

# **DISCUSSION PAPER SERIES**

No. 4903

FOREIGN DIRECT INVESTMENT, COMPETITIVE PRESSURE AND SPILLOVERS. AN EMPIRICAL ANALYSIS OF SPANISH FIRM LEVEL DATA

Alessandro Sembenelli and Georges Siotis

INDUSTRIAL ORGANIZATION and INTERNATIONAL TRADE



# Centre for Economic Policy Research

# www.cepr.org

www.cepr.org/pubs/dps/DP4903.asp

Available online at:

# FOREIGN DIRECT INVESTMENT, COMPETITIVE PRESSURE AND SPILLOVERS. AN EMPIRICAL ANALYSIS OF SPANISH FIRM LEVEL DATA

Alessandro Sembenelli, Università di Torino Georges Siotis, Universidad Carlos III de Madrid and CEPR

> Discussion Paper No. 4903 February 2005

Centre for Economic Policy Research 90–98 Goswell Rd, London EC1V 7RR, UK Tel: (44 20) 7878 2900, Fax: (44 20) 7878 2999 Email: cepr@cepr.org, Website: www.cepr.org

This Discussion Paper is issued under the auspices of the Centre's research programme in **INDUSTRIAL ORGANIZATION and INTERNATIONAL TRADE**. Any opinions expressed here are those of the author(s) and not those of the Centre for Economic Policy Research. Research disseminated by CEPR may include views on policy, but the Centre itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as a private educational charity, to promote independent analysis and public discussion of open economies and the relations among them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of medium- and long-run policy questions. Institutional (core) finance for the Centre has been provided through major grants from the Economic and Social Research Council, under which an ESRC Resource Centre operates within CEPR; the Esmée Fairbairn Charitable Trust; and the Bank of England. These organizations do not give prior review to the Centre's publications, nor do they necessarily endorse the views expressed therein.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage discussion and comment. Citation and use of such a paper should take account of its provisional character.

Copyright: Alessandro Sembenelli and Georges Siotis

CEPR Discussion Paper No. 4903

February 2005

# ABSTRACT

# Foreign Direct Investment, Competitive Pressure and Spillovers. An Empirical Analysis of Spanish Firm Level Data\*

A short review of the theoretical and empirical evidence indicates that foreign direct investment (FDI) has the potential to increase the intensity of competition as well as to act as a channel for technology transfers. One would expect, all else equal, an increase in average firm performance following a wave of FDI, as multinational corporations (MNCs) enjoy higher levels of efficiency and have the potential to generate positive spillovers. At the same time, the entry of foreign firms has also been associated with an increase in competitive pressure on the domestic market. Using a large firm level dataset covering all sectors of Spanish manufacturing during the period 1983-96, we disentangle these three effects by estimating a dynamic model of firm level performance, which we proxy by profitability. We find that FDI has a positive long-run effect on the profitability of target firms, but this is limited to firms belonging to R&D intensive sectors. In addition, the results indicate that foreign presence dampens margins. However, this effect appears to be more than compensated by positive spillovers in the case of knowledge intensive industries.

JEL Classification: F23, L40 and L60 Keywords: competition, efficiency, foreign direct investment, GMM, panel data and technology transfer

Alessandro Sembenelli Dipartimento di Scienze Economiche e Finanziarie Facoltà di Economia Università di Torino Corso Unione Sovietica 218bis 10134 Torino ITALY Tel: (39 011) 670 6059 Fax: (39 011) 670 6062 Email: alessandro.sembenelli@unito.it

Email: alessandro.sembenelli@unito.it For further Discussion Papers by this author see: www.cepr.org/pubs/new-dps/dplist.asp?authorid=149918

Georges Siotis Departamento de Economia Universidad Carlos III de Madrid Calle Madrid 126 28903 Getafe Madrid SPAIN Tel: (34 91) 624 9312 Fax: (34 91) 624 9875 Email: siotis@eco.uc3m.es

For further Discussion Papers by this author see: www.cepr.org/pubs/new-dps/dplist.asp?authorid=119325 \*We thank Luigi Benfratello, Rachel Griffith, Pedro Marin and Reinhilde Veugelers for helpful comments. Siotis would also like to thank the staff of the Bank of Spain for their help with the data, and acknowledges partial support from this project from the EU financed TMR project 'FDI and the Multinational Corporation'.

Submitted 26 January 2005

### 1 Introduction

The explanations put forward to account for the observed patterns of foreign investment (FDI) are drawn from trade theory, industrial organisation, and the international business literature. Dunning's (1981) eclectic paradigm attempts to bring these different strands of the literature together, and it remains a standard reference for scholars studying FDI. His approach, typically referred to as the Ownership-Localisation-Internalisation (OLI) paradigm, stresses that three factors must be present for FDI to occur.

First, the potential or actual multinational must be endowed with some .rmspeci.c ownership advantage not available to host country .rms. The original idea is due to Hymer (1976), and it is commonly accepted as a necessary condition for FDI to occur. Second, there must be localisation advantages associated with foreign production. Third, internalisation advantages determine the choice of FDI as opposed to arm's length market transactions, such as licensing agreements, which may entail the diffusion of the multinational's assets to actual or potential competitors.<sup>1</sup>

The effect of FDI on host economies has been the subject of extensive research. As pointed out by Hanson (2001), both theory and empirical evidence provide mixed results on the net welfare effect of inward FDI on recipient countries. This is not so surprising, as theoretical models have identi..ed a large number of FDI induced effects on product and factor markets that all contribute to alter welfare. In an early pioneering contribution, Caves (1974) conjectured that FDI in‡uenced host country conditions through two main channels. On the one hand, FDI ought to result in technology transfers to host country ..rms. On the other hand, an important foreign presence could also increase the intensity

<sup>&</sup>lt;sup>1</sup>See Markusen (1995) for a discussion.

of competition in the recipient country. By and large, the empirical literature has focused on the ..rst of these two effects, possibly because unearthing the pro-competitive effect of FDI is not trivial.

The fact that MNCs are endowed with .rm speci.c advantages that can easily be transferred across locations suggest that subsidiaries ought to enjoy higher levels of efficiency, and therefore pro.tability, compared to domestic ..rms. It is also a common observation that MNCs have the potential to generate positive spillovers in the host location (see Blomström and Kokko (1998) for a survey). This suggests that industries that are characterised by a high degree of knowledge spillovers and an increase in the degree of foreign presence might display higher levels of pro..tability. However, recent empirical evidence has cast doubts on the importance of these spillovers (see Hanson (2001) for an overview, and Aitken and Harrison (1999) for evidence pertaining to Venezuela).

As mentioned above, increased competition also ..gures among the many effects attributed to FDI (Caves (1974)). Depending on the mode of foreign entry and industry structure, the presence of MNCs may well increase competitive rivalry. While this conjecture is intuitively appealing, direct empirical evidence of the pro-competitive effect of FDI is limited, if not non-existent.<sup>2</sup>

The purpose of this paper is to attempt to disentangle empirically the ef-...ciency, spillovers, and competition effects of FDI on ..rms' pro..tability. We chose pro..tability as a proxy for ..rm performance for two main reasons. First, pro..tability is a natural choice when attempting to gauge changes in competitive pressure. Second, this variable is less prone to measurement problems

<sup>&</sup>lt;sup>2</sup>In his industry level study, Caves (1974) found that the pro.tability of Canadian domestics plants during the period 1965-67 was negatively correlated with the average share of foreign plants in industry sales. This ..nding was interpreted as evidence of the pro-competitive effect of FDI. Clearly, this ..nding cannot be given a causal interpretation. Aitken and Harrison (1999) address a different, but closely related issue, namely the relationship between the degree of MNC activity and the productivity of domestically owned concerns. Their ..ndings is that MNC "crowd-out" domestic concerns, leading to *lower* productivity.

stemming from the use of industry wide de‡ators, as it directly re‡ects .rms' pricing behaviour.

The issue is not trivial, as the these forces operate in opposite directions. On the one hand, the existence of .xm speci..c intangible assets on the part of MNCs should result in higher pro.tability for foreign subsidiaries. In addition, the possible existence of positive FDI related spillovers in an industry should increase the average pro.tability of host country .xms (these two hypotheses are discussed in more detail in the next section). The ..rst effect is direct: MNCs transfer their intangibles internally, thus increasing the efficiency of subsidiaries, while the second is indirect as it works its way through spillovers. By contrast, the pro-competitive effect of FDI ought to depress the margins of .xms that operate in industries that are characterised by an important foreign presence. Thus, distinguishing the relative importance of these opposing forces requires a careful empirical analysis. Furthermore, these effects may not necessarily be felt contemporaneously.

The main innovations contained in this paper are as follows. First, we use dynamics as our main identi.cation argument. Concretely, we conjecture that the effects identi..ed above will work their way through at a different pace. Second, we split our sample using R&D intensity, which provides an additional identifying hypothesis. Third, we use the identity of ..rms as a further check on the robustness of our results. Since Spanish owned ..rms typically lag foreign subsidiaries along the technological dimension, domestic ..rms (as opposed to foreign subsidiaries) are likely to be the main bene..ciaries of spillovers. Fourth, we apply the Generalised Method of Moments (GMM) in order to deal with endogeneity biases. This also allows us to properly account for industry and ..rm level ..xed effects. As shown by Aitken and Harrison (1999), failing to control for industry and ..rm level ..xed effects can yield spurious results. Last, we checked that our ..ndings are consistent with estimates obtained with labour productivity, another standard measure of ..rm performance.

We ..nd that after controlling for potential endogeneity biases, FDI has a positive long-run effect on the pro.tability of target .rms, but this is limited to R&D intensive sectors. In addition, domestically owned .rms are the main recipient of spillovers in knowledge intensive industries. Last, the results indicate that an important foreign presence dampens margins, at least in the short run. However, in the case of R&D intensive industries, this appears to be more than compensated by positive spillovers.

The rest of the paper is organised as follows. The next section indicates why, under fairly general conditions, FDI could be expected to act as a channel for technology transfers as well as in‡uence the intensity of competition. Section 3 presents the data and describes how we constructed the variables. Section 4 contains the econometric speci..cation as well the main results. Section 5 concludes.

## 2 Motivation and testable hypotheses

#### 2.1 Technology transfers

The fact that MNCs possess .rm-speci.c assets that confer them a competitive edge is well established in the literature (Markusen (1995)). By their very nature, these assets can be easily transferred back and forth across space. As such, this suggests that foreign owned .rms will be more efficient and, as a general rule, more pro..table.<sup>3</sup> It could of course be the case that the change

<sup>&</sup>lt;sup>3</sup>In a wide class of models, a drop in costs leads to an increase in margins. A ..rm's Lerner index ((p-c)/p) is determined by the elasticity of the residual demand it faces. Except in the particular case of an iso-elastic residual demand, a drop in costs accompanied by a downward adjustment in prices (leading to larger sales) results in a fall in the elasticity of the residual demand faced by the ..rm.

in ownership from domestic to foreign leaves efficiency unchanged. This would occur if the MNC decides not to transfer any ..rm speci..c assets to its subsidiary.

There are nonetheless situations in which a change in ownership may result in a drop in pro.tability, at least in the short-run. If there are important costs associated with the change in management, pro.tability may initially drop. Lichtenberg and Siegel (1987) report that plants changing owners experienced a drop in productivity compared to plants that did not. In addition, the literature on mergers and acquisitions also provides evidence that merged entities (irrespective of whether they involve a foreign partner) sometimes underperform their rivals. If these "teething problems" are real, a change of ownership from domestic to foreign is likely to be more costly compared to a situation only involving domestic entities. This may result from differences in culture, language, access to public authorities, or an inadequate knowledge of consumer preferences, that is, there may be speci.c disadvantages associated to "foreignness" (Harris and Robinson (2002)).<sup>4</sup>

The empirical literature on these issues is mixed. On the one hand, the superior performance of foreign owned ..rms has been widely documented and has become a "stylised fact" in the literature on MNCs (Conyon *et al.* (2002)). However, recent empirical work where endogeneity problems are controlled for casts more than a passing doubt on whether this "stylized fact" can be given a causal or structural interpretation. For instance, using a panel of Italian ..rms Benfratello and Sembenelli (2002) report evidence that, in the aggregate, a change in ownership from domestic to foreign has no effect on the productivity

<sup>&</sup>lt;sup>4</sup> A fall in the target .rm's pro.tability may also occur when FDI is driven by a technology sourcing. This conjecture has received both theoretical and empirical support (for theoretical results, see Fosfuri and Motta (1999), Siotis (1999), and for empirical evidence Neven and Siotis (1996), Driffield and Love (2003)). However, while sourcing may be a realistic motive, its importance is likely to be very limited compared to "traditional" FDI, particularly in the context of Spain.

of the target. However, they also ...nd that nationality matters since subsidiaries under US ownership tend to be more productive than ..rms under domestic ownership. In turn, this result points out that the transfer of knowledge implied by internalisation theory materialises only if the gap between the recipient and the investing country is sufficiently pronounced.

As mentioned above, FDI is believed to generate positive spillovers for domestically owned concerns (see Blomström and Kokko (1998) for an extensive survey). Under this scenario, FDI would act as a channel for technology transfers for all .rms operating in the industry (and not only the ones that are foreign owned).<sup>5</sup> However, this conjecture has received mixed empirical support in a number of recent papers using ..rm level data (see, among others, Haddad and Harrison (1993), Aitken and Harrison (1999), and Hanson (2001) for a discussion).

#### 2.2 Competition

Conceptually, identifying the pro-competitive effect of FDI is more complex, as it is possible to imagine a myriad of different situations. In what follows, we limit ourselves to cases that can be interpreted within the framework of our empirical estimations. Empirically, the bulk of FDI is "horizontal" and concentrated in sectors were product differentiation is pervasive, i.e. imperfectly competitive industries characterised by entry barriers such as ..xed costs that are often sunk (and may be endogenous or exogenous). Since MNCs are ..rms that already operate in a foreign market, and have presumably already incurred ..xed costs, they are in a privileged position to compete with established domestic concerns.

 $<sup>^{5}</sup>$  To the extent that the presence of foreign .rms increases the degree of price competition in an industry (see sub-section 2.2), an increased foreign presence is expected to have a negative effect on domestic .rms' pro.tability. However, if technological spillovers are important, this downward pressure on pro.tability will be dampened by the positive effect that the spilloverinduced reduction in production costs exerts on domestic .rms' pro.tability.

From that perspective, an MNC is better positioned compared to a potential entrant with no previous experience (which explains why it is MNCs, and not a domestic entrant, that successfully erode the rents enjoyed by established domestic concerns). This conjecture applies to both vertically and horizontally differentiated industries.

A related argument pertaining to the effect of FDI on competitive outcomes is provided by Boone (2000). His analysis focuses on different parametrisations of competition. He shows that one of the few robust results is that competitive pressure ought to increase monotonically with marginal cost asymmetries across ..rms. His results obtain under a wide variety of parametrisations (e.g. Cournot *vs.* Bertrand). As a consequence, if FDI results in efficiency gains for the subsidiary, then it will generate a *ceteris paribus* increase in competitive pressure, at least in the short-run.

These results hold even if the MNC was exporting to the domestic market prior to the investment decision. In that case, the pro-competitive effect will be lessened, but it will not disappear altogether. The reason is that the elimination of transport costs allows the MNC to engage in more competitive pricing compared to a situation where it has to export.<sup>6</sup>

In addition, the change in ownership from domestic to foreign may result in important changes in the behaviour of the subsidiary. If prior to FDI there existed some degree of explicit or tacit collusion within the industry, the arrival of the MNC may endanger the stability of collusion. For instance, monitoring behaviour may become more difficult, particularly since the MNC has no previous "history" in the domestic market. Collusion may be re-established after a learning period, but foreign entry is likely to disrupt collusive outcomes, at

 $<sup>^{6}</sup>$  The existence of .xed costs is one of the determinants behind the choice of serving the foreign market through exports or by establishing a subsidiary. In case the MNC decides for the latter option, pricing will be determined by marginal costs (and not total costs).

least initially. Clearly, if the ownership transfer is followed by an output expansion on the part of the subsidiary, then the intensity of competition should also increase.

It is nonetheless possible to imagine polar situations in which FDI will result in a dampening of competitive pressures.<sup>7</sup> FDI may lead to a crowding-out of domestic ..rms, followed by exit. In such a situation, successful predation will only dampen competition if re-entry costs are high. Also, FDI may reduce competition in the event that entry into the foreign market facilitates collusion. The reason is the following: FDI may increase multi-market contact, and thus make collusion easier to sustain (see Bernheim and Whinston (1990), and Neven and Siotis (1993) for a discussion in the context of FDI). Last, MNCs may be better placed to extract rents from host country governments, for instance by successfully lobbying for protection (Wang and Blomström (1982)). While these arguments are plausible (predation, multi-market contact, and rent seeking), their importance is likely to be limited in practice.

#### 2.3 Testable hypotheses

Received theory suggests that a change in ownership from domestic to foreign should bring long-run efficiency and therefore pro..tability gains, especially in industries where proprietary assets such as technology and other intangibles are perceived to be important. However, there may also exist short-run costs associated with the transfer of ownership, so that the sign of the short-run effect of a change in ownership is ambiguous. If both effects are at work and our assumptions on the dynamics are correct, we expect the adjustment process to be described by an upward sloping function, possibly steeper for those industries where proprietary assets are more important.

 $<sup>^7\</sup>mathrm{As}$  mentioned above, FDI motivated by technology sourcing is likely to leave competitive conditions unchanged.

As already mentioned, the long-run impact on pro..tability of MNC activity in an industry is instead unclear.<sup>8</sup> This is the case not only because the competitive effect and the spillovers effect operate in opposite directions, but also because they are both unlikely to have only a transitory impact. In this perspective, we will let the data rank the relative long-run importance of the two channels. However, it seems reasonable to assume that the competitive effect is likely to become effective quickly after the change in ownership, whereas spillovers are more likely to take time to materialise.<sup>9</sup> Again, this suggests that the transition to the long-run impact (which can be positive or negative) should follow an upward sloping adjustment process.<sup>10</sup> Furthermore, this slope should be steeper for industries where proprietary assets are important, at least to the extent that these assets cannot be fully internalized by foreign affiliates.

Finally, market shares, concentration and intangibles' intensity are the standard variables which enter a pro..tability equation. Both received theory and evidence indicate that all variables should be positively associated with profitability. As it is well known, previous ..rm-level studies ..nd that the coefficient on market share is substantially larger and more signi..cant than the coefficient on market concentration (Martin, (2002)). This in turn seems to suggest that the strong positive effect of market concentration commonly found in industrylevel studies re‡ects mainly ..rm characteristics that give rise to Ricardian rents,

<sup>&</sup>lt;sup>8</sup> Clearly, an alternative approach is to focus on what may appear at ..rst sight as a clear-cut empirical relationship. For instance, a substantial foreign presence should be positively related with total factor productivity or labour productivity if spillovers are important. However, to the extent that competition reduces slack, or X-inefficiency in an industry, an increase in productivity is to be expected, *even if spillovers are non-existent*. In such a situation, the increase in productivity would be incorrectly attributed to spillovers. Furthermore, Aitken and Harrison (1999) provide evidence that, contrary to priors, a large MNC presence may reduce productivity among domestically owned concerns. This occurs when MNCs crowd-out their host-country counterparts.

 $<sup>^9</sup>$  Common examples of spillovers found in the literature include: movement of skilled personnel, MNC subsidiaries acting as "role models" that are emulated by domestic .rms, spillovers via common input suppliers etc... All of the above are likely to take time before their effect can be discerned in the data.

 $<sup>^{10}</sup>$  While addressing a different issue (the effect of airline mergers on prices), Kim and Singal (1993) point out that the "efficiency" and "market power" effects of mergers work their way through at a different pace.

and not the joint exercise of market power.

## 3 Data and variable de..nition

#### 3.1 Data

Our results are obtained by making use of an extensive survey of ..rms carried by the Bank of Spain since 1983, gathered in the database *Central de Balances*.<sup>11</sup> The data collected is comprehensive, each annual cross-section exceeds three thousand observations, and it covers all sectors of economic activity (except for ..nancial institutions). This annual survey is made up of two questionnaires, one for large ..rms (number of employees greater than 100), and a shorter version for smaller ..rms.<sup>12</sup> The data used in this paper is to be found in both questionnaires, so that the entire sample of responding ..rms is available. Moreover, the variables that we use are all ratios, so that the unavailability of sectorial de‡ators is not a major issue.

The original data ..le contains more than ninety one thousand observations (with one observation corresponding to data pertaining to one .rm in a given year). The data is annual, for the time period 1983-1996. Given sample size, it is possible to impose strict ..lters, aimed at eliminating extreme observations (replies), or questionnaires for which some of the essential data is missing. The ..lters that are applied are detailed in the data appendix. The latter are those typically used by researchers familiar with *Central de Balances* (see, for instance,

Hernando and Vallés (1994)).

<sup>&</sup>lt;sup>11</sup>Spain's recent experience represents an interesting case of liberalisation. In the early 1980's, the country was still in the midst of its political transition to democracy, and the economy had not yet been freed from the corporatist and interventionist policies of the previous regime. Shortly after, in 1986, the country joined the European Union (EU). This led to the progressive opening of the Spanish economy. In parallel, EU membership triggered a wave of domestic liberalisation meant to bring the Spanish economy into the European mainstream. Moreover, entry into the EU coincided with the most important liberalisation exercise in Europe since the 1960's, namely the implementation of the Single Market Programme. All these factors contributed to a large increase in FDI in Spain.

 $<sup>^{12}</sup>$ In addition to the number of employee, there another two .nancial criteria (on turnover and assets). These thresholds are periodically revised and do not affect sample construction.

Each ..rm is classi..ed according to a nomenclature established by the Bank of Spain. This affiliation ranges from 2 digit broad sectors (26 for the whole economy) to intermediate (3-digit, 82 sectors). In this paper, we focus exclusively on manufacturing. In addition, we apply panel data techniques that require a minimum of four consecutive observations which results in a reduction in sample size. We dropped the few .rms that changed sectorial affiliation, as well as observations pertaining to 3-digit sectors with less than 100 observations for the entire time period.<sup>13</sup> The ..nal sample consists of 29318 observations. Tables 1 to 3 provide some descriptive statistics.

#### Insert Tables 1 to 3 about here

#### 3.2 Variable de...nition

Our dependent variable is pro.tability, proxied by accounting price-cost margins. Accounting price-cost margins have been heavily criticised (Bresnahan (1989)). Nonetheless, there is increasing evidence indicating that this measure is not so ‡awed after all (Martin (2002)). Moreover, in a panel dataset, using accounting price cost margins as proxies for economic pro.tability is adequate as long as the bias that they incorporate is constant over time (Boone (2000)). Last, we are con.dent that for our dataset, accounting price cost margins are a reasonable proxy for economic pro.tability. Siotis (2003) estimates sectorial mark-ups by applying a modi.ed version of Hall (1986) to this dataset. He reports that, apart from a scaling factor, sector wide accounting margins are very similar to mark-ups that are econometrically estimated. Typically, the correlation between sectorial accounting margins and estimated mark-ups stands above

 $<sup>^{13}</sup>$  The three digit sectors that were dropped are: tobacco (66 obs.), weapons (34 obs.), and office equipment (63 obs.).

To get an accounting estimate of price cost margins, we adopt the methodology proposed by Domowitz, Hubbard and Petersen (1986). Price cost margins are de.ned as:

$$\left(\frac{p-c}{p}\right)_{it} = \left(\frac{\text{Value of sales} + \Delta \text{ inventories} - \text{payroll} - \text{cost of materials}}{\text{Value of sales} + \Delta \text{ inventories}}\right)_{it}$$

where  $\Delta$  stands for "changes in", and *i* and *t* respectively index .rms and time. The inclusion of inventory changes ensures that adjustment for business cycle ‡uctuations are catered for in our measure of price cost margins. According to the accounting de.nitions adopted in the *Central de Balances* survey, this is equivalent to:

$$\left(\frac{p-c}{p}\right)_{it} = PCM_{it} = \left(\frac{\text{Value added - payroll}}{\text{Value added + net cost of materials}}\right)_{it}$$

Central de Balances includes data on foreign ownership. We have de.ned the degree of foreign control by the percentage of foreign equity held by nonresidents. This variable is labelled FOC ("C" denoting the fact that the variable is continuous, and ranges from 0 to 1).<sup>14</sup>

In order to proxy the degree the of MNC activity in a given sector, we de.ne the following variable that we label "foreign presence":

0.8.

<sup>&</sup>lt;sup>14</sup> We also de.ned another proxy that takes value zero if foreign equity stands below 10%, and 1 above this threshold (10% is the usual threshold used by national statistical agencies to determine whether the foreign company exercises effective corporate control). Another dummy is obtained by applying a correction to the 0-1 dummy. Concretely, some observations in the database could possibly contain coding errors. For instance, some .rms report the following yearly pattern of foreign equity: 0%, 0%, 0%, 100%, 0%, 0%, or the opposite, 100%, 100%, 0%, 100%, 100%. For these occurrences, we have generated a new dummy that adjusts the data. That is, the .rst case has been transformed into one of zero foreign ownership, while the second into a fully owned subsidiary. We re-ran all our estimations using these proxies instead of *FOC*. The results are qualitatively very similar.

$$FP_{ijt} = \frac{\sum_{k=1, k \neq i}^{n} q_{kjt} * FOC_{kjt}}{\sum_{i=1}^{n} q_{ijt}}$$

where i, j, t respectively index the .rm, sector, and time and q denotes real sales. In words, FP measures the proportion of output that is foreign controlled within a sector. The variable is computed at *Central de Balances'* three-digit level classi..cation. This implies that we are only able to gauge the importance of intra-industry spillovers.

Central de Balances also provides data on the book value of intangible assets held by ... We construct the variable ITGS as follows:

$$ITGS_{it} = \frac{ITG_{it}}{q_{it}}$$

where ITG represents the value of intangibles. This variable serves to proxy the degree product differentiation.

Market share is de.ned as:

$$MS_{ijt} = \frac{q_{ijt}}{\sum_{i=1}^{n} q_{ijt}}$$

According to most oligopoly models, size differences within an industry re-‡ect differential efficiency. *MS* is also de..ned at *Central de Balances'* three-digit level classi..cation.

Last, we constructed the 3-digit level Hirschman-Her..ndahl index of industry concentration:

$$HHI_{jt} = \sum_{i=1}^{n} \left( MS_{ijt} \right)^2$$

Table 4 presents descriptive statistics pertaining to the variables that we use in the estimation.

Insert Table 4 about here

# 4 Econometric speci..cation and results4.1 Speci..cation

In order to be able to recover both the short-run and long-run effects of our variables of interest, we estimated the following autoregressive distributed lag model:

$$PCM_{it} = \beta_1 PCM_{i,t-1} + \beta_2 MS_{ijt} + \beta_3 HHI_{jt} + \beta_4 ITGS_{it}$$
(1)  
+  $\beta_5 FOC_{it} + \beta_6 FOC_{i,t-1} + \beta_7 FOC_{i,t-2}$   
+  $\beta_8 FP_{ijt} + \beta_9 FP_{ij,t-1} + \beta_{10} FP_{ij,t-2}$   
+  $\alpha_t + \alpha_i + v_{it}$ 

where  $\alpha_t$  represents pro..tability shocks common to all .rms in a given year,  $\alpha_i$ is a .rm-speci..c time-invariant component (possibly correlated with the other right hand-side variables) measuring among other things unobservable management quality, and  $v_{it}$  is a random disturbance.

All equations are estimated in .rst differences to remove the .rm-speci..c effect  $\alpha_i$ . A set of three-digit industry dummies is however kept in the estimation to allow for industry speci..c linear time trends in the levels of the dependent variable.<sup>15</sup> Estimation is carried out by the Generalized Method of Moments (GMM) proposed by Arellano and Bond (1991). Since all regressors in our

 $<sup>^{15}</sup>$  This speci..cation ensures that policy changes that affect all .rms in a sector (such as the elimination of tariffs and the removal of non-tariff barriers to trade) are controlled for, at least partially.

model are likely to be correlated with the idiosyncratic component of the error term  $v_{it}$ , OLS (as well as GLS) estimates would be biased and inconsistent, while GMM methodology provides consistent estimates of the parameters by making use of appropriate instruments. In particular, under the assumption that the idiosyncratic component of the error term,  $v_{it}$  is serially uncorrelated in the level equations, an error with a moving structure of order one is generated in the equations in differences, so that once-lagged variables are also correlated with the transformed error term. However, regressors lagged twice or more will be legitimate instruments. To check the validity of this assumption we calculate and report tests on both ...st and second order correlation on the residuals (m<sub>1</sub> and m<sub>2</sub>). If our assumption is correct we expect ...st but not second order serial correlation in transformed residuals. As a more general test of misspeci...cation we also report the Hansen-Sargan test for over-identifying restrictions.

One econometric issue which is worth commenting upon at this stage is that recent work by Blundell and Bond (1998) has shown that the standard GMM ..rst difference procedure may be prone to the weak instrument problem, especially when some of the regressors tend to be highly persistent over time. For this reason, all equations presented in the next section have also been estimated by using the so-called GMM system. Our ..ndings are virtually unaltered. However, the Sargan test strongly rejects the validity of the extra-orthogonality conditions required for the consistency of the GMM-system estimator. For this reason, in what follows we only comment upon the results obtained by using the GMM ..rst difference procedure.

The speci..cation presented in (1) has some attractive characteristics. First, estimation by .rst-differences ensures that the results are not driven by unobservable ..rm and industry level characteristics, potentially correlated with some of the observables.<sup>16</sup> As shown by Aitken and Harrison (1999), the presence of .xed effects that are not adequately controlled for yields spurious results. Second, the availability of potentially valid instruments provides an adequate answer to the standard criticism directed at the "old" cross-sectional empirical literature, namely that mark-ups, market shares and concentration are all simultaneously determined in most oligopoly models. Third, the dynamic structure allows for a distinction between short-run and long-run effects. As argued in section 2.3, this dichotomy is important in the context of the research issues addressed in this paper.

#### 4.2 Results

#### 4.2.1 Pooled sample

Four sets of results are presented in Table 5, and for the time being, we focus on column (i) where all three digit sectors have been pooled. Comfortingly, second order autocorrelation is not present and the Sargan test provides evidence against the endogeneity of our choice of instruments. As expected, our control variables MS and ITGS are both positively signed even if the market share variable is less precisely estimated (but still signi.cant at the 10% level). Concentration is wrongly signed and nowhere near signi.cant.<sup>17</sup> The estimates for the time dummies are not reported. We simply note that the estimates are consistent with prior, that is, these dummies do a good job of picking-up cyclical factors. For instance, the dummies for 1992 and 1993 are signi.cantly negative, years in which the Spanish economy was experiencing a deep recession. As for

<sup>&</sup>lt;sup>16</sup>Note that  $\alpha_i$  accounts for *all* time invariant .xed effects. The latter may be idiosyncratic to the ..rm (e.g., management quality), or common to all ..rms within a sector (e.g., entry barriers or the elasticity of demand).

 $<sup>^{17}</sup>$  In order to check that the "usual" associations between market share, concentration and margins were present in our sample, we re-ran our estimations with MS and HHI being treated as exogenous. The point estimates turned out to be positive and highly signi..cant for MS, and small and insigni.cant for HHI. We have also re-estimated equation (1) with one and two-period lag MS and HHI; the results are qualitatively identical. See Ravenscraft (1983) on the relationship between concentration and margins, and Salinger (1990) for a general overview of pro..tability estimations.

the 3-digit industry dummies, they are not jointly signi..cant.

With respect to our central regressors, the following picture emerges. The variable associated with the degree of foreign ownership (FOC) indicate that in the short-run FDI has a negative and signi.cant effect on pro.tability. This contemporaneous effect is negative and signi.cant at the 5% signi.cance level. There are a number of non-competing explanations for this ...ding. First, it may be the case that becoming an MNC's subsidiary involves real costs, particularly in the short-run. The latter may be the result of a re-organisation process and/or to differences between the MNCs' management style (so called "teething problems" associated with "foreignness"). Second, the initial drop in margins may retect the tendency to endogenously in the face of a realistic prospect of being taken over by a multinational. Whatever the reason, as it can be seen in Figure 1 where the adjustment path implied by our dynamic speci..cation is pictured against time, this negative effect tends to vanish over the years, indicating that the fall in pro. tability is transient. Indeed a non-linear Wald test con.rms that the long-run multiplier turns out to be not signi.cantly different from zero.<sup>18</sup> Taken at their face values, our overall results point out that a change in ownership from domestic to foreign has no long-run effect on pro..tability, a ..nding in line with those reported by Benfratello and Sembenelli (2002). This probably goes against the common wisdom which associates foreign ownership with higher levels of productivity or pro..tability. However, it must be borne in mind that our results do not say that foreign controlled .rms are not more pro. table than their domestic counterparts. This may still be the

$$\frac{\beta_5+\beta_6+\beta_7}{1-\beta_1}$$

 $<sup>^{18}</sup>$  Concretely, a non-linear Wald test for the effect of foreign ownership tests whether

is different from zero.

case if, for instance, foreign owners tend to pick up the best domestic .rms and concentrate in high mark-up sectors. What our results suggest is that existing descriptive evidence (as well as econometric .ndings that do not address properly all endogeneity issues) should not be interpreted as a causal relation, possibly supporting policy measures in favour of foreign ownership.

#### Insert Table 5 and Figure1 about here

As for foreign presence, we ...d weak evidence that a larger foreign presence dampens margins in the short-run, possibly because it enhances the stance of competition. The coefficient on the contemporaneous variable for foreign presence (FP) is negative, but not signi..cant at conventional levels. In addition, as it can be seen from Figure 1, this effect does not persist over time. Indeed, even if not signi..cantly different from zero, the long run multiplier is positive. These results are not inconsistent with the conjecture that MNC activity at the industry level generate effects on pro..tability that go in opposite directions, and that are therefore difficult to unearth empirically.

A ..rst approximation to test this hypothesis is to estimate a labour productivity equation. As mentioned earlier, there ought to exist, in general terms, a causal link between foreign presence at the sectoral level and labour productivity if spillovers are important.<sup>19</sup> We therefore estimated a standard labour productivity equation that includes our two FDI variables (*FOC* and *FP*).<sup>20</sup> Comfortingly, the results are perfectly consistent with our conjectures. The coefficient on the variable associated with foreign ownership at the ..rm level

 $<sup>^{19}</sup>$  Note, however, that this positive relationship is not as clear cut as it might appear at .rst sight (see footnote 8).

 $<sup>^{20}</sup>$  The equation we estimated consists of the log of value added per worker regressed on: the lagged dependent variable, the log of the capital to labour ratio, sectoral median .rm size (as a proxy for economies of scale), intangibles over sales (*ITGS*), and our two FDI variables (*FOC* and *FP*). This equation was estimated by applying the same GMM procedure as that used to obtain our central ...dings. These additional results are available upon request.

(FOC) follows the same pattern as in the pro.tability equation: an initial signi..cant drop compensated by a recovery, thus generating a zero long-run effect. This con..rms the possible existence of transitory "teething problems" that also affect labour productivity. By contrast, the results pertaining to FP differ significantly. The latter's coefficient yield a positive long run effect that is signi..cant at the 2.5% level. These ..ndings are consistent with the idea that a labour productivity equation principally picks-up the spillover effect, while a pro..tability equation has the potential to unearth both the spillover and pro-competitive effects.

#### 4.2.2 R&D versus non-R&D intensive industries

In what follows, we shed further light on this issue by splitting the sample according to priors. Concretely, we expect direct technology transfers and spillovers to be particularly strong in knowledge intensive sectors. After all, these industries are the ones where spillovers are more likely to materialise, and where multinationals may be expected to transfer intangibles to their sub-sidiaries. In *Central de Balances*, only a subset of .rms report their R&D spending, and the series is not available before 1986. Nevertheless, this data enables us to construct a proxy for R&D intensity at the 3-digit level for the period 1986-1996. Sectorial R&D intensity is de.ned as:

$$RDI_j = \frac{\sum_{i=1}^n RDE_{ij}}{\sum_{i=1}^n q_{ij}}$$

where RDE is R&D expenditure at the .rm level. Thus,  $RDI_j$  takes a single value for each of our 3-digit sectors. The splitting criteria that we applied to de.ne R&D intensive sectors is an intensity greater or equal than 2%.<sup>21</sup> Four industries fall in this category (pharmaceuticals, electronics, precision instru-

 $<sup>^{21}\</sup>operatorname{Spanish}$  .rms are among the lowest R&D spenders in the OECD area.

ments, and aerospace), and they account for 2184 observations. Two dummies were constructed accordingly:

$$\begin{cases} RD = 1 \text{ if } RDI_j \ge 0.02\\ NRD = 1 - RD \text{ if } RDI_j < 0.02 \end{cases}$$

Both RD and NRD were interacted with FP and FOC. Three sets of results are presented in columns (ii)-(iv) of Table 5. In column (ii), the interacted regressors as well as industry dummies are introduced. Since the latter are not jointly signi..cant, column (iii) presents the same speci..cation without industry dummies. Last, in column (iv), concentration is dropped since it did not prove signi.cant in any of the speci..cations. As before, there is no evidence of second order autocorrelation of the errors, and the Sargan mispeci..cation tests are satisfactory in the case of columns (ii) and (iii), but less so in (iv) (still, we cannot reject the null at the 1% level).<sup>22</sup>

#### Insert Figures 2 and 3 about here

Both *ITGS* and *MS* maintain their sign. The latter variable is less precisely estimated, while the former remains highly signi..cant. As for the variables of interest, the same picture emerges from all speci..cations. In non-R&D intensive sectors, a change in ownership has no long-run effect on pro.tability. However, the pattern described previously is maintained: margins initially fall, and this effect is signi..cant at the 1% level. After one lag, margins recover, and this effect is signi..cant at the 5% level. With the 2-period lag also being positive (though not signi..cant), the long-run effect is negative, but not signi..cantly different from zero as indicated by the Wald test and the dynamic adjustment path de-

 $<sup>^{22}</sup>$ It should be borne in mind that the two-step Sargan test has a tendency to over-reject the null hypothesis of adequate instruments (see Arellano and Bond (1998) for a discussion).

picted in Figure 2 (derived from speci..cation (iv)). Regarding foreign presence in non-R&D intensive sectors, the contemporaneous effect is signi..cantly negative in the case of columns (ii) and (iv) (while it is only so at the 15% level in the case of speci..cation (iii)). We take this as evidence that an increase in MNC presence increases competitive pressure in the short-run. However, with the exception of speci..cation (iv), this effect vanishes over time, as indicated by the adjustment path and the Wald test. This is consistent with the conjecture that FDI both increases competitive pressure and generates positive externalities for host country .rms (see Figure 3, also derived from speci..cation (iv)).

The results for the four R&D intensive industries are signi.cantly different from the results we ...d for the sample which includes all other industries. In fact, the tests on the equality of the long-run effects between the two samples of industries always reject the restrictions of equal coefficients both for the foreign ownership (FOC) and for the foreign presence (FP) variables. Also, our .ndings are consistent with the predictions put forward in the testable hypotheses section. With regard to foreign ownership, we .nd a statistically signi.cant positive effect that takes time to materialise (the 2-period lag coefficient is the most signi.cant). This is in line with the idea that MNCs do transfer .rm speci.c assets to their subsidiaries in these industries, and also that there is a learning period before these assets are successfully exploited (see also Figure 2). While not individually signi.cant at standard con.dence levels, the coefficients associated with foreign presence indicate that the long-run effect on pro..tability of MNC presence is always positive and signi.cant. This ...ding suggests that the positive spillover effect dominates the pro-competitive effect in the case of R&D intensive industries.<sup>23</sup> Furthermore, as expected, the adjustment path pictured

 $<sup>^{23}</sup>$ We are faced with a potential identi..cation problem in interpreting these .ndings. In the four R&D sectors that we identi..ed, it could be the case that the increase in pro.tability experienced by domestic .rms is a by-product of an increase R&D effort on their part,

in Figure 3 is upward sloping, thus pointing out that it indeed takes time for spillovers to materialise.

#### 4.2.3 Competition versus spillovers in R&D intensive industries

We further explore these issues by exploiting an additional identi..cation condition. If technological spillovers are indeed present in R&D intensive industries, we would expect domestic ..rms to be the main bene..ciaries. This hypothesis is motivated by the fact that Spanish ..rms are more likely to lag foreign subsidiaries. While the origin country of MNCs is unavailable in *Central de Balances*, aggregate FDI ..gures indicate that the main investors come from the US and more advanced Western European economies (e.g., from France, Germany and the UK). It is therefore likely that spillovers will primarily stem from subsidiaries to domestic entities. Clearly, this does not preclude positive technological externalities ‡owing across foreign subsidiaries; our conjecture is simply that the spillover effect will be felt more acutely by domestic ..rms.

We therefore constructed two additional variables. First, we de.ne a foreign and domestic dummy as:

 $\begin{cases} DOD = 1 \text{ if } FOC = 0, 0 \text{ otherwise} \\ FOD = 1 \text{ if } FOC > 0, 0 \text{ otherwise} \end{cases}$ 

That is, a .rm with any positive amount of equity held by non-residents is deemed foreign owned. We then interacted these dummies with our measure of foreign presence (FP) in R&D intensive sectors. In order to check the robustness of our results, we also used an alternative de.nition of "foreignness", that is:

partially spurred by the increased presence of foreign ..rms. Data limitations prevent us from directly tackling this issue. However, OECD data (ANBERD database, 2000 release) do not suggest that Spanish ..rms belonging to the four sectors labelled as R&D intensive signi..cantly increased their R&D outlays during our sample period. The same holds true for ..rms that reported R&D expenditure in *Central de Balances*.

| $\int DOD = 1$ | if $FOC < 0.1$ ,   | 0 otherwise |
|----------------|--------------------|-------------|
| FOD = 1        | if $FOC \ge 0.1$ , | 0 otherwise |

which implies that only .rms whose foreign owned equity was 10% or more are considered as subsidiaries. These additional results are presented in Table 6. In column (i) we applied the .rst de.nition of multinationality, while we used the alternative measure in column (ii). As before, the traditional determinants of pro. tability have the expected sign. As for our variables of interest, their sign, signi.cance, and long vs. short run effects are the same as before in non-R&D intensive sectors.<sup>24</sup> We take this as evidence that our results are robust across speci. cations. In R&D intensive sectors, the direct effect of foreign ownership  $(FOC^*RD)$  continues to positive and signi.cant in the long-run. Regarding foreign presence, we .nd that its long-run effect is positive and signi.cant for both domestic .rms and foreign subsidiaries. However, it appears that domestic ... rms are the main bene. ciaries of an increase in multinational activity: the point estimate for FP\*RD\*DOD is about twice as large as that of FP\*RD\*FOD (see also Figure 4 where the adjustment process based on the results in column (ii) is plotted for domestic ...rms and foreign subsidiaries). These results are consistent with the conjecture that, as compared to their foreign-owned counterparts, domestic ... rms belonging to R&D intensive sectors have been the main bene..ciaries of spillovers.

## 5 Conclusions

In this paper, we have attempted to disentangle some of the effects usually attributed to FDI. On the one hand, the fact that MNCs possess ..rm speci..c

<sup>&</sup>lt;sup>24</sup>We also re-ran our estimations by interacting the foreign and domestic dummy variables in non-R&D intensive sectors. No marked difference emerged between domestically owned concerns and foreign subsidiaries.

advantages that can be transferred back and forth across locations suggest that subsidiaries ought to enjoy greater levels of efficiency, and therefore pro.tability. Overall, we ...d support for this conjecture, but this is limited to R&D intensive sectors. For the rest of manufacturing, the long-run effect of a change from domestic to foreign ownership is nil. In line with the existing literature, we do ...nd evidence of transient costs associated with a change in ownership. With regard to the impact of foreign presence on pro.tability, the dichotomy between R&D and non-R&D sectors is also present. For non-R&D sectors, our results indicate that increased multinational presence dampens margins. However, this effect tends to vanish over time, a .nding that can be interpreted as evidence that MNCs also generate positive externalities for host country .rms. This conclusion is further supported by the results pertaining to the impact of foreign presence in R&D intensive sectors. In the latter case, the positive spillover effect dominates, a result consistent with priors. Finally, we .nd evidence consistent with the idea that domestic .rms belonging to R&D intensive sectors are the main bene. ciaries of spillovers. This should come as no surprise, given that Spanish entities are likely to lag their foreign-owned counterparts.

# Data Appendix

The data was ..ltered in order to systematically eliminate observations of dubious value.

Labour input: .xms reporting non positive values for this variable were dropped.

Gross output: ...ms reporting non-positive values for this variable were eliminated.

Accounting price-cost margins (PCM): observations for which this variable took a value greater or equal to one were dropped. We also dropped margins lower or equal than -1.

We also dropped observations that reported a negative value for net ..xed assets.

We dropped the upper and lower 0.01 percentiles of MS and PCM.

Firms that changed their 3-digit sectorial affiliation during the sample period were dropped from the sample.

## References

- Aitken, B., Harrison, A., (1999), "Do Domestic Firms Bene..t from Direct Investment? Evidence from Venezuela", *American Economic Review*, Vol. (89) 3, pp. 605-618.
- [2] Arellano, M., Bond, S., (1991), "Some Tests of Speci. cation for Panel Data: Monte Carlo Evidence and an Application to Employment Equations", *Review of Economic Studies*, Vol. (58), pp. 277-297.
- [3] Arellano, M., Bond, S., (1998), "Dynamic Panel Data Estimation Using DPD98", Miméo.
- [4] Benfratello, L., and Sembenelli, A. (2002), "Foreign Direct Investment and Productivity: Is the Direction of Causality so Obvious?", Development Studies Working Paper, No 166, Centro Studi Luca d'Agliano.
- [5] Bernheim, B., Whinston, M., (1990), "Multimarket contact and collusive behavior", *Rand Journal of Economics*, Vol. 21(1).
- [6] Blomström, M, and Kokko, A (1998), "Multinational Corporations and Spillovers", *Journal of Economic Surveys*, Vol. 12, pp. 247-277.
- [7] Blundell, R., and Bond, S., (1998): "Initial conditions and moment restrictions in dynamic panel data models", *Journal of Econometrics*, 87, 115-143.
- [8] Boone, J., (2000), "Competition", CEPR Discussion Paper Series No. 2636, December.
- [9] Bresnahan, T., (1989), "Empirical Studies of Industries with Market Power", in R. Schmanlensee, R. Willig (eds.), Handbook of Industrial Organisation, Amsterdam, North Holland.
- [10] Caves, R., (1974), "Multinational Firms, Competition, and Productivity in Host-Country Markets", *Economica*, Vol. 41 (162), pp. 176-193.
- [11] Conyon, M., Girma, S., Thompson, S., and Wright, P., (2002), "The Productivity and Wage Effects of Foreign Acquisitions in the United Kingdom", *Journal of Industrial Economics*, L(1), pp. 85-102.
- [12] Domowitz, I., Hubbard, R., Petersen, B., (1986) "Business cycles and the relationship between concentration and price-cost margins", *The Rand Journal of Economics*, Vol. 17 (1), pp. 1-17.
- [13] Driffield, N., Love, J., (2003), "Foreign Direct Investment, Technology Sourcing and Reverse Spillovers", *The Manchester School*, Vol 71 No. 6, pp. 659-672.
- [14] Dunning, J, (1981) "International Production and the Multinational Enterprise", George Allen and Unwin, London.

- [15] Fosfuri, A., Motta, M, (1999) "Multinationals Without Advantages", Scandinavian Journal of Economics, Vol. 101, pp. 617-630.
- [16] Haddad, M., Harrison, A., (1993), "Are there positive spillovers from foreign direct investment?", *Journal of Development Economics*, Vol. (42), pp. 51-74.
- [17] Hall, R., (1986), "Market Structure and Macroeconomics Fluctuations", Brookings Papers on Economic Activity, Vol. 2, pp. 285- 338.
- [18] Hanson, G., (2001), "Should Countries Promote Foreign Direct Investment?", G-24 Discussion Paper Series, No 9, February.
- [19] Harris, R., Robinson, C., (2002), "The Impact of Foreign Acquisitions on Total Factor Productivity: Plant-level Evidence form UK Manufacturing, 1987-1992", The Review of Economics and Statistics, Vol. 84(3), pp. 562-568.
- [20] Hernando, I., Vallés, J., (1994), "Algunas Diferencias en la Productividad de las Empresas Manufactureras Españolas", *Investigaciones Económicas*, Vol. XVIII (1), pp. 117-141.
- [21] Hymer, S, (1976), "The International Operations of National Firms: A Study of Direct Foreign Investment", MIT Press, Cambridge MA.
- [22] Kim, E. H., Singal, V., (1993), "Mergers and Market Power: Evidence from the Airline Industry", American Economic Review, Vol. (83) 3, pp. 549-569.
- [23] Lichtenberg, F., Siegel, D., (1987), "Productivity Changes in Ownership of Manufacturing Plants", *Brookings Papers on Economic Activity*, Vol. 3, pp. 643-83.
- [24] Markusen, J, (1995) "The Boundaries of Multinational Enterprises and the Theory of International Trade", *Journal of Economic Perspectives*, Vol. 9 (Spring), pp. 169-189.
- [25] Martin, S., (2002), Advanced Industrial Economics, Blackwell Publishers, Oxford, UK
- [26] Neven, D., Siotis, G., (1993), "Foreign Direct Investment in the European Community: Some Policy Issues", Oxford Review of Economic Policy, Vol. 9(2), pp. 72-93.
- [27] Neven, D, and Siotis, G, (1996) "Technology Sourcing and FDI in the EC: An Empirical Evaluation", *International Journal of Industrial Organiza*tion, Vol. 14(5), pp. 543-560.
- [28] Ravenscraft, D., (1983), "Structure-Pro.t Relationships at the Line of Business and Industry Level", *Review of Economics and Statistics*, Vol. 65, pp. 22-31.

- [29] Salinger, M., (1990), "The Concentration-Margins Relationship Reconsidered", Brookings Papers on Economic Activity, pp. 287-335.-13.
- [30] Siotis, G., (1999), "FDI strategies and .rms' capabilities", Journal of Economics and Management Strategy, Vol 8, No 2, pp. 251-270.
- [31] Siotis, G., (2003), "Competitive pressure and economic integration: An illustration for Spain, 1983-1996" International Journal of Industrial Organization, Vol. 21, Issue 10, pp. 1435-1459.
- [32] Wang, J-Y., and Blomström, M. (1992), "Foreign Investment and technology Transfer : a simple Model", *European Economic Review*, vol. 36, pp. 137-156.

 Table 1: Number of Consecutive Observations

| Cons. Obs. | Firms |
|------------|-------|
| 4          | 529   |
| 5          | 475   |
| 6          | 420   |
| 7          | 307   |
| 8          | 310   |
| 9          | 251   |
| 10         | 276   |
| 11         | 257   |
| 12         | 178   |
| 13         | 200   |
| 14         | 364   |
| Total      | 3567  |

Table 2: Number of Observations by Year

| Year  | Observations |
|-------|--------------|
| 1983  | 1178         |
| 1984  | 1573         |
| 1985  | 1920         |
| 1986  | 2333         |
| 1987  | 2597         |
| 1988  | 2613         |
| 1989  | 2596         |
| 1990  | 2489         |
| 1991  | 2346         |
| 1992  | 2258         |
| 1993  | 2185         |
| 1994  | 1980         |
| 1995  | 1821         |
| 1996  | 1429         |
| Total | 29318        |

| Sector                                | Observations |  |
|---------------------------------------|--------------|--|
| Food, Beverages and Tobacco           | 5833         |  |
| Chemicals                             | 3832         |  |
| Mineral Products                      | 2355         |  |
| Metal Goods                           | 2314         |  |
| Mechanical Engineering                | 2596         |  |
| Electrical and Instrument Engineering | 1945         |  |
| Transport Equipment                   | 1563         |  |
| Textiles and Clothing                 | 3206         |  |
| Leather and Leather Products          | 907          |  |
| Wood and Wooden Products              | 911          |  |
| Paper, Printing and Publishing        | 2373         |  |
| Rubber and Plastics                   | 1483         |  |
| Total                                 | 29318        |  |

Table 3: Number of Observations by Sector

 Table 4: Descriptive Statistics

| Variables                       | Mean  | St. Dev. | 1 Pct  | Med.  | 99 Pct |
|---------------------------------|-------|----------|--------|-------|--------|
|                                 |       |          |        |       |        |
| Price Cost Margins $(PCM)$      | 0.104 | 0.089    | -0.155 | 0.098 | 0.360  |
| 3-digit Market Share $(MS)$     | 0.015 | 0.039    | 0.000  | 0.004 | 0.185  |
| 3-digit HH index $(HHI)$        | 0.063 | 0.065    | 0.016  | 0.052 | 0.363  |
| Intangibles over Sales $(ITGS)$ | 0.014 | 0.078    | 0.000  | 0.000 | 0.237  |
| Foreign Ownership $(FOC)$       | 0.153 | 0.331    | 0.000  | 0.000 | 1.000  |
| 3-digit Foreign Presence $(FP)$ | 0.294 | 0.187    | 0.015  | 0.227 | 0.792  |

|                         | (i)          | (ii)         | (iii)        | (iv)         |
|-------------------------|--------------|--------------|--------------|--------------|
|                         |              |              |              |              |
| $PCM_{t-1}$             | 0.445(0.00)  | 0.441(0.00)  | 0.447(0.00)  | 0.442(0.00)  |
| $MS_t$                  | 0.275(0.08)  | 0.252(0.13)  | 0.242(0.17)  | 0.161(0.36)  |
| $HHI_t$                 | -0.013(0.87) | 0.047(0.53)  | 0.126(0.20)  |              |
| $ITGS_t$                | 0.098(0.00)  | 0.098(0.00)  | 0.098(0.00)  | 0.096(0.00)  |
| $FOC_t$                 | -0.084(0.03) |              |              |              |
| $FOC_{t-1}$             | 0.080(0.01)  |              |              |              |
| $FOC_{t-2}$             | 0.012(0.15)  |              |              |              |
| $FP_t$                  | -0.031(0.26) |              |              |              |
| $FP_{t-1}$              | 0.014(0.54)  |              |              |              |
| $FP_{t-2}$              | 0.032(0.09)  |              |              |              |
| $FOC_t * RD$            |              | 0.058(0.11)  | 0.042(0.31)  | 0.053(0.20)  |
| $FOC_{t-1} * RD$        |              | 0.055(0.22)  | 0.040(0.39)  | 0.046(0.34)  |
| $FOC_{t-2} * RD$        |              | 0.046(0.07)  | 0.044(0.09)  | 0.043(0.11)  |
| $FOC_t * NRD$           |              | -0.125(0.01) | -0.125(0.01) | -0.133(0.01) |
| $FOC_{t-1} * NRD$       |              | 0.100(0.01)  | 0.092(0.02)  | 0.090(0.03)  |
| $FOC_{t-2} * NRD$       |              | 0.009(0.34)  | 0.007(0.46)  | 0.006(0.50)  |
| $FP_t * RD$             |              | 0.051(0.21)  | 0.036(0.38)  | 0.031(0.43)  |
| $FP_{t-1} * RD$         |              | 0.021(0.52)  | 0.050(0.31)  | 0.118(0.12)  |
| $FP_{t-2} * RD$         |              | 0.080(0.11)  | 0.043(0.32)  | 0.048(0.31)  |
| $FP_t * NRD$            |              | -0.050(0.07) | -0.045(0.15) | -0.078(0.07) |
| $FP_{t-1} * NRD$        |              | 0.014(0.60)  | -0.001(0.97) | -0.042(0.43) |
| $FP_{t-2} * NRD$        |              | 0.017(0.28)  | 0.015(0.30)  | 0.007(0.66)  |
|                         |              |              |              |              |
| $m_1$                   | -14.82(0.00) | -14.23(0.00) | -14.35(0.00) | -14.01(0.00) |
| $m_2$                   | 1.47(0.14)   | 1.39(0.16)   | 1.48(0.14)   | 1.40(0.16)   |
| Sargan                  | 140.79(0.17) | 190.67(0.08) | 193.09(0.06) | 182.88(0.01) |
| Test on joint sig.of ID | 32.49(0.39)  | 36.05(0.24)  |              |              |
|                         |              |              |              |              |
| FOC LR effect           | 0.011(0.77)  |              |              |              |
| RD FOC LR effect        |              | 0.284(0.03)  | 0.228(0.12)  | 0.254(0.08)  |
| Non-RD FOC LR effect    |              | -0.029(0.62) | -0.047(0.42) | -0.066(0.28) |
| Test on FOC restriction |              | 0.313(0.06)  | 0.275(0.07)  | 0.320(0.01)  |
| FP LR effect            | 0.027(0.64)  |              |              |              |
| RD FP LR effect         |              | 0.272(0.08)  | 0.234(0.10)  | 0.353(0.05)  |
| Non-RD FP LR effect     |              | -0.045(0.53) | -0.056(0.45) | -0.203(0.08) |
| Test on FP restriction  |              | 0.317(0.02)  | 0.290(0.07)  | 0.556(0.04)  |

 Table 5: Equation Results

Note: All estimates include a full set of time dummies as regressors and instruments. Estimates in columns (i) and (ii) also include a set of three-digit industry dummies as regressors and instruments. Additional instruments are:

in column (i) PCM(2,3), MS(2,3), HHI(2,3), ITGS(2,3), FOC(2,3), FP(2,3);

in columns (ii) and (iii) PCM(2,3), MS(2,3), HHI(2,3), ITGS(2,3),  $FOC^*RD(2,3)$ ,  $FOC^*NRD(2,3)$ ,  $FP^*RD(2,3)$ ,  $FP^*NRD(2,3)$ ;

in column (iv) PCM(2,3), MS(2,3), ITGS(2,3),  $FOC^*RD(2,3)$ ,  $FOC^*NRD(2,3)$ ,  $FP^*RD(2,3)$ ,  $FP^*NRD(2,3)$ .

P-values in round brackets. The null hypothesis that each coefficient is equal to zero is tested using one-step robust standard errors.  $m_1(m_2)$  is a test of the null hypothesis of no ...st (second) order serial correlation. Sargan is a test of the validity of the overidentifying restrictions based on the efficient two-step GMM estimator.

|                             | (i)          | (ii)         |
|-----------------------------|--------------|--------------|
| $PCM_{t-1}$                 | 0.439(0.00)  | 0.439(0.00)  |
| $MS_t$                      | 0.197(0.28)  | 0.213(0.24)  |
| $HHI_t$                     |              |              |
| $ITGS_t$                    | 0.097(0.00)  | 0.094(0.00)  |
| $FOC_t * RD$                | 0.064(0.22)  | 0.079(0.19)  |
| $FOC_{t-1} * RD$            | 0.076(0.19)  | 0.065(0.30)  |
| $FOC_{t-2} * RD$            | 0.048(0.20)  | 0.051(0.19)  |
| $FOC_t * NRD$               | -0.133(0.01) | -0.132(0.01) |
| $FOC_{t-1} * NRD$           | 0.093(0.03)  | 0.093(0.02)  |
| $FOC_{t-2} * NRD$           | 0.007(0.46)  | 0.007(0.46)  |
| $FP_t * RD * FOD_t$         | -0.002(0.96) | -0.028(0.66) |
| $FP_{t-1} * RD * FOD_{t-1}$ | 0.092(0.15)  | 0.098(0.17)  |
| $FP_{t-2} * RD * FOD_{t-2}$ | 0.042(0.44)  | 0.037(0.51)  |
| $FP_t * RD * DOD_t$         | 0.039(0.51)  | 0.059(0.37)  |
| $FP_{t-2} * RD * DOD_{t-1}$ | 0.133(0.17)  | 0.127(0.21)  |
| $FP_{t-2} * RD * DOD_{t-2}$ | 0.053(0.31)  | 0.056(0.28)  |
| $FP_t * NRD$                | -0.078(0.07) | -0.076(0.08) |
| $FP_{t-1} * NRD$            | -0.038(0.48) | -0.035(0.51) |
| $FP_{t-2} * NRD$            | 0.008(0.62)  | 0.008(0.60)  |
|                             |              |              |
| $m_1$                       | -14.14(0.00) | -14.15(0.00) |
| $m_2$                       | 1.39(0.16)   | 1.39(0.17)   |
| Sargan                      | 191.67(0.05) | 193.98(0.04) |
|                             |              |              |
| RD FOC LR effect            | 0.335(0.02)  | 0.348(0.01)  |
| Non-RD FOC LR effect        | -0.059(0.33) | -0.056(0.34) |
| Test on FOC restriction     | 0.394(0.01)  | 0.404(0.01)  |
| RD FP DOD LR effect         | 0.401(0.06)  | 0.431(0.03)  |
| RD FP FOD LR effect         | 0.225(0.11)  | 0.191(0.20)  |
| Test on RD FP restriction   | 0.169(0.32)  | 0.240(0.16)  |
| Non-RD FP LR effect         | -0.193(0.10) | -0.184(0.11) |

 Table 6: Additional Equation Results

Note: in column (i) FOD is equal to one if FOC>0, and zero otherwise. In column (ii) FOD is instead equal to one if FOC>0.1, and zero otherwise. All estimates include a full set of time dummies as regressors and instruments. Additional instruments are:  $PCM(2,3), MS(2,3), ITGS(2,3), FOC^*RD(2,3), FOC^*NRD(2,3), FP^*RD^*FOD(2,3), FP^*RD^*DOD(2,3), FP^*NRD(2,3).$ 

P-values in round brackets. The null hypothesis that each coefficient is equal to zero is tested using one-step robust standard errors.  $m_1(m_2)$  is a test of the null hypothesis of no ..rst (second) order serial correlation. Sargan is a test of the validity of the overidentifying restrictions based on the efficient two-step GMM estimator.



Figure 1: Aggregate Dynamic Effect on Pro..tability of Foreign Ownership (dotted line) and Foreign Presence (continuous line)



Figure 2: Dynamic Effect on Pro.tability of Foreign Ownership - R&D (continuous line) versus non-R&D (dotted line) Intensive Industries



Figure 3: Dynamic Effect on Pro..tability of Foreign Presence - R&D (continuous line) versus non-R&D (dotted line) Intensive Industries



Figure 4: Dynamic Effect on Pro..tability of Foreign Presence in R&D Intensive Industries - Domestic Firms (continuous line) versus Foreign Firms (dotted line)