
Strong Asymptotics for Sobolev Orthogonal Polynomials ∗

Andrei Mart́ınez Finkelshtein†

Departamento de Estad́ıstica y Matemática Aplicada
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Héctor Pijeira Cabrera‡

Departamento de Matemáticas
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Abstract

In this paper we obtain the strong asymptotics for the sequence of orthogonal
polynomials with respect to the inner product

〈f, g〉S =
m∑

k=0

∫
∆k

f (k)(x)g(k)(x)dµk(x)

where {µk}mk=0, with m∈ ZZ+, are measures supported on [−1, 1] which satisfy Szegő’s
condition.
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1 Introduction

Let {µk}mk=0 ,with m∈ ZZ+, be a set of m + 1 finite positive Borel measures, such that
at least one of them has infinitely many points of increase and for each k = 0, ...,m the
support ∆k of µk is a compact subset of the real line IR. If f (k) denotes the k-th derivative
of the function f , then the expression

〈f, g〉S =
m∑

k=0

∫
∆k

f (k)(x)g(k)(x)dµk(x) (1)
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defines an inner product in the linear space P of polynomials with real coefficients. A
completion of P with respect to the norm ‖f‖S = 〈f, f〉1/2

S leads to the suitable Sobolev
space of functions.

The Gram-Schmidt process with respect to (1) applied to the canonical basis of P
generates the orthonormal sequence of polynomials {qn} , n = 0, 1, . . . , deg qn = n; we
denote the corresponding monic polynomials by Qn(x) = xn + . . ., so that

qn(z) =
Qn(z)
‖Qn‖S

, n = 0, 1, . . . .

As usual, we will call these sequences Sobolev Orthogonal Polynomials.
During the nineties a very active research on Sobolev orthogonal polynomials has been

carried out, although the major advances corresponded initially to specific measures and
to the algebraic aspect of the theory. For a historical review of this period the reader is
referred to [1] and [8].

The analytic results are rather recent. Unlike the standard orthogonality with respect
to a measure, in this case the orthogonal polynomials neither satisfy a three-term recur-
rence relation nor their zeros are necessarily contained in the convex hull of

⋃m
k=0 ∆k.

Thus, we are deprived of two fundamental tools in the study of the asymptotic behavior
of the polynomials when the degree tends to infinity, and the traditional analytic methods
have no immediate extension to the Sobolev case.

The first important asymptotic results appeared in [6] and [4] and corresponded to the
so-called discrete case (that is, when {µk}mk=1 have at most a finite number of mass points).
In the non-discrete or continuous case, the most general results obtained so far deal with
m = 1. In [3], the potential theoretic approach is used for the study of the asymptotic
distribution of zeros and critical points of the Sobolev orthogonal polynomials, under the
additional assumption that both µ0 and µ1 are supported on IR and belong to the class
Reg (see the definition in the monograph [11]). In [7], the strong asymptotics for the
sequence of Sobolev orthogonal polynomials was obtained, assuming that the measures µ0

and µ1 are supported on a smooth Jordan curve or arc in the complex plane and satisfy
Szegő’s condition.

Possibly, the only known results concerning the non-discrete case and arbitrary m ∈
ZZ+ are contained in [2] and [5]. In [2], the moment problem associated to (1) is inves-
tigated and the necessary and sufficient conditions for the existence of a solution of the
so-called Sobolev moment problem are established. In [5], for a wide class of Sobolev
orthogonal polynomials, it is proved that the zeros are contained in a compact subset
of the complex plane; the asymptotic zero distribution is obtained and, with this infor-
mation, the n-th root asymptotic behavior outside the compact set containing all the
zeros is given. A sufficient condition for this asymptotic behavior is what the authors
called the lower sequential domination of the Sobolev inner product: ∆k ⊂ ∆k−1 and
dµk = fk−1dµk−1 , fk−1 ∈ L∞(µk−1) , k = 1, . . . ,m .

By analogy, we say that the Sobolev inner product (1) is upper sequentially dominated
if ∆k ⊂ ∆m, k = 0, . . . ,m − 1, and ∆m is a compact interval. Clearly, the case when all
the measures involved in the inner product are equal satisfies both domination conditions.

The purpose of this paper is to extend the results of [7] to arbitrary m ∈ ZZ+, assuming
that the Sobolev inner product (1) is upper sequentially dominated. Without loss of
generality, in what follows we suppose that ∆m = [−1, 1].
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In the next section the main results are stated; the necessary background is gathered
in Section 3. Finally, the last two sections are devoted to the proofs.

2 Asymptotics of Sobolev polynomials

Before stating the main results, we introduce some notation and definitions. Denote by
∆ = [−1, 1], Ω = IC \ ∆ and ϕ(z) the conformal mapping of Ω onto the exterior of the
circle |z| = 1/2; that is, ϕ(z) = (z +

√
z2 − 1)/2 , where the square root is chosen so that

|z +
√
z2 − 1| > 1 for z ∈ Ω.

Let µ = ρ(x) dx + µs be the Lebesgue-Radon-Nicodym decomposition of the measure
µ, so that ρ(x) is integrable and non-negative almost everywhere on ∆ and µs is singular
(with respect to the Lebesgue measure) on ∆. The measure µ is said to belong to the
Szegő class on ∆ (and we denote this fact by µ ∈ S(∆)) if suppµ ⊂ ∆ and∫

∆

log ρ(x)√
1− x2

dx > −∞ . (2)

Obviously, this implies that ρ(x) > 0 almost everywhere on ∆.
For a finite positive Borel measure µ with infinitely many points of increase, we denote

by Pn(µ; z) the nth monic orthogonal polynomial with respect to µ, and

γn = γn(µ) =
∫
|Pn(µ;x)|2 dµ(x) . (3)

Then, pn(µ; z) = γn(µ)−1/2Pn(µ; z) stands for the corresponding orthonormal polynomial.
When µ is absolutely continuous with respect to the Lebesgue measure and µ′ = ρ, we
use sometimes ρ instead of µ in the notation of the norms and polynomials.

Each measure µk, , k = 0, 1, ... , m, yields the inner product

〈f, g〉k =
∫
fg dµk , k = 0, 1, ... , m ,

and the norm ‖f‖2k = 〈f, f〉1/2
k . With this notation, the sequence of monic polynomials

Qn is orthogonal with respect to the inner product

〈f, g〉S =
m∑

k=0

〈f (k), g(k)〉k .

Our first result establishes the asymptotic behavior of the Sobolev norms

κn = 〈Qn, Qn〉S = min

{
〈Q,Q〉S : Q(x) = xn +

n−1∑
i=0

cix
i

}
. (4)

We have

Theorem 1 If the inner product (1) is upper sequentially dominated, dµm(x) = ρ(x)dx
with ρ ∈ S([−1, 1]) and {µk}m−1

k=0 are finite positive Borel measures whose supports are
contained in [−1, 1], then

lim
n→∞

κn

n2m γn−m(ρ)
= 1 , (5)
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and

lim
n→∞

Q
(m)
n (z)

nm Pn−m(ρ; z)
= 1 , (6)

uniformly on compact subsets of Ω.

In practice, the most natural situation is when the measures {µk}mk=0 are supported
on the same interval ∆. In this case we have:

Theorem 2 If the finite positive and absolutely continuous Borel measures µk ∈ S([−1, 1]),
k = 0, 1, . . . ,m, then

lim
n→∞

Q
(k)
n (z)

nk Pn−k(µm; z)
=

1

[ϕ′(z)]m−k
, k = 0, 1, . . . ,m , (7)

uniformly on compact subsets of Ω.

Observe that the right hand side of (7) is a non-vanishing analytic function in Ω; thus,
by Hurwitz’s theorem the zeros of Qn cannot accumulate in Ω. Furthermore, with account
of the well-known ratio asymptotics of Pn(µm; z) and (7), the ratio asymptotics of Qn is
straightforward.

Corollary 1 With the assumptions of Theorem 2:

1. The zeros of the Sobolev orthogonal polynomials Qn accumulate on ∆ = [−1, 1].

2. For 0 ≤ k1, k2 ≤ m and d ∈ ZZ+,

lim
n→∞

Q
(k1)
n+d(z)

nk1−k2 Q
(k2)
n (z)

= [ϕ(z)]d+k2−k1
[
ϕ′(z)

]k1−k2 ,

uniformly on compact subsets of Ω.

3 Extremal problem for analytic functions

It is well known that the Hardy spaces constitute a natural analytic framework for the
study of the asymptotic properties of orthogonal polynomials. A comprehensive account
on these topics can be found in the monograph [10].

If a measure µ belongs to the Szegő class on ∆ = [−1, 1], then there exists a unique
function R(z) holomorphic in Ω = IC \∆ satisfying:

1. R(z) 6= 0 for z ∈ Ω,

2. R(∞) > 0 ,

3. for almost every x ∈ (−1, 1)

lim
y→0
|R(x+ iy)| = ρ(x) .
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The construction of R is straightforward if we notice that ln |R| is the solution of the
Dirichlet problem in Ω with boundary condition ln ρ on ∆ (and its existence is guaranteed
by the Szegő’s condition). Let g(z,∞) be the Green function of Ω with pole at infinity,
and Γr be the level curve Γr = {z ∈ Ω : g(z,∞) = r} with r > 0.

An analytic function f in Ω is said to be of class E1(Ω) (see e.g. [10], Ch. 10) if

sup
r>0

∫
Γr

|f(z)|2|dz| < +∞ .

By E2(Ω, ρ), we denote the space of functions f analytic in Ω such that |f2(z)R(z)| ∈
E1(Ω). Any f ∈ E2(Ω, ρ) has non-tangential limits

f+(x) = lim
y→0+

f(x+ iy) , f−(x) = lim
y→0−

f(x+ iy) ,

for almost all x ∈ (−1, 1), and can be recovered from its boundary values using Cauchy
integrals. Thus, the following Lemma (see [9], Corollary 7.4) is straightforward:

Lemma 1 Given a weight ρ ∈ S(∆) and a compact subset Σ ⊂ Ω, there exists a constant
M = M(Σ) such that

max
z∈Σ
|f(z)|2 ≤M

∫
∆

{
|f+(x)|2 + |f−(x)|2

}
ρ(x)dx for all f ∈ E2 (Ω, ρ) .

Moreover, E2(Ω, ρ) becomes a Hilbert space with the inner product

〈f, g〉 =
∫

∆

{
f+(x)g+(x) + f−(x)g−(x)

}
ρ(x) dx .

In this space, the following extremal problem can be considered (see [9] and [12]):

ν(ρ) = inf
{
〈F, F 〉 : F ∈ E2(Ω, ρ), F (∞) = 1

}
. (8)

The key fact contained in the Szegő-Kolmogorov-Krein Theorem is that µ ∈ S(∆) if and
only if ν(ρ) > 0, and there exists a unique extremal function F(z) = F(ρ; z) solving (8).
Furthermore, (see e.g. [9], theorem 6.2),

F2(z) = ϕ′(z)
R(∞)
R(z)

, z ∈ Ω , (9)

where R(z) is the holomorphic function introduced above.
Let Pn be the nth monic orthogonal polynomial associated with µ and γn(µ) =∫

∆ |Pn|2(x)ρ(x) dx. The next result follows from the classical Bernstein-Szegő’s theorem:

Lemma 2 If µ ∈ S(∆) and ρ(x) = µ′(x) then

lim
n→∞

4n γn(µ) = ν(ρ) , (10)

and
lim

n→∞

Pn(z)
ϕn(z)

= F(z), locally uniformly in Ω. (11)
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4 Proof of Theorem 1

Let P∗ denote the subspace of monic polynomials in P; we introduce the operator Π :
P∗ → P∗ which associates to any monic polynomial its monic primitive normalized by 0
at x = −1. In other words, if P (x) = xn + . . .,

Π(P )(x) := (n+ 1)
∫ x

−1
P (t) dt .

For the sake of brevity, we denote

Πi = Π ◦ · · · ◦Π ,

where we have the composition of i operators Π; additionally, Π0 states for the identity
operator in P∗. In consequence, for P (x) = xn + . . . the degree of Πi(P ) is n+ i and

dk

dxk
Πi(P )(x) =

(n+ i)!
(n+ i− k)!

Πi−k(P )(x) , 0 ≤ k ≤ n+ i . (12)

Before proving Theorem 1, we establish the following preliminary result:

Lemma 3 Let Pn = Pn(µ; ·) be the nth monic orthogonal polynomial with respect to a
finite positive Borel measures dµ(x) = ρ(x) dx, whose support is contained in [−1, 1], and
γn(µ) is as in (3). If 1/ρ ∈ L1([−1, 1]), then for any k ∈ IN, the sequence of polynomials

αn,k(x) =
n! Πk(Pn)(x)
(n+ k)!

√
γn

, n ∈ IN ,

is uniformly bounded on [−1, 1] and tends to zero for every x ∈ [−1, 1] as n→∞.

Proof. For k = 1, fix x ∈ [−1, 1] and define a(x, t) = χ[−1,x](t)/ρ(t), where χA repre-
sents the characteristic function of the set A. Then αn,1(x) is the nth Fourier coefficient
of a(x, ·) with respect to the orthonormal system pn(ρ; ·):∫

∆
a(x, t)pn(ρ; t) ρ(t) dt =

∫ x

−1
pn(ρ; t) dt =

Π1(Pn)(x)
(n+ 1)

√
γn

= αn,1(x) .

The condition 1/ρ ∈ L1([−1, 1]) guarantees that a(x, ·) ∈ L2(ρ); hence, from Bessel’s
inequality it follows that

lim
n→∞

αn,1(x) = 0 , and |αn,1(x)|2 ≤
∫

∆

1
ρ(t)

dt <∞ , (13)

which establishes the assertion for k = 1.
On the other hand, it is easy to check that

αn,k+1(x) =
n! Π ◦Πk(Pn)(x)
(n+ k + 1)!

√
γn

=
∫

∆
χ[−1,x](t)αn,k(t) dt .

Thus, (13), the Lebesgue dominated convergence theorem and simple induction arguments
allow to conclude the proof for any k ∈ IN.
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Proof of (5) in Theorem 1. Let Pn(µ; ·) and γn(µ) be as in (3); in what follows for
the sake of brevity we omit the explicit reference to the measure when µ = µm.

We have that

κn = ‖Qn‖2S =
m∑

k=0

‖Q(k)
n ‖2k =

m−1∑
k=0

‖Q(k)
n ‖2k + ‖Q(m)

n ‖2m .

By the extremal property of the orthogonal polynomials,

γn−m = ‖Pn−m‖2m ≤
[

(n−m)!
n!

]2

‖Q(m)
n ‖2m ,

thus, [
(n−m)!

n!

]2 κn

γn−m
≥ 1 +

m−1∑
k=0

[
(n−m)!

n!

]2 ‖Q(k)
n ‖2k

γn−m
,

so that

lim inf
n

[
(n−m)!

n!

]2 κn

γn−m
≥ 1 . (14)

It remains to prove that

lim sup
n

[
(n−m)!

n!

]2 κn

γn−m
≤ 1 . (15)

Assume initially that 1/ρ ∈ L1([−1, 1]). From the extremal property for κn and (12) it
follows that

κn = ‖Qn‖2S ≤ ‖Πm(Pn−m)‖2S = ‖Π(m)
m (Pn−m)‖2m +

m−1∑
k=0

‖Π(k)
m (Pn−m)‖2k

≤
[

n!
(n−m)!

]2

‖Pn−m‖2m +
m−1∑
k=0

[
n!

(n− k)!

]2

‖Πm−k(Pn−m)‖2k .

Hence, using the notation introduced in Lemma 3,[
(n−m)!

n!

]2 κn

γn−m
≤ 1 +

m∑
k=1

‖αn−m,m−k‖2k , (16)

From Lemma 3 via the Lebesgue dominated convergence theorem it follows that

lim
n→∞

‖αn−m,m−k‖k = 0 , k = 0, . . . ,m− 1 . (17)

Consequently, (15) holds when 1/ρ ∈ L1([−1, 1]).
If ρ is a general weight satisfying Szegő’s condition on [−1, 1], we take an arbitrary

constant δ > 0 (to be fixed later) and define ρ̃(x) := ρ(x) + δ. Let P̃n = Pn(µ̃; ·) be the
nth monic orthogonal polynomial with respect to dµ̃(x) := ρ̃(x) dx, γ̃n := γ(µ̃), and α̃n,k

is the sequence defined in Lemma 3 corresponding to the weight ρ̃. Since ρ̃ ≥ ρ, by (16),[
(n−m)!

n!

]2 κn

γn−m
≤ γ̃n−m

γn−m

(
1 +

m∑
k=1

‖α̃n−m,m−k‖2k

)
.
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But 1/ρ̃ ∈ L1([−1, 1]), and from (17),

lim
n→∞

‖α̃n−m,m−k‖k = 0 , k = 0, . . . ,m− 1 . (18)

Consequently,

lim sup
n→∞

[
(n−m)!

n!

]2 κn

γn−m
≤ lim

n→∞

γ̃n−m

γn−m
.

Since ρ, ρ̃ ∈ S(∆), then (see e.g. [12, theorem 12.7.1])

γ̃n−m =
√
π 2n−m exp

{
− 1

2π

∫ 1

−1

ln ρ̃(x)√
1− x2

dx

}
(1 + o(1)) ,

and

γn−m =
√
π 2n−m exp

{
− 1

2π

∫ 1

−1

ln ρ(x)√
1− x2

dx

}
(1 + o(1)) .

Hence,

lim
n→∞

γ̃n−m

γn−m
= exp

{
− 1

2π

∫ 1

−1

ln ρ̃(x)− ln ρ(x)√
1− x2

dx

}
.

It remains to use continuity arguments in the metric given by

dist(ϑ, σ) =
1
π

∫ 1

−1

lnϑ(x)− lnσ(x)√
1− x2

dx ,

for ϑ, σ ∈ S(∆). In fact, by Lebesgue monotone convergence theorem,

dist(ρ̃, ρ)→ 0 , when δ ↓ 0 .

Thus, for an arbitrary ε > 0, we can choose δ > 0 such that

lim sup
n→∞

[
(n−m)!
(n− k)!

]2 κn

γn−m
≤ 1 + ε .

Now, (15) follows from the arbitrariness of ε > 0, and (5) is proved.

Proof of (6) in Theorem 1. Set

Ψn(z) = 2n−m (n−m)!
n!

Q(m)
n (z) , and Φn(z) = 2n−m ϕn−m(z)F(z) ,

where F(z) is the solution of the extremal problem (8). Using the parallelogram law in
E2(Ω, ρ) one has

‖Ψn − Φn‖2m = 2 ‖Ψn‖2m + 2 ‖Φn‖2m − ‖Ψn + Φn‖2m . (19)

Taking into account (8) and that |ϕ(x)| = 1/2 for x ∈ [−1, 1], we have

‖Φn‖2m = ‖F(z)‖2m = ν(ρ) .

On the other hand, by (5),

‖Ψn‖2m = 4n−m

[
(n−m)!

n!

]2

‖Q(m)
n (z)‖2m

≤ 4n−m

[
(n−m)!

n!

]2

κn = 4n−m γn−m [1 + o(1)] .
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With account of (10),

lim sup
n→∞

‖Ψn‖2m ≤ lim sup
n→∞

4n−m γn−m = ν(ρ) .

Notice that
1
2

(
(n−m)!

n!
Q

(m)
n

ϕn−m
+ F

)
∈ E2 (Ω, ρ)

and it is equal to 1 at ∞, so by extremality of ν(ρ),

‖Ψn + Φn‖2m = 4

∥∥∥∥∥1
2

(
(n−m)!

n!
Q

(m)
n

ϕn−m
+ F

)∥∥∥∥∥
2

m

≥ 4ν(ρ) .

Gathering the inequalities obtained so far, we see that necessarily

lim
n→∞

‖Ψn − Φn‖2m = lim
n→∞

∥∥∥∥∥(n−m)!
n!

Q
(m)
n

ϕn−m
−F

∥∥∥∥∥
2

m

= 0 .

Since
(n−m)!Q(m)

n (z)
n!ϕn−m(z)

−F(z) ∈ E2(Ω, ρ) ,

by Lemma 1 one has that

lim
n→∞

(n−m)!
n!

Q
(m)
n (z)

ϕn−m(z)
= F(z) , (20)

uniformly on compact subsets of Ω. By (11), this is equivalent to (6).

5 Proof of Theorem 2

First, we prove an auxiliary Lemma.

Lemma 4 With the assumptions of Theorem 2, for any 0 ≤ k ≤ n and j ≥ k + 1,

lim
n→∞

Q
(k)
n (z)

nj ϕn−k(z)
= 0 , (21)

uniformly on compact subsets of Ω.

Proof. Recall that

4n−m κn

n2m
=

m−1∑
k=0

∥∥∥∥∥2n−mQ
(k)
n

nm

∥∥∥∥∥
2

k

+

∥∥∥∥∥ Q
(m)
n

nm ϕn−m

∥∥∥∥∥
2

m

.

By Theorem 1 and (10),

lim
n→∞

4n−m κn

n2m
= ν(ρ) ,
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and by (20),

lim
n→∞

∥∥∥∥∥ Q
(m)
n

nm ϕn−m

∥∥∥∥∥
2

m

= ‖F‖2m = ν(ρ) .

Thus,

lim
n→∞

m−1∑
k=0

∥∥∥∥∥2m−k Q
(k)
n

nm

∥∥∥∥∥
2

k

= lim
n→∞

m−1∑
k=0

∥∥∥∥∥ Q
(k)
n

nm ϕn−k

∥∥∥∥∥
2

k

= 0 ,

which is equivalent to

lim
n→∞

∥∥∥∥∥ Q
(k)
n

nm ϕn−k

∥∥∥∥∥
2

k

= 0 , k = 0, . . . ,m− 1 .

Since by assumption, µk ∈ S[−1, 1] for 0 ≤ k ≤ m, using Lemma 1, we obtain

lim
n→∞

Q
(k)
n (z)

nm ϕn−k(z)
= 0 , 0 ≤ k ≤ m, (22)

uniformly on compact subsets of Ω. Then, by Weierstrass’ Theorem we have that

lim
n→∞

[
Q

(k)
n (z)

nm ϕn−k(z)

]′
= 0 , 0 ≤ k ≤ m, (23)

also uniformly on compact subsets of Ω.
It is easy to check that for 0 ≤ k ≤ m− 1,

(n− k)ϕ′(z)
nϕ(z)

[
Q

(k)
n (z)

nm−1 ϕn−k(z)

]
=

1
ϕ(z)

Q
(k+1)
n (z)

nm ϕn−(k+1)(z)
−

[
Q

(k)
n (z)

nm ϕn−k(z)

]′
.

Then, using (22),

lim
n→∞

Q
(k)
n (z)

nm−1 ϕn−k(z)
= 0 , 0 ≤ k ≤ m− 1 .

Repeating this reasoning we conclude the proof.

Proof of Theorem 2. For k = m, the assertion has been established above (see (20)):

lim
n→∞

Q
(m)
n (z)

nm ϕn−m(z)
= F(z) , uniformly on compact subsets of Ω.

For 1 ≤ k ≤ m, the following identity holds:

(n+ 1− k)ϕ′(z)
nϕ(z)

Q
(k−1)
n (z)

nk−1 ϕn+1−k(z)
=

Q
(k)
n (z)

nk ϕ(z)ϕn−k(z)
−

[
Q

(k−1)
n (z)

nk ϕn+1−k(z)

]′
.

Furthermore, by Lemma 4 and Weierstrass’ Theorem we know that

lim
n→∞

[
Q

(k−1)
n (z)

nk ϕn+1−k(z)

]′
= 0 ,
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uniformly on compact subsets of Ω.
Assuming that the assertion of Theorem 2 has been proved for a k, 1 ≤ k ≤ m, that

is,

lim
n→∞

Q
(k)
n (z)

nk ϕn−k(z)
=

F(z)

[ϕ′(z)]n−k
, uniformly on compact subsets of Ω , (24)

this leads us to the result

lim
n→∞

Q
(k−1)
n (z)

nk−1 ϕn−k+1(z)
=

F(z)

[ϕ′(z)]m−k+1
,

uniformly on compact subsets of Ω, which establishes the same assertion for k − 1. Thus,
Theorem 2 is proved completely.
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