∞ does
no longer behave like a minimal solution when n < n0 and transitory minimal
solutions exist (Theorem 4). From the error analysis of section 2.1, we conclude
that when there exist solutions which are transitorily minimal in n− ≤ n < n0 a
CF for yn/yn−1 will approximate these solutions instead of the minimal solution
for the first [n0 − n] approximants. The next theorem summarizes part of the
results of this section combined with the error analysis of section 2.1:

Theorem 6 Let yn+1 + bnyn +anyn−1 = 0, an < 0 and bn changing sign at n0.
Let fn be minimal and with a fixed pattern of signs for n ≥ n− (n− < n0 − 1)
and gn a second independent solution such that gn0fn0+1 + gn0+1fn0 = 0. Let k
be such that n− < k < n0. Let |εfr (k, m)| be the relative deviation from fk/fk−1

of the m-th approximant of the CF and |εgr(k, m)| the analogous deviation from
gk/gk−1.

Let nk ∈ N be the only value greater that n0 such that
Rn

Rk
− 1 changes sign

at n = nk. Then:

14



1. If m < nk − k, |εgr(k, m)| < |εfr (k, m)|

2. If m > nk − k, |εfr (k, m)| < |εgr(k, m)|

The smallest error for pseudoconvergence can be bounded in the following
way:

min
m

|εgr(k, m)| ≤
Rk + Rk−1

Rn0 − Rk−1

. (3.8)

We don’t prove this theorem, which is a direct consequence of Theorem 4
and the error formulas of Section 2.1.

Part of the previous result concerning the behaviour of the approximants of
the associated continued fraction can also be understood from an elementary
analysis of the CF. It is easy to see that when the pattern of signs of the
minimal solution does not change for n < n0 and bn changes sign the first
approximants can not initially approach the ratios of minimal solutions. As
before, let us suppose that bn is positive for n ≤ n0 (and negative for n >
n0) and therefore the minimal solution is asymptotically alternating (and we
suppose that the pattern is kept for n < n0). Taking into account that in the
successive approximants of the continued fraction the coefficients an are always
negative while the coefficients bn are positive when n ≤ n0 the approximants
Hm ≡ Hm(k) of the associated continued fraction are

Hm =
αk

βk+

αk+1

βk+1+
. . .
αk+m−1

βk+m−1

,

with αn = −an > 0, βn = bn > 0 if n < n0. Then, the approximants Hm are
interlaced following the scheme

0 < H2 < H4 < H6 < . . . < H5 < H3 < H1

when m ≤ n0 − k +1. Therefore, they are all inside a positive interval and they
do not approach the ratios for the minimal solution fn, which is alternating and
then fk/fk−1 < 0.

Similarly as the existence of minimal solution is an intrinsic property of the
recurrence relation, we see that the existence of transitory minimal solutions can
be deduced from sign properties of the coefficients of the recurrence relation and
of the minimal solution.

4 Further examples

Pseudoconvergence is a quite ubiquitous property of hypergeometric recursions
and it is not restricted to Gaustchi’s phenomenon [3]. In this section we identify
additional examples of pseudoconvergent transitory behaviour by using the re-
sults of the previous section. Both the confluent and the Gauss hypergeometric
recursion present this type of behaviour. As we will see, Gautschi’s case can be
also interpreted as the confluent limit of a the Gauss hypergeometric (+ + +)
recurrence.
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4.1 The confluent recurrences and Temme’s numerical in-
stability revisited

As we studied earlier, the recurrence relation satisfied by fn = M(a + n, c +
n, x), which is minimal when n → +∞, shows pseudoconvergence to a ratio
for transitory minimal solutions, particularly when x is large. This can be
understood by considering the signs of the coefficients of the recurrence satisfied
by fn (Eq. (2.1)).

For a and c positive, the bn coefficient changes sign at n0 = [x − c], and
the coefficient an is negative. This, together with the fact that the solution fn

maintains its sign pattern, shows that transitory behaviour will take place.
The recurrence for large x resembles that of modified Bessel functions. Let

us denote λ = x + 1 − c and let us shift n by considering the replacement
ŷn = yn+λ, then ŷn satisfies the recurrence

ŷn+1 + b̂nŷn + ânyn−1 = 0 (4.1)

with

b̂n =
n

x
φ(n, x) , ân = −

n + x

x
φ(n, x) ,φ(n, x) =

(
1 +

a − c

n + x + 1

)−1

.

Therefore b̂n(x) =
n
x

(1 + O(x−1)) and ân(x) = −1 + O(x−1) which, in first
order, is essentially the recurrence for modified Bessel functions. Thus, for large
enough x, we can expect noticeable transitory behaviour for ŷn around n = 0;
equivalently, we can expect transitory behaviour around n = n0 for fn and gn,
with a reversion in their roles. Thus, the continued fraction for the ratio of
minimal solutions fn/fn−1 will display anomalous convergence when n < n0 as
we have already shown in section 2 (and similarly as happens for the continued
fraction for modified Bessel functions, Iν(x)/Iν−1(x), when ν < 0).

The (+ +) recurrence is just one of the various hypergeometric recursions
where this transitory behaviour takes place. Also the recurrence for the set
of functions yn = M(a + n, c, x) presents this type of behaviour, indeed, the
recurrence has coefficients

bn = −
2n + 2a + x − c

a + n
, an =

a + n − c

a + n
. (4.2)

The coefficient an is negative when c > a + n; keeping this behaviour for
a large range in n requires c large. The bn coefficient changes sign at n0 =
[(c−x−2a)/2]. A second solution is fn = Γ(1+a+n−c) U(a+n, c, x). Perron’s
theorem is inconclusive with respect to the existence of minimal solutions. From
asymptotic information, it is easy to see that fn is minimal and gn is dominant
[8]. We observe that, around n0, gn is positive and fn alternating. Therefore,
transitory behaviour around n0 will take place.

As before, we can relate this case to modified Bessel functions. The shifted
solutions ŷn = yn+λ, λ = (c − x − 2a)/2, satisfy a new recurrence (4.1) with
coefficients
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b̂n = − 4n
c − x + 2n

= −4n
c

(1 + O(c−1)),

ân = −c + x − 2n
c − x + 2n

= −1 + O(c−1),

(4.3)

and for large c the recurrence is similar to the modified Bessel functions case.
Transitory behaviours will occur around n0 and the associated continued frac-
tion will display pseudoconvergence to the wrong limit, particularly for large
c.

This also means, as happens with the Bessel functions and with the (+ +)
recurrence, that, for values smaller that n0 the minimal solution will cease to
behave as minimal and that for such values of n backward recurrence for the
minimal solution will be bad conditioned, at least transitorily. Similarly, forward
recursion for certain dominant solutions will be bad conditioned. In Section 5.5
we will consider the problem of the condition of the recurrences in more detail.
These problems were already noticed by N. M. Temme [8] in connection with
the computation of the confluent function U(a, c, x).

Differently from the (+ +) case, we will not analyze in detail the degree of
pseudoconvergence. We postpone this type of analysis, also for the Gauss hy-
pergeometric recursions, for a later paper. Numerical experiments show that the
set of functions gn = M(a+n, c, x) is a transitorily minimal solution companion
of the minimal solution fn = Γ(1+a+n−c)U(a+n, c, x), as Figure 4 illustrates.
Notice that, indeed, the accuracy of the continued fraction is governed by the
value of |rN | = |fN/gN |.
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Figure 4 Left: the function rN is shown for the values a = 4.4, c = 60.3,
x = 0.3. Center: successive approximants of the continued fraction. Right, the relative

deviation between consecutive approximants.

Let us notice that limn→+∞ an = 1 > 0, which means that the negativity
condition for an coefficient is violated for large enough n. However, what is
important is that the condition an < 0 is met in a wide range of n-values around
n0, which is the case when c is large. This, example, however, is indicating that
the condition an < 0 can be relaxed.

17



4.2 The Gauss hypergeometric case

Transitory behaviour also takes place for recurrences satisfied by families of
Gauss hypergeometric functions yn =2F1(a + ε1n, b + ε2n; c + ε3n; x) with εi
integer numbers (not all equal to zero).

In [4], the existence of minimal solutions in the complex plane was investi-
gated when |εi| ≤ 1. It was shown that all the possible cases are reducible to
four cases; the cases selected as representative were (+ + 0), (0 0 +), (+ + −)
and (+ 0−). As we will next see, the recurrence (0 0 +) (or related cases like
(+ + +)), (+ + −) and (+ 0−) are candidates for the appearance of transitory
behaviour and they indeed show pseudoconvergence of the associated CF. We
will mainly concentrate on the recurrence (+ + +) which has as a limiting case
the (+ +) confluent hypergeometric recursion (that is, Gautschi’s pseudocon-
vergence).

The Gauss hypergeometric functions satisfy recurrence relations with coeffi-
cients an and bn with finite limits as n → ±∞. Let us denote α = limn→+∞ an

and β = limn→+∞ bn. From Perron’s theorem, the recurrence admits a minimal
solution when the roots λ1, λ2 of the characteristic equation λ2 + βλ + α = 0
have different modulus.

Of the four basic cases, only one has a value α which is positive for all real
x, namely, the recurrence (+ + 0). Because we are interested in the cases for
which an < 0, we will not consider this recurrence; however, as we already
noticed for the confluent (+ 0) recurrence, it is not necessary that an < 0 for
all n but only that this holds around the change of sign for bn. The other
three recurrences verify α < 0 in (0, 1). Furthermore, in the three cases, the
curves in the complex plane |λ1| = |λ2| (which divide the complex plane in
disjoint regions with different minimal solutions) intersect the interval (0, 1).
These intersection points are x0 = 1/2 for the (0 0 +) (or the related (+ + +)
recurrence), x0 = (−5 + 3

√
3)/4 for (+ + −) and x0 = 3 − 2

√
2 for (+ 0−).

Therefore these recurrences have the following form:

yn+1 + (f(x) − g/n + O(n−2))yn + (a + O(n−1))yn−1 = 0, (4.4)

with f(x0) = 0, a < 0; g is a function of all the parameters (except n). The
coefficient bn changes sign at n0 , g/f(x) which will be large if x is close to x0.
Therefore, for x close enough to x0 the shifted solutions ŷn = yn+n0 verify:

ŷn+1 + n
f(x)

n0

(1 + O(n−1
0 ))yn + a(1 + O(n−1

0 ))yn−1 = 0 (4.5)

for |n| << |n0|. This is, again, similar to the modified Bessel function case and
transitory behaviour leading to pseudoconvergence can be expected.

In this paper we will not describe in detail the (+ + −) and (+ 0−) cases, but
later we provide numerical evidence for transitory behaviour. We only describe
in detail the more simple case of the (+ + +) recurrence. This case is easy to
analyze and recovers Gautschi’s anomalous convergence by means of a confluent
limit.
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4.2.1 The Gauss (+ + +) recurrence

For simplicity, we consider a recurrence equivalent to (+ + +), namely, the
recurrence relation satisfied by the set

y1(x) =
1

Γ(c + n) 2F1

(
a + n, b + n

c + n
; x

)
.

The recurrence relation has coefficients

an =
1

x(x − 1)(a + n)(b + n)
, bn =

((a + b + 2n − 1)x − c − n + 1)
x(x − 1)(a + n)(b + n)

. (4.6)

We choose the following pair of solutions for x ∈ (0, 1):

y1,n(x) =
1

Γ(c + n) 2F1

(
a + n, b + n

c + n
; x

)
(4.7)

and

y4,n(x) =
(−1)n

Γ(a + b + 1 − c + n) 2F1

(
a + n, b + n

a + b + n + 1 − c
; 1 − x

)
. (4.8)

The numbering of solutions is the same as in [4] (but with the extra 1/Γ(c+
n)). It was shown [4] that the function y1,n(x) is minimal if x < 1/2, while the
function y4,n(x) is minimal if x > 1/2. At x = 1/2, where Perron’s theorem is
inconclusive, it is easy to check explicitly the character of the solutions. Given:

yn(d, x) ≡
1

Γ(d + n)
2F1

(
a + n, b + n

d + n
; x

)
=

∞∑

k=0

(a + n)k(b + n)k

k!Γ(d + n + k)
xk (4.9)

and taking into account that

lim
p→+∞

Γ(p)

Γ(p + ε)
= 0 if ε > 0, (4.10)

we have that, if d1 > d2

lim
n→+∞

yn(d1, x)

yn(d2, x)
= 0 (4.11)

for x ∈ (0, 1). Now, because |y1(1/2)| = yn(c, 1/2) and |y4(1/2)| = yn(a + b +
1 − c, 1/2), then for x = 1/2 and defining

λ = a + b + 1 − 2c (4.12)

we have:

1. If λ > 0 y1,n(1/2) is dominant and y4,n(1/2) minimal.
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2. If λ < 0 y4,n(1/2) is dominant and y1,n(1/2) minimal.

3. If λ = 0 there is no minimal solution because y4,n(1/2) = (−1)ny1,n(1/2).

In any case, {y1,n(x), y4,n(x)} is a numerically satisfactory pair in (0, 1).
We observe that an < 0 if x ∈ (0, 1), when a+n > 0, b+n > 0. In addition,

the coefficient bn changes sign at

n0 =
c − 1 − (a + b − 1)x

2x − 1
= −

1

2

(
(a + b − 1) +

λ

2x − 1

)
. (4.13)

When λ is positive n0 becomes larger as x approaches 1/2 with values smaller
that 1/2; contrary, when λ < 0 and x → 1/2+ then n0 → +∞.

Considering in particular the case λ > 0, this is consistent with the fact that
y1,n(1/2) is dominant and y4,n(1/2) minimal while for x < 1/2 their asymptotic
behaviour is the opposite: y1,n(x) is minimal and y4,n(x) dominant.

This clarifies the appearance of a transitorily minimal solution for λ > 0 and
x < 1/2 but close to 1/2: y4,n(x) is transitory minimal because it is recessive
for forward recursion with respect to y1,n(x) as long as n < n0. The closer x is
to 1/2 the larger n0 is and when x = 1/2 then n0 = ∞ and y4,n(1/2) becomes
minimal for all positive n.

Therefore the transitory behaviour is a remnant of the behaviour at x = 1/2
(also in the case λ < 0). An example exhibiting pseudoconvergence is given in
Figure 5.

0 100 200 300
N

10 2

10 8

10 4

100

104

108

10 2

|r N/r 0|

0 100 200 300
m

-2

-2

-1

-0.5

0

0.5

1

H m

0 100 200 300
m

10 6

10 2

10 8

10 4

100

|1-
H m

/H
m

-1
|

Figure 5 Left: Plot of |rN/r0| (rN = fN/gN , fN = y1,N , gn = y4,N ) for a = 20,
b = 15.5, c = 0.6, x = 0.4. Center: successive approximants of the associated CF.

Right: relative deviation between successive approximants.

In Figure 5, we observe that the reversion of tendency seems to be kept for
x not so close to x = 1/2, of course depending on the values of the parameters.
But, of course, as x approaches 1/2 pseudoconvergence is more noticeable. This
explains the transitory behaviours observed for the (+ +) confluent recursions,
as we next show.
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4.2.2 The (+ +) confluent limit

The pseudoconvergence for the Gauss hypergeometric case can be understood
as the consequence of the change of behaviour of the solutions y1,n and y4,n as
the line x = 1/2 is crossed.

It is tempting to consider the confluent limit

M(a, c, x) ≡ 1F1(a; c; x) = lim
b→∞

2F1

(
a, b
c

;
x

b

)
(4.14)

relating the minimal solutions of the (+ +) hypergeometric recurrence fn (Eq.
(2.1)) with the minimal solution of the Gauss recurrence (+ + +) for 0 < x <
1/2, y1,n(x) (Eq. (4.7), but without the factor 1/Γ(c + n))

fn(x) = lim
b→+∞

y1,n(x/b). (4.15)

We follow the notation yi,n(x) of [4].
Using well known identities satisfied by Gauss hypergeometric functions a

second solution of the recurrence satisfied by y1,n, y4,n can be written:

y4,n =
(−1)nx−(a+n)Γ(1 + b)
Γ(a + b + 1 − c + n) 2F1

(
a + n, a + 1 − c

a + b + n + 1 − c
; 1 −

1

x

)
, (4.16)

where the factors not depending on n can be dropped or they can be included
if convenient. The factor Γ(1 + b) has been included for convenience.

Now, considering the formal identity

lim
c→∞ 2F1

(
a, b
c

; cz
)

= 2F0(a, b; ; z), (4.17)

which is true term by term but leads to a divergent series, we have, formally,

lim
b→∞

y4,n(x/b) = (−1)nx−a−n
2F0

(
a + n, a + 1 − c; ;− 1

x

)

∼ (−1)nU(a + n, c + n, x) = gn(x) as x → +∞,
(4.18)

where gn is a second solution (dominant) of the (+ +) confluent recurrence.
This explains the behaviour for the (+ +) confluent recurrence in terms of

the Gauss (+ + +) recurrence. When considering the confluent limit b → +∞ in
(4.15) and (4.18), the transitory behaviour for the Gauss functions close to x =
1/2 transforms to transitory behaviour for x large. The minimal solution is the
confluent limit of the minimal solution for the Gauss case, while the transitorily
minimal solution is the confluent limit of the corresponding transitory solution
for the Gauss case. From (4.13), the change of behaviour takes place at

lim
b→+∞

n0(x/b) = lim
b→+∞

c − 1 − (a + b − 1)x/b

2x/b − 1
= x + 1 − c.
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For the Gauss case, the identification of a pseudominimal solution for n < n0

was quite obvious: the dominant solution which becomes minimal at the transi-
tion point x = 1/2 is pseudominimal. A corresponding selection (of course, not
unique) for the confluent case becomes now also obvious by taking the confluent
limit. Not all cases discussed in this paper are equally clear, particularly the
confluent (+ 0) recurrence. For the other two Gauss cases, it appears that sim-
ilar arguments as for (+ + +) holds while for the Bessel case the identification
of a transitory minimal solution was immediate.

4.2.3 Other Gauss recurrences

In this paper, we don’t consider a detailed analysis of the recurrences (+ 0−)
and (+ + −). Numerical experiments show that, indeed, transitory behaviour
is present for both recurrences. For example, for (+ 0−) we have considered
the minimal solution on the left of x0 = 3 − 2

√
2 (denoted by y2,n in [4]), and

the minimal solution on the right (denoted by y3,n); convergence to the ratio
of dominant solutions y3,n with more than double precision accuracy for the
values x = x0 − 0.01, a = 2.5, b = 6.8, c = 6.5 is reached with less than 50
iterations; only after 600 iterations does the CF start to converge to the ratio of
minimal solutions y2,n/y2,n−1. The y3,n solution appears to be pseudominimal
for x < x0 and close to x0 = (−5+3

√
3)/4. Experiments also show that for the

(+ + −) similar results (for the corresponding solutions y2,n and y3,n in [4]) can
be obtained for example for the set a = 23.5, b = 22.8, c = 10, x = x0 − 0.01:
better than double precision for the pseudoconvergence regime with less than
40 iterations, convergence to the ratio of minimal solutions after 200 iterations.
The detailed analysis of these cases will be considered in later papers.

5 Error analysis for finite precision arithmetic

A problem related to those of convergence and pseudoconvergence of the associ-
ated continued fraction are the problems of condition of the recurrence relation
and numerical stability for finite precision arithmetic.

The convergence of the continued fraction associated with a TTRR means
that the recurrence admits a minimal solution. As discussed before, the con-
vergence of the continued fraction is a consequence of the fact that the ratios
of the numerical solutions for the TTRR, yk, are such that the ratios yk/yk−1

approach the ratios fk/fk−1 when applying backward recurrence starting for
any values of yN and yN−1 (not both equal to 0) for high enough N >> k. This
implies that backward recursion for a minimal solution is a well conditioned
process.

Similarly, forward recursion is well conditioned for dominant solutions and,
for any numerical starting values yn, yn−1 (with ynyn−1 $= 0) we have that

lim
k→+∞

yk/yk−1

gk/gk−1

= 1, (5.1)
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where gk is a dominant solution. For forward recursion, all numerical solutions
become dominant for large enough orders k. Forward recursion for minimal
solutions should never be used.

This, of course, does not mean that only this asymptotic information is
enough for a stable application of a TTRR because, as we have analyzed, the
behaviour for finite orders may be opposite to the asymptotic behaviour when
the central coefficient in the TTRR changes sign. This may result, for instance,
in a loss of precision for the forward (backward) evaluation of dominant solutions
(minimal), at least transitorily.

We will first study the possible loss of precision both in the ratios of solutions
of consecutive orders yk/yk−1, focusing on the backward computation of the
minimal solution (equivalent to the evaluation of the associated the CF). Finally,
we study the errors for the computation of numerical values of the solution yn,
particularly for pseudominimal solutions.

As in the rest of the article, we will consider recurrence relations

yn+1 + bnyn + anyn−1 = 0

with bn changing sign at n0 and such that all conditions are met which guarantee
the appearance of anomalous behaviour.

5.1 Errors in the numerical evaluation of the continued
fraction

Let us first consider the backward evaluation of fk/fk−1 being fn the minimal
solution and starting from fn, n = N, N + 1, N > n0; this is equivalent to
the computation of the m-the approximant of the associated CF (m = N − k).
Backward recursion is well conditioned for n > n0 and then we can assume that
the numerical solution yn, n = n0, n0 + 1 is accurately computed. When fixed
precision arithmetic is used, we have

yn = ε1rn0gn + (1 + ε2)fn, n = n0, n0 + 1 (5.2)

where ε1 and ε2 are of order machine-ε and gn is dominant but transitorily
minimal (for n ≤ n0). Then, because Rn = |rn| = |fn/gn| decreases as n < n0

decreases, backward recurrence for n < n0 increases the unwanted component
gn. The relative deviation of yk/yk−1 from the ratio of minimal solutions can
then be bounded as follows:

|εk| ≡

∣∣∣∣∣1 −
yk

yk−1

fk−1

fk

∣∣∣∣∣ > Fk

|1 − rk−1/rk|

|1 + ε2| + Fk

≈ Fk

Ck

1 + Fk

, (5.3)

where

Fk = |ε1|
Rn0

Rk−1

(5.4)

and Ck = |1 − rk−1/rk| = 1 + Rk−1/Rk ≈ 1 when fn and gn have opposite
patterns of signs; in any case, Ck $= 0 because fn and gn are independent
solutions.
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The accuracy is essentially determined by the factor Fk and the smaller k is
the larger the loss of accuracy. Given the equivalence between backward com-
putation of ratios and approximants of the continues fractions we deduce that
the accuracy reachable for the evaluation of fk/fk−1 is approximately machine-
ε multiplied by Rn0/Rk−1; because of the monotonicity, the loss of accuracy
increases when smaller values of k, k < n0, are considered. Notice also that the
best accuracy reachable in the pseudoconvergent region is well approximated
by Rk/Rn0 . Therefore, the loss of accuracy in the computation of ratios of
minimal solutions is approximately the inverse of the attainable accuracy in
the pseudoconvergent region. When the CF pseudoconverges with the full pre-
cision available in the computer we can expect total loss of accuracy for the
computation of ratios of minimal solutions from the CF, no matter how many
approximants are considered.

5.2 Errors in the numerical computation of yn

Let us consider the forward numerical evaluation of the pseudominimal solution
starting with n < n0. We take the starting numerical values yn , gn, n =
m, m − 1, m < n0, which we write

yn = ε1fn + (1 + ε2)rmgn, (5.5)

ε1, ε2 being small numbers (of order machine-ε). Then, if Rn = |fn/gn| initially
increases loss of precision in the forward evaluation of the dominant solution
will take place. Furthermore, for finite precision arithmetic all the accuracy will
be lost when

Rm/Rn < |ε1| , ε, (5.6)

ε being machine-ε, because the second term in (5.5), that is, the term corre-
sponding to the solution we intend to compute, becomes smaller than the first
one. This is shown in Figure 6, where loss of precision in the forward evalua-
tion of a dominant (transitorily minimal) solution is observed for n < n0. We
compute the recurrence using Fortran in double precision and compare with the
results produced by direct computation using Maple.

As illustrated in Figure 6, when not all the accuracy is lost at n = n0,
the accuracy in the results is regained for sufficiently large n (left figure, solid
line). Even more, also when the results for the dominant solution are totally
inaccurate around n = n0, accuracy can also be regained, at least partly (dotted
line).

Notice that the ratios yn/yn−1 in fact converge to gn/gn−1 as n → +∞;
therefore, the loss of precision, if any, is due to loss of significant digits in a
global factor. This can be understood by writing the numerical values yn0 ,
yn0+1 as a combination of the independent pair {fn, gn}:

(
yn0

yn0+1

)
=

1

Cn0 [f, g]

[
Cn0 [y, g]

(
fn0

fn0+1

)
+ Cn0 [f, y]

(
gn0

gn0+1

)]
, (5.7)
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where the Casorati determinants are given by

Cn0 [v, w] ≡
∣∣∣∣

vn0 wn0

vn0+1 wn0+1

∣∣∣∣ . (5.8)

Then, if |rn| = |fn/gn| initially increases because fn is transitorily dominant
for n < n0 we will have that the numerical solution (yn0 , yn0+1) will be nearly
collinear to (fn0 , fn0+1) when |rm/rn0 | < ε and, for finite precision, loss of
significant digits take place in Cn0 [f, y] which are kept for all n > n0. Contrary,
no digits are lost in Cn0 [y, g], particularly because, as before discussed, fn and gn

typically have opposite sign patterns (and therefore y and g too for n = n0, n0+
1). The loss of precision can be estimated from the ratio of first components
in (5.7). The relative accuracy in the second term (which will dominate for
n >> n0) at n = n0 is therefore reduced by a factor

L =

∣∣∣∣∣
ε1fn0

(1 + ε2)rmgn0

∣∣∣∣∣ , |ε1|
Rn0

Rm

(5.9)

and then the best attainable accuracy for n >> n0 can be estimated by

max {ε, εL} ≈ εmax{1, εRn0/Rm} (5.10)

assuming that the errors at n0 are the only source of rounding error propagation.
Therefore, as long as

Rm/Rn0 > ε2 (5.11)

some accuracy will be recovered for n > n0.
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Figure 6. Left: relative errors for the forward computation of the transitorily

minimal solution gn = (−1)nΓ(c + n)U(a + n, c + n, x) for a = 0.3, b = 0.8. x = 31 for
the solid line and x = 51 for the dotted line. εr = |1 − gF

n /gM
n | where gF

n are values

computed with Fortran in double precision (ε ≈ 2.2 10−16) and gM
n are values computed

with 30 digits in Maple. Right: same for the minimal solution fn = M(a+n, c+n, x).

Parameters: a = 0.3, b = 0.8, x = 31.

This phenomenon of partial recovery of accuracy for finite precision arith-
metic, even when the accuracy is completely lost for intermediate values, takes
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place also when a recurrence with no transitory behaviours and having mini-
mal solutions is first applied in the forward direction for the minimal solution
and then in the more natural backward direction. Depending on the number
of forward steps all or part of the accuracy will be lost, no matter how many
backward steps are applied.

With respect to the minimal (transitorily dominant) solution, as Figure 6
shows, the behaviour is the corresponding to a dominant solution when n < n0,
where no loss of precision takes place for forward recursion. For large values of
n, accuracy is rapidly lost as is normal for a minimal solution.

For backward recursion, similar situations take place when starting the recur-
rence from k > n0. The minimal solution will initially be accurately computed
until n0 is reached; then, error will increase for n < n0 (this is the situation
described in [8] for the computation of the U function). For the transitorily
minimal solution, the backward recurrence is initially bad conditioned until n0

is reached; then, accuracy for n < n0 can be recovered or not depending on how
large is the loss of accuracy at n0.

It becomes clear that for a safe numerical use of recurrence relations, it is
not enough to know the asymptotic behaviour of the solutions but it is also
important to study the behaviour for finite orders, particularly when the recur-
rence yn+1 + bnyn +anyn−1 = 0 is such that an < 0 and bn changes sign. In this
cases, it is also important to know if there are transitory minimal solutions.

6 Conclusions

We have analyzed the appearance of transitory minimal solutions for recurrences
of the type yn+1 + bnyn + anyn−1 = 0 with an < 0 and bn changing sign once.
The related phenomenon of pseudoconvergence of the associated continued frac-
tion has been discussed too. This type of behaviour is present in a considerable
number of hypergeometric recurrences. Six different recurrences have been con-
sidered, with special emphasis on the Gautschi’s anomalous convergence case,
for which an accurate description of the accuracy of anomalous convergence is
provided, and the related Gauss hypergeometric recurrence.

Extreme care has to be taken when using recurrences and associated contin-
ued fractions where bn changes sign at a given n = n0. The continued fraction
may appear to converge with high precision but to a ratio of solutions different
from the minimal solution. If finite precision is used, the CF may completely
fail to compute ratios of minimal solutions, no matter how many approximants
are considered.

Regarding the computation of solutions from these type of recurrence rela-
tions, it is concluded that asymptotic information is not sufficient for deciding
the condition and stability of the recurrent process and that the usual recipes
based on asymptotics fail past the value n0. The minimal solution, specially
when it has a fixed pattern of signs, should not be computed by backward
recursion past n < n0 while forward recursion is bad conditioned for some dom-
inant solutions (the transitorily minimal solutions) when n < n0 (although the
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accuracy may be recovered for large enough n).
For a numerically stable use of these recurrences, it is not only important

to identify the minimal solution of the recurrence; also transitorily minimal
solutions should be identified and their forward computation avoided for n < n0.
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