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Abstract

We study the asymptotic behaviour of the monic orthogonal polynomials with
respect to the Gegenbauer-Sobolev inner product (f, g)S = 〈f, g〉 + λ〈f ′, g′〉 where
〈f, g〉 =

∫ 1

−1
f(x)g(x)(1 − x2)α−1/2dx with α > −1/2 and λ > 0. The asymptotics of

the zeros and norms of these polynomials is also established.

The study of the orthogonal polynomials with respect to the inner products that
involve derivatives (the so-called Sobolev orthogonal polynomials) has been very active
for the last ten years (see [5] for a wide bibliography on this subject). Al though algebraic
properties of such polynomials (existence, recurrence relations, etc.) have been widely
studied, non-trivial asymptotic results were known only for the case when the measure
associated with the derivatives is discrete (see [?], [6] and, recently, [1]). The outer as
well as inner asymptotics for the orthogonal polynomials with both measures absolutely
continuous (excluding the trivial cases) is in general an open question. We will produce
here the outer asymptotics of this sequence when both measures correspond to the same
Gegenbauer weight, that can be considered as the first non-trivial example.

Let us consider the Gegenbauer-Sobolev inner product

(f, g)S =
∫ 1

−1
f(x)g(x)(1− x2)α−1/2dx+ λ

∫ 1

−1
f ′(x)g′(x)(1− x2)α−1/2dx

with α > −1/2 and λ ≥ 0. Clearly, if λ = 0 we have the classical Gegenbauer inner
product, thus in the sequel we suppose λ > 0. The inner product (·, ·)S is positive definite
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and thus the corresponding sequence o f orthogonal polynomials exists. Furthermore, if
we denote by Q

(α)
n (x) the nth monic orthogonal polynomial with respect to (., .)S then

degQ(α)
n (x) = n and Q

(α)
n (−x) = (−1)nQ(α)

n (x). The Gegenbauer-Sobo lev orthogonal
polynomials and their algebraic properties have been studied by T.E. Pérez in [8]. These
polynomials constitute a particular case of the so-called symmetrically coherent pairs of
measures, first studied in [2].

Denote by C(α)
n (x) the monic classical Gegenbauer polynomial of degree n, orthogonal

with respect to

〈f, g〉 =
∫ 1

−1
f(x)g(x)(1− x2)α−1/2dx , α > −1

2
.

The asymptotic behaviour of C(α)
n is well known, and is easily obtained from [9,

(8.21.9)]: uniformly on compact subsets of C \ [−1, 1],

C(α)
n (x) = 21−2α(x2 − 1)−

α
2 (
√
x+ 1 +

√
x− 1)2α−1Φ(x)n+1/2(1 + o(1)) , (1)

when n→∞, where Φ(x) = x+
√
x2−1
2 , with

√
x2 − 1 > 0 when x > 1.

Then the strong asymptotics of the Gegenbauer-Sobolev polynomials can be derived

from the asymptotic behaviour of the ratio Q
(α)
n (x)

C
(α)
n (x)

, along with the properties of their zeros.

The zeros have been studied by H.G . Meijer in [7] and T.E. Pérez [8], but the asymptotic
behaviour of the zeros with the largest absolute value was unknown. From our result, it
follows that all the zeros accumulate in [−1, 1] when n→∞.

The following theorem establishes the desired relative asymptotics.

Theorem 1 With the notation introduced above,

lim
n→∞

Q
(α)
n (x)

C
(α)
n (x)

=
1

Φ′(x)
(2)

uniformly on compact subsets of Ω = C\[−1, 1].

Proof: Formula (2) is a direct consequence of the two-term relation between the Gegenbauer-
Sobolev and the Gegenbauer monic orthogonal polynomials obtained by Iserles et al. in
[2] ,

Q(α)
n (x)− dn−2(λ)Q(α)

n−2(x) = C(α)
n (x)− ξ(α)

n−2C
(α)
n−2(x) , (3)

where {dn−2(λ)} is a sequence of real positive numbers and

ξ(α)
n =

(n+ 2)(n+ 1)
4(n+ α+ 1)(n+ α)

. (4)

With the notation

Yn(x) :=
Q

(α)
n (x)

C
(α)
n (x)

, δn(x) := dn−2(λ)
C

(α)
n−2(x)

C
(α)
n (x)

,

βn(x) := 1− ξ(α)
n−2

C
(α)
n−2(x)

C
(α)
n (x)
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the equation (3) can be rewritten as

Yn(x)− δn(x)Yn−2(x) = βn(x) , (5)

which uniquely defines the sequence {Yn} of analytic functions in Ω, with the initial values
Y0 = Y1 = 1.
It is clear that

|Yn(x)| ≤ |δn(x)||Yn−2(x)|+ |βn(x)| . (6)

In [8] (see also [2]) it was proved that

dn(λ) = O(
1
n2

), (7)

and by (4)
ξ
(α)
n−2 → 1/4. (8)

Furthermore, from (1),
C

(α)
n−2(x)

C
(α)
n (x)

→ 1
Φ2(x)

, (9)

uniformly on compact subsets of Ω.
Combining (7) and (9) we obtain that there exists n0 ∈ N such that

|δn(x)| < 1
2
, n ≥ n0. (10)

On the other hand,

|βn(x)| ≤ 1 + ξ
(α)
n−2

∣∣∣∣∣C
(α)
n−2(x)

C
(α)
n (x)

∣∣∣∣∣ .
Using (8), (9) as well as the inequality |Φ(x)|2 > 1/4 for x 6∈ [−1, 1] we deduce the existence
of B > 0 and n1 ∈ N such that

|βn(x)| < B , n ≥ n1 . (11)

From (6), (10) and (11) we have for n ≥ n2 = max{n0, n1},

|Yn(x)| < 1
2
|Yn−2(x)|+B . (12)

Consider the sequence

Zn(x) =
{
|Yn(x)| , n ≤ n2 ,
1
2Zn−2(x) +B , n > n2 .

For n > n2,

Zn+2r = (
1
2

)rZn + 2B(1− 1
2r

) . (13)

Taking limits when r → ∞ in (13) we obtain that Zn(x) is uniformly bounded for all n
sufficiently large. Moreover, 0 < |Yn(x)| ≤ Zn(x) , for all n ∈ N. Hence, Yn(x) is uniformly
bounded, and taking limits in (5) we have tha t

Yn(x) =
Q

(α)
n (x)

C
(α)
n (x)

−→ 1− 1
4Φ2(x)

, (14)
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uniformly on compact subsets of Ω . Notice that for x ∈ Ω

1− 1
4Φ2(x)

=
√
x2 − 1
Φ(x)

=
1

Φ′(x)
. (15)

From (14) and (15) the result (2) immediately follows. 2

Now we study the (Sobolev) norm behaviour of {Q(α)
n (x)}. With the notation

k(α)
n = 〈C(α)

n (x), C(α)
n (x)〉 = π21−2α−2n n!Γ(n+ 2α)

Γ(n+ α+ 1)Γ(n+ α)
,

(see [8], [9, (4.7.15)] and
k̃(α)
n = (Q(α)

n (x), Q(α)
n (x))S

the following theorem holds:

Theorem 2

k(α)
n + λn2k

(α)
n−1 ≤ k̃

(α)
n ≤ k(α)

n + (ξ(α)
n−2)2k(α)

n−2 + λn2k
(α)
n−1 , n ≥ 3 . (16)

where ξ(α)
n−2 have been defined in (4).

In particular,

lim
n→∞

4n−1k̃
(α)
n

n2
= π21−2αλ .

Proof: We use the extremal property k(α)
n = inf{〈P, P 〉 : deg P = n,

P monic}:

k̃(α)
n = (Q(α)

n (x), Q(α)
n (x))S =

= 〈Q(α)
n (x), Q(α)

n (x)〉+ λ〈(Q(α)
n (x))′, (Q(α)

n (x))′〉
≥ 〈C(α)

n (x), C(α)
n (x)〉+ λn2〈C(α)

n−1(x), C(α)
n−1(x)〉 =

= k(α)
n + λn2k

(α)
n−1 . (17)

On the other hand, the polynomials R(α)
n (x) = C

(α)
n − ξ(α)

n−2C
(α)
n−2 that appear in the right-

hand side of (3) satisfy (see (3.3.4) in [8])

(R(α)
n (x))′ = nC

(α)
n−1(x) , n ≥ 2 . (18)

Hence, the corresponding extremal property of k̃(α)
n means that

k̃(α)
n ≤ (R(α)

n (x), R(α)
n (x))S = k(α)

n + (ξ(α)
n−2)2k(α)

n−2 + λn2k
(α)
n−1 . (19)

Using the inequalities (17) and (19) the result (16) follows.
In particular, taking limits in (16) when n→∞,

lim
n→∞

4n−1k̃
(α)
n

n2
= λ lim

n→∞
4n−1k

(α)
n−1 .
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It remains to use the explicit formula for k(α)
n in order to obtain the desired asymptotics.

2

Finally we make some remarks on the behaviour of the zeros of Q(α)
n (x).

First, strong asymptotics of Q(α)
n implies weak asymptotics. That is, if we associate

with each Q
(α)
n (x) its enumeration measure (i.e. the discrete unit measure with equal

positive masses at their zeros, according to their multipl icity)

µn =
1
n

∑
Q

(α)
n (ξ)=0

δξ ,

then
dµn(x) −→ 1

π

dx√
1− x2

(20)

(the equilibrium distribution on [−1, 1]) in the weak-* topology.
Moreover, it is known (see T.E. Pérez [8] ) that the zeros of Gegenbauer-Sobolev

orthogonal polynomials Q(α)
n (x) are real and simple, and that they interlace with the

roots of the Gegenbauer orthogonal polynomials C(α)
n (x). Furthermore, for α ≥ 1/2 they

are all contained in the interval [−1, 1] and for −1/2 < α < 1/2 there is at most a pair of
roots symmetric with respect to the origin outside the interval [−1, 1]. Theorem 1 implies
a stronger assertion:

Corollary 1 All the roots of Q(α)
n (x) accumulate at [−1, 1], that is,

⋂
n≥1

∞⋃
k=n

{z : Q(α)
k (z) = 0} = [−1, 1] . (21)

Proof: It is sufficient to observe that Q
(α)
n (x)

C
(α)
n (x)

is a sequence of analytic functions in C\[−1, 1]

and Φ(x) is analytic and has no zeros in C\[−1, 1]. Hence, the zeros of Q(α)
n (x) cannot

accumulate outside [−1, 1]. On the other hand, (20) shows that they must be dense in
[-1,1]. 2
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