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Optimizing measures of risk: A simplex-like algorithm

Alejandro Balbás,∗Raquel Balbás†and Silvia Mayoral‡

Abstract

The minimization of general risk or dispersion measures is becoming more and more
important in Portfolio Choice Theory. There are two major reasons. Firstly, the lack of
symmetry in the returns of many assets provokes that the classical optimization of the
standard deviation may lead to dominated strategies, from the point of view of the second
order stochastic dominance. Secondly, but not less important, many institutional investors
must respect legal capital requirements, which may be more easily studied if one deals with
a risk measure related to capital losses.

This paper proposes a new method to simultaneously minimize several risk or dispersion
measures. The representation theorems of risk measures are applied to transform the general
risk minimization problem in a minimax problem, and later in a linear programming problem
between infinite-dimensional Banach spaces. Then, new necessary and sufficient optimality
conditions are stated and a simplex-like algorithm is developed. The algorithm solves the
dual (and therefore the primal) problem and provides both optimal portfolios and their
sensitivities.

The approach is general enough and does not depend on any particular risk measure,
but some of the most important cases are specially analyzed.

Key Words. Risk Measure. Deviation Measure. Portfolio Selection. Infinite-
Dimensional Linear Programming. Simplex-Like Method.

AMS Classification. 90C48, 90C47, 90C34.
JEL Classification. G11, C02.

1. Introduction
Modern risk analysis must face two major drawbacks affecting most of the available
securities and many investment strategies: Asymmetric returns and fat tails. They
recently caused important capital losses, that were difficult to predict when managers
and supervisors were using classical risk functions like the standard deviation or
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sensitivities of the portfolio value with regard to economic or financial variables. This
motivated the group G− 10 to create the Basle Committee on Banking Supervision,
which provided a minimal set of capital requirements in 1988. Besides, during the
late 19800s JP Morgan developed a firm-wide V aR system able to predict possible
losses under very negative scenarios (although they assumed normal distributions).
Researchers have also focused on this problem and Artzner et al. (1999) published

a seminal paper introducing the notion of “coherent measure of risk”. They attempted
to establish a minimal set of axioms that a risk measure should satisfy in order
to adequately reflect capital requirements, and they derived important properties
and representation theorems from the axioms. Their analysis has been extended
or modified by many authors. Important contributions are, amongst many others,
Rockafellar et al. (2006a) and (2006b), where the concepts or “bounded expectation
risk measure” and “deviation risk measure” are introduced, studied, related and
applied to some portfolio choice linked problems, or Ruszczynski and Shapiro (2006),
where interesting portfolio optimization topics are addressed too.
Another line of research focuses on those risk functions compatible with the second

order stochastic dominance. For instance, Ogryczak and Ruszczynski (2002) point out
that the standard deviation does not satisfy this condition if asymmetric returns are
involved, whereas the absolute deviation and semi-deviation really do. This justifies
that many authors consider the absolute deviation in portfolio selection problems.
For instance, Konno et al. (2005), who can reduce the optimization problem to a
linear one because they only consider discrete return distributions (generated from
recent samples).
Finally, recent literature has also optimized modern risk functions in order to price

and hedge in incomplete or imperfect markets. Interesting papers are Föllmer and
Schied (2002) and Nakano (2004), among others.
The optimization of dispersions or risk functions reflecting capital requirements

is often complex. Indeed, as pointed out by many papers, one frequently must deal
with a non-differentiable problem. Though it is usually convex, the subgradient-
linked optimality conditions are not so easily treated in practice. Therefore, authors
usually look for an equivalent alternative optimization problem. For instance, this is
done by Föllmer and Schied (2002) and Nakano (2004). As said above, Konno et al.
(2005) can deal with a linear problem, but they minimize a particular dispersion and
involve discrete returns. Benati (2003) also gets a linear problem (that he combines
with an integer fractional problem) to optimize the “worst conditional expectation”,
a coherent measure introduced in Artzner et al. (1999), but discrete sample-linked
returns are used once more.
The present article proposes a linear programming approach that applies for many

risk functions. Amongst them, many coherent, expectation bounded or deviation risk
measures are included. The two crucial keys are the representation theorems of risk
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measures and the use of Banach spaces to address those problems with infinitely-many
constraints. The representation theorems allow us to transform a general portfolio
choice problem into a minimax problem. Minimax problems are usual in finance and
often lead to a linear problem (see, for instance, Young, 1998), but there are cases
for which there are no equivalent linear formulations (Barber and Copper, 1998).
Here we follow an idea of Balbás and Romera (2006), where the authors transform a
minimax problem, providing hedging strategies against the interest rate risk, into an
infinite-dimensional linear programming problem between Banach spaces.
Our linear programming approach yields new optimality conditions and algo-

rithms. So, the paper outline is as follows. Section 2 presents the basic notations and
assumptions, as well as a general portfolio choice vector optimization problem that
becomes a minimax one. Section 3 transforms the minimax problem into a dual cou-
ple of linear ones between Banach spaces. The involved dual Banach spaces are C (∆)
andM (∆), continuous functions and inner regular Borel measures on the compact
space ∆. Theorem 2, the most important result in this section, provides necessary
and sufficient optimality conditions that show important differences with respect to
those of previous literature. In fact, rather than subgradient-linked properties, we
draw on the existence of probability measures satisfying appropriate requirements, in
the line of the complementary slackness conditions of linear programming. Section 4
focuses on special portfolio choice problems that consider a finite number of available
assets in the market. The linear problems become semi-infinite, which makes it easier
to formulate the optimality conditions of Theorem 2. Section 5 characterizes the ex-
treme points of the dual problem (Theorem 7) and develops a simplex-like algorithm
to solve it. The complementary slackness conditions allow us to obtain the primal
solution (optimal portfolio). Thus we have both the optimal portfolio and its sen-
sitivity with respect to the involved parameters. Section 6 particularizes the theory
for several risk functions, with special focus on some classical ones and those that
can be given by distorting functions (Wang, 2000). These risk functions allow us to
construct “alternative indexes”, whose combinations with the riskless asset lead to
the efficient portfolios in a new framework such that risk levels are measured taking
into account asymmetries and fat tails. Section 7 concludes the paper.

2. Preliminaries and notations
Let (Ω,F , µ) be a probability space, p ∈ [1,∞) and q ∈ (1,∞] such that (1/p) +
(1/q) = 1, where, as usual, we take the convention (1/∞) = 0. It is well known that
Lq = Lq (Ω,F , µ) is the dual space of LP . Consider the functions ρi : Lp 7−→ IR,
i = 1, 2, ..., γ, given by

ρi (y) = Sup {−E (yz) : z ∈ ∆i} (1)
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each ∆i being a non-void convex and σ (Lq, Lp)−compact subset of Lq and

E (h) =

Z
Ω

h (ω) dµ (ω) =

Z
Ω

hdµ

denoting the mathematical expectation of every random variable h ∈ L1. Notice that
Lq 3 z 7−→ E (yz) ∈ IR is σ (Lq, Lp)−continuous for every y ∈ Lp and, therefore, Sup
may be replaced by Max in (1).

Many coherent risk measures, in the sense of Artzner et al. (1999), or expectation
bounded risk measures, in the sense of Rockafellar et al. (2006a), satisfy Expression
(1), as pointed out in Rockafellar et al. (2006a) and (2006b), where ∆i is assumed to
be σ (Lq, Lp)−closed. However, as we will show in Section 6, owing to the Alaoglu‘s
Theorem (see Holmes, 1975) the σ (Lq, Lp)−compactness of ∆i frequently holds in
practice.
Besides, Rockafellar et al. (2006a) introduce the notion of deviation measure, and

characterize those cases for which

D(y) = R(y) + E(y), ∀y ∈ Lp, (2)

R and D denoting an expectation bounded risk measure and a deviation measure
respectively. Obviously, if R satisfies (1) then so does D once ∆i is substituted by

∆i − {1} = {z − 1; z ∈ ∆i} . (3)

Whence, our analysis may apply for both risk and deviation measures.

Fix m ∈ IN, a set of real numbers {bj}mj=1 and a set of random variables {qj}mj=1 ⊂
Lq. We will deal with the vector optimization problem

Min ρ(y)
E (yqj) ≤ bj, j = 1, 2, ...,m
y ∈ Y

 (4)

Y ⊂ Lp being an arbitrary convex cone, and ρ : LP 7−→ IRγ denoting the vector
function with components ρi, i = 1, 2, ..., γ. (4) may be understood as a portfolio
selection problem such that there is no a clear agreement about the most convenient
way to measure the risk level.1 Constraints E (yqj) ≤ bj (or, equivalently, −E (yqj) ≥

1Jouini et al. (2004) have introduced the concept of “vector-valued coherent risk measure” as a
set-valued function. We do not draw on this notion here. We just use the vector function ρ because
we assume that there is no a clear way to measure the risk level. It is quite coherent with previous
literature since there is no a total consensus with regard to the concrete risk measure that must
apply for each portfolio selection problem.
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−bj) may reflect several practical situations. For example, a maximum amount of
money to invest, a minimum required expected pay-off, etc.

Expression (1) points out that ρ is a convex function and, consequently, for every
optimal solution y0 of (4) there exists α = (α1,α2, ...,αγ) such that α 6= 0, α ≥ 0 and
y0 solves the scalar optimization problem

Min
Pγ

i=1 αiρi(y)
E (yqj) ≤ bj, j = 1, 2, ...,m
y ∈ Y

 . (5)

Conversely, if αi > 0, i = 1, 2, ..., γ, then every solution of (5) also solves (4). Thus, by
solving Problem (5), with α arbitrary, we will get the whole set of minimal solutions
of (4) and, possibly, some more points. All of them compose the so called “set of
weak solutions of (4)”. Henceforth we will fix a non-null and non-negative arbitrary
vector α, so as to obtain those weak solutions.2

3. Minimizing risk measures by linear optimization in Banach spaces:
Optimality conditions

In this section we will present several problems whose solution leads to the solution
of Problem (5). Furthermore, most of the yielded alternative problems will be linear,
which will allow us to characterize their solutions by means of duality relationships
and complementary slackness conditions. The dual variables generate economic in-
terpretations applying in practical portfolio choice problems. Finally, a future section
will provide a simplex-like algorithm permitting us to solve the dual (and therefore
the primal) problem.
Denote by ∆ = ∆1×∆2× ...×∆γ the usual product of (∆i)

γ
i=1 endowed with the

product of the weak∗−topologies. Then ∆ is obviously convex and compact.
Consider Problem

Min θ
θ +

Pγ
i=1 αiE (yzi) ≥ 0, ∀z = (z1, z2, ..., zγ) ∈ ∆

E (yqj) ≤ bj , j = 1, 2, ...,m
θ ∈ IR, y ∈ Y

 (6)

(θ, y) ∈ IR×Lp being the decision variable. We have the following result whose proof
is very simple and therefore omitted.

2If a vector optimization problem is solved by using this procedure we are applying the scalar-
ization method. An alternative way is provided by the notion of “balance point” (see Galperin,
1997, or Balbás et al., 2002, for further details). If the balance point approach were used then the
remainder of this paper should be appropriately adapted, although the main results would still hold.
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Proposition 1. Suppose that θ0 ∈ IR and y0 ∈ Y . Then, y0 solves (5) and

θ0 =

γX
i=1

αiρi (y0)

if and only if (θ0, y0) solves (6).3 ¤

Remark 1. Problem (6) is equivalent to Problem

Min θ
θ + E (yz) ≥ 0, ∀z ∈ ∆α
E (yqj) ≤ bj , j = 1, 2, ...,m
θ ∈ IR, y ∈ Y


∆α being the convex and σ (Lq, Lp)−compact subset of Lq given by

∆α =

γX
i=1

αi∆i =

(
z ∈ Lq; z =

γX
i=1

αizi, zi ∈ ∆i, i = 1, 2, ..., γ
)
.

This new formulation would simplify the notation of future analyses, although we will
focus on Problem (6) because it might be complicated to determine ∆α in practical
examples. ¤

Notice that Problem (6) is linear and its first constraint is established in the
Banach space C (∆) of real valued and continuous functions on the compact space ∆
endowed with the supremum norm. According to the Riesz Representation Theorem,
its dual space, denoted byM (∆), is composed of the real valued inner regular and
σ−additive measures on the Borel σ−algebra of ∆ endowed with the norm of the
total variation.
The Lagrangian function

L : IR×Lp × IRm ×M (∆) 7−→ IR

of (6) becomes

L (θ, y,λ, ν) = θ − R
∆
(θ +

Pγ
i=1 αiE (yzi)) dν(z) +

Pm
j=1 λj (E (yqj)− bj)

= θ (1− ν (∆))−Pγ
i=1 αi

¡R
∆
E (yzi) dν(z)

¢
+
Pm

j=1 λj (E (yqj)− bj) .
(7)

3Among others, Shimizu and Aiyoshy (1980) already introduced a new variable in order to
simplify a minimax problem. The proposition above just applies this idea.
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In order to simplify some expressions, if convenient we will represent by νi = πi(ν)
the standard projection of ν on ∆i, i = 1, 2, ..., γ, and it is obvious thatZ

∆

E (yzi) dν(z) =

Z
∆i

E (yzi) dνi(zi)

i = 1, 2, ..., γ. Moreover, the integration variables z or zi may be omitted.

According to Anderson and Nash (1987), a couple (λ, ν) ∈ IRm ×M (∆) is dual
feasible for Problem (6) if and only if λ ≥ 0, ν ≥ 0 and

Inf
n
θ (1− ν (∆))−Pγ

i=1 αi
¡R
∆
E (yzi) dν

¢
+
Pm

j=1 λj (E (yqj)− bj) ; (θ, y) ∈ IR×Y
o

> −∞,
in which case its dual objective value is given by the infimum above. Thus, the dual
problem becomes

Max −Pm
j=1 bjλjPm

j=1 λjE (yqj)−
Pγ

i=1 αi
¡R
∆
E (yzi) dν

¢ ≥ 0, ∀y ∈ Y
ν(∆) = 1
(λ, ν) ∈ IRm ×M (∆)
λ ≥ 0, ν ≥ 0

 (8)

(λ, ν) ∈ IRm ×M (∆) being the decision variable.
It is trivial to see that the inequality

θ ≥ −
mX
j=1

bjλj (9)

holds whenever (θ, y) and (λ, ν) are (6) and (8)-feasible respectively.

Since (6) and (8) involve infinite-dimensional spaces the absence of duality gap
is not guaranteed. To solve this minor drawback we will impose the usual Slater
Qualification (see Anderson and Nash, 1987). Furthermore, in practical examples it
will not be realistic to assume that the risk level may tend to −∞. Thus, we will
consider that (6) is bounded.

Assumption I. There exists y0 ∈ Y such that E (y0qj) < bj, j = 1, 2, ...,m.
Moreover, there exists θ∗ such that θ ≥ θ∗ whenever (θ, y) is (6)−feasible. ¤

The latter assumption implies that (6) has a finite infimum value and (8) attains
its optimal value, i.e., (8) is solvable. We will denote by θα the optimal value of both
problems.
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The second and the last constraints in (8) reveal that (8)-feasible inner regular
measures ν have to be probabilities. Hereafter we will denote by

P (∆) = {ν ∈M (∆) ; ν ≥ 0, ν (∆) = 1} .

The Alaoglu‘s Theorem easily leads to the compactness of P (∆) when endowed with
the σ (M (∆) , C (∆))−topology (Holmes, 1975, or Anderson and Nash, 1987). The
same notations and comments apply if ∆ is replaced by ∆i, i = 1, 2, ..., γ.
Notice that the influence of the ν variable in (8) only depends on {νi}γi=1, in the

sense that two probability measures with similar projections have similar role in this
optimization problem. Thus, if convenient, the dual variable ν may be substituted
by its projections {νi}γi=1.

The first constraint of (8) involves the primal variable y ∈ Lp. This makes some
notations “rather complex”, so it is worthwhile to eliminate y. Notice that

Lp 3 y 7−→
γX
i=1

αi

µZ
∆i

E (yzi) dνi

¶
∈ IR

is linear and continuous for every ν ∈M (∆). Thus it may be represented by a vector
of Lq that we will denote by

γX
i=1

αi

µZ
∆i

E (−) dνi
¶
.

So, in order to remove the y variable from (8) we will draw on the notation

mX
j=1

qjλj −
γX
i=1

αi

µZ
∆i

E (−) dνi
¶
≥Y 0. (10)

Then, the dual problem becomes

Max −Pm
j=1 bjλjPm

j=1 qjλj −
Pγ

i=1 αi

³R
∆i
E (−) dνi

´
≥Y 0

ν(∆) = 1
(λ, ν) ∈ IRm ×M (∆)
λ ≥ 0, ν ≥ 0


(11)

The absence of duality gap permits us to characterize primal and dual solutions
by means of a system of equations and inequalities.
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Theorem 2. Consider (θ, y) ∈ IR×Lp and (λ, ν) ∈ IRm × P (∆). They solve (6)
and (11) if and only if they solve the following system of complementary slackness
conditionsPm

j=1 λjE (yqj)−
Pγ

i=1 αi

³R
∆i
E (yzi) dνi

´
= 0

λj (E (yqj)− bj) = 0, j = 1, 2, ...,m

θ +
Pγ

i=1 αi

³R
∆i
E (yzi) dνi

´
= 0

θ +
Pγ

i=1 αiE (yzi) ≥ 0, ∀z ∈ ∆
E (yqj) ≤ bj, j = 1, 2, ...,mPm

j=1 qjλj −
Pγ

i=1 αi

³R
∆i
E (−) dνi

´
≥Y 0

y ∈ Y,λ ≥ 0


(12)

Proof. The four inequalities of the system above point out that both (θ, z) and
(λ, ν) are feasible. Besides, the first equality gives

−
mX
j=1

λjE (yqj) = −
γX
i=1

αi

µZ
∆i

E (yzi) dνi

¶
.

From the second equality,

−
mX
j=1

λjbj = −
γX
i=1

αi

µZ
∆i

E (yzi) dνi

¶
.

From the third equality,

−
mX
j=1

λjbj = θ

and (9) shows that we are facing the solutions of both problems.
Conversely, suppose that (θ, y) and (λ, ν) solve both problems. Then they must

be feasible and hence they must satisfy the four inequalities. On the other hand,
the complementary slackness conditions of linear programming (Anderson and Nash,
1987) lead to the second and third expressions of (12). Finally, (θ, y) must minimize
the Lagrangian Function (7) on IR×Y (Anderson and Nash, 1987). Since the dual
constrains trivially show that the minimal value of (7) is attained at (0, 0) and reaches
the value −Pm

j=1 λjbj, we easily obtain the first equality of (12). ¤

Remark 2. System (12) provides necessary and sufficient optimality conditions for
Problems (5) and (6) that do not use the subgradients of the risk vector measure ρ.
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On the contrary, these conditions draw on the existence of inner regular probability
measures {νi}γi=1 on {∆i}γi=1 whose supports are contained on the zeros of

θ +

γX
i=1

αiE (yzi) ,

and multipliers {λj}mj=1 such that (10) holds. This fact may be an interesting al-
ternative to solve many portfolio choice problems in practice, although it will not
be easy to achieve the explicit solution of System (12).4 However, to deal with the
system becomes far easier if the dual solution may be computed by means of alterna-
tive procedures. This is the reason why in Section 5 we will develope a simplex-like
method for the dual problem that applies for those cases such that the convex cone
Y is generated by a finite set of available securities. ¤

4. Semi-infinite problems
In this section we will consider n = r + s ∈ IN available assets whose pay-offs are
{yh}nh=1 ⊂ Lp. Strategies will be represented by x ∈ IRn, and the closed convex cone

X =
©
x = (xh)

r+s
h=1 ∈ IRr+s; xh ≥ 0, h = r + 1, r + 2, ..., r + s

ª
will reflect that short-sales of some securities are not allowed.5

4Recall that dealing with subgradients may also generate significant problems in practice. See
Rockafellar et al. (2006a) or Ruszczynski and Shapiro (2006) for complementary analyses.

5The cone X above may be replaced by a more general convex closed cone X̃ ⊂ IRn. Then, the
Representation Theorem of closed convex subsets of IRn (Holmes, 1975) shows that X̃ = LX̃ +CX̃ ,,
LX̃ being the vector space

LX̃ =
n
x ∈ IRn; x+ X̃ = X̃

o
,

and CX̃ being the closed pointed convex cone (or recession cone)

CX̃ =
n
x ∈ IRn; x+

³
X̃ ∩ L|

X̃

´
⊂ X̃ ∩L|

X̃

o
,

L|
X̃
representing the orthogonal subspace of LX̃ . In the most important cases one has that

LX̃ = IRn and CX̃ = {0}

for X̃ = IRn and
LX̃ = {0} and CX̃ = IRn

+

for X̃ = IRn
+. More generally,

LX̃ = {0} and CX̃ = X̃

if X̃ is pointed. By using the above representation of X̃ and applying the procedure proposed in
Balbás and Romera (2006), we can adapt the variables of our problem so that a X−like cone can
play the role of X̃.



Optimizing measures of risk: A simplex-like algorithm 11

The set Y (of reachable pay-offs) will be given by

Y =

(
y ∈ Lp; y =

nX
h=1

xhyh, x = (xh)
n
h=1 ∈ X

)
.

It is easy to verify that Y is a convex cone.

Problem (6) becomes

Min θ
θ +

Pn
h=1 (

Pγ
i=1 αiE (yhzi)) xh ≥ 0, ∀z ∈ ∆Pn

h=1E (yhqj)xh ≤ bj, j = 1, 2, ...,m
θ ∈ IR, xh ≥ 0 h = r + 1, ..., r + s

 . (13)

(θ, x) ∈ IR1+n being the decision variable. Notice that linear constraints with the
form

Pn
h=1 lhxh ≤ L are easily incorporated in (13). Indeed, take q̃ ∈ Lq such that

E (yhq̃) = lh, h = 1, 2, ..., n, and apply the second constraint in (13). Furthermore,
the existence of q̃ holds under weak conditions like the linear independence of {yh}nh=1.
In order to prevent the existence of duality gaps we will still assume the fulfillment of
the Slater Qualification along with the existence of primal lower bounds (Assumption
I).

In order to adapt the dual problem (11) we need to analyze the constraint (10).

Manipulating we have

nX
h=1

E

"Ã
mX
j=1

qjλj

!
yh

#
xh ≥

nX
h=1

"
γX
i=1

αi

µZ
∆i

E (yhzi) dνi

¶#
xh

for every x ∈ X. Then, (11) obviously becomes

Max −Pm
j=1 bjλjPm

j=1E (qjyh)λj =
Pγ

i=1 αi

³R
∆i
E (yhzi) dνi

´
, h = 1, 2, ..., rPm

j=1E (qjyh)λj ≥
Pγ

i=1 αi

³R
∆i
E (yhzi) dνi

´
, h = r + 1, ..., r + s

(λ, ν) ∈ IRm ×P (∆)
λ ≥ 0


(14)

(λ, ν) ∈ IRm ×P (∆) being the decision variable.
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According to Theorem 2, the complementary slackness conditions (12) are neces-
sary and sufficient optimality conditions. In our case they arePm

j=1 λjE (yhqj)−
Pγ

i=1 αi

³R
∆i
E (yhzi) dνi

´
= 0, h = 1, 2, ..., rhPm

j=1 λjE (yhqj)−
Pγ

i=1 αi
³R

∆i
E (yhzi) dνi

´i
xh = 0, h = r + 1, ..., r + s

λj [
Pn

h=1E (yhqj) xh − bj ] = 0, j = 1, 2, ...,m

θ +
Pn

h=1

hPγ
i=1 αi

³R
∆i
E (yhzi) dνi

´i
xh = 0


(15)

along with the constraints of both problems. As already said, it may be difficult in
practice to solve the system above in the unknowns θ, x, λ and ν. However, if λ and
ν are known, then (15) becomeshPm

j=1 λjE (yhqj)−
Pγ

i=1 αi
³R

∆i
E (yhzi) dνi

´i
xh = 0, h = r + 1, ..., r + sPn

h=1E (yhqj)xh = bj , j = 1, 2, ...,m, λj 6= 0
θ +

Pn
h=1

hPγ
i=1 αi

³R
∆i
E (yhzi) dνi

´i
xh = 0

 ,
(16)

which is a simple linear system in θ and x.

5. The simplex-like algorithm
This section is devoted to present a simplex-like algorithm so as to solve the semi-
infinite linear programming problem (14). Then, (16) will generate the primal solution
too.
First of all we will introduce the slackness variables (ξh)

r+s
h=r+1 in order to get

equality constraints. Thus, consider the equivalent Problem

Max −Pm
j=1 bjλjPm

j=1E (qjyh)λj −
Pγ

i=1 αi
³R

∆i
E (yhzi) dνi

´
= 0, h = 1, 2, ..., rPm

j=1E (qjyh)λj − ξh −
Pγ

i=1 αi
³R

∆i
E (yhzi) dνi

´
= 0, h = r + 1, ..., r + s

(λ, ξ, ν) ∈ IRm × IRs ×P (∆)
λ ≥ 0, ξ ≥ 0


.

(17)
As said above, P (∆) is convex and σ (M (∆) , C (∆))−compact. Besides, given

z ∈ ∆ we will denote by δz ∈ P (∆) the usual Dirac delta that concentrates the mass
on {z}, i.e., δz({z}) = 1 and δz(∆ \ {z}) = 0. It is known that the set of extreme
points of P (∆) is given by

ext (P (∆)) = {δz; z ∈ ∆} ,
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though we will not have to draw on this result. Similar properties hold if ∆ is
substituted by ∆i, i = 1, 2, ..., γ.

Lemma 3. Denote by A the feasible set of (17) and by
A0 = {(λ, ξ) ∈ IRm × IRs; there exists ν ∈ P (∆) with (λ, ξ, ν) ∈ A} .

Then, A0 is convex and closed.
Proof. It is easy to see that A0 is convex, so let us prove that it is closed. Indeed,

take the sequence {(λk, ξk)}∞k=1 ⊂ A0 and suppose that
Limk 7−→∞ (λk, ξk) = (λ, ξ) .

We must prove that (λ, ξ) ∈ A0. Take {(νk)}∞k=1 ⊂ P (∆) such that (λk, ξk, νk) ∈ A.
Since P (∆) is compact there exists ν, agglomeration point of {(νk)}∞k=1. There-
fore, (λ, ξ, ν) is an agglomeration point of {(λk, ξk, νk)}∞k=1. Since the points of this
sequence are in A and A is closed, (λ, ξ, ν) is in A too. Hence, (λ, ξ) ∈ A0. ¤

Lemma 4. Consider the sets A0 and A above and their extreme sets, ext(A0) and
ext(A). Then, there exists (λ, ξ, ν) ∈ ext(A) such that −Pm

j=1 bjλj = θα, i.e., there
exist (λ, ξ, ν) ∈ ext(A) solving (17). Moreover, (λ, ξ) ∈ ext(A0).6

Proof. The previous lemma shows that A0 is convex and closed. Consequently,
the Representation Theorem of closed convex subsets apply (Holmes, 1975). Since
A0 is included in the non-negative cone of IRm × IRs it does not contain any affine
manifold, and therefore

A0 = Co [ext(A0)] +Rc(A0), (18)

Co denoting convex hulls and Rc denoting recession cones.
Assumption I guarantees that (17) is solvable, and, accordingly, (18) ensures the

existence of (λ, ξ) ∈ ext(A0) such that −
Pm

j=1 bjλj = θα. Fix (λ, ξ) and set

A1 = {ν ∈ P (∆) ; (λ, ξ, ν) ∈ A} .
It is easy to check that A1 is closed, and therefore compact because it is included
in P (∆). The Krein Milman Theorem (Holmes, 1975, or Anderson and Nash, 1987)
ensures that A1 is the σ (M (∆) , C (∆))−closed convex hull of its extreme set. In
particular, there exists ν ∈ ext(A1), and (λ, ξ, ν) is the required element of ext(A).
¤

6Given a linear programming problem between infinite-dimensional Banach spaces, if the feasible
set is weakly compact and the problem is bounded, then there exists a extreme point of the feasible
set where the objective function is as close as desired to the optimal value (Anderson and Nash,
1987). However, since our objective does not depend on the infinite-dimensional variable ν, we can
prove much more.
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Lemma 5. Let be N ∈ IN and C ⊂ IRN a convex compact set. Let c0 be a extreme
point of C. Then, there exists a linear map L : IRN 7−→ IR with L(c0) > L(c) for
every c ∈ C \ {c0}.

Proof. Let us apply the induction method on the dimension of C, Dim(C)
(i.e., the dimension of the minimal affine manifold containing C). The result is
clear if Dim(C) equals zero or one. Suppose that it also holds for dimensions
1, 2, ...,Dim(C) − 1. Without loss of generality we can assume that Dim(C) = N .
The Separation Theorems for convex sets (Holmes, 1975) point out the existence of
a non-null linear map L0 : IRN 7−→ IR with L0(c0) ≥ L0(c) for every c ∈ C. Obviously,

Dim {c ∈ C; L0(c) = L0(c0)} ≤ N − 1
(this set is included in a (N − 1)−dimensional affine manifold). Due to the induction
hypothesis it is easy to establish the existence of L00 : IRN 7−→ IR with L00(c0) ≥ L00(c)
for every c ∈ C and L00(c0) > L00(c) whenever c ∈ C and L0(c0) = L0(c). Obviously,
L = L0 + L00 is the required linear map. ¤

Lemma 6. Let be N ∈ IN and f : ∆ 7−→ IRN a σ (Lq, Lp)−continuous function.
Then, for every ν ∈ P (∆) there exist a finite subset©

z1, z2, ...zK
ª ⊂ ∆

and a linear convex combination

KX
k=1

tkδzk , t1, t2, ...tK ≥ 0,
KX
k=1

tk = 1

such that Z
∆

fdν =

Z
∆

fd

Ã
KX
k=1

tkδzk

!
.

Proof. Since f is continuous then f(∆) is connected and compact. Consider the
function

M (∆) 3 ν −→ φf (ν) =

Z
∆

fdν ∈ IRN .

φf is clearly linear and σ (M (∆) ,C (∆))−continuous and therefore φf (P (∆)) is
convex and compact. Furthermore, f(z) =

R
∆
fdδz implies that

f(∆) ⊂ φf (P (∆)) . (19)

We will present the complete proof in two steps.
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Step1. The result holds for N = 1 with K = 1. Indeed, in such a case take

m =Min {f(z); z ∈ ∆} ≤Max {f(z); z ∈ ∆} =M.
Since f(∆) is connected we have that

f(∆) = [m,M ]. (20)

Moreover

m =

Z
∆

mdν ≤
Z
∆

fdν ≤
Z
∆

Mdν =M

holds for every ν ∈ P (∆), from where (20) leads to the existence of zν ∈ ∆ with
f(zν) =

R
∆
fdν for every ν ∈ P (∆).

Step2. The result holds for every N ∈ IN. Indeed, since φf (P (∆)) is convex and
compact we have that

φf (P (∆)) = Co
¡
ext

¡
φf (P (∆))

¢¢
.

Thus, for each ν ∈ P (∆) there exists a finite set {u1, u2, ..., uK} ⊂ ext
¡
φf (P (∆))

¢
generating

R
∆
fdν as a linear convex combinationZ

∆

fdν =
KX
h=1

thuh.

It is sufficient to see that every element in the set {u1, u2, ..., uK} above takes the form
uk = f(z

k), zk ∈ ∆, so fix u ∈ ext ¡φf (P (∆))¢ and let us prove the latter expression.
From the previous lemma there exists a linear function L : IRN 7−→ IR with

L(u) > L(w) (21)

for every w ∈ φf (P (∆)) , w 6= u. Obviously,Z
∆

(L ◦ f) dν = L
µZ

∆

fdν

¶
for every ν ∈ P (∆), so Z

∆

(L ◦ f) dνu = L(u)

for those νu ∈ P (∆) with
R
∆
fdνu = u (whose existence follows from u ∈ φf (P (∆))).

According to the results stated in Step 1 there exists z ∈ ∆ with

L (f(z)) = (L ◦ f) (z) =
Z
∆

(L ◦ f) dνu = L(u)

from where, bearing in mind that f(z) ∈ f(∆) ⊂ φf (P (∆)) (see (20) and (21)), we
have that f(z) = u. ¤
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Theorem 7. With the notations above let (λ, ξ) be a extreme point of A0 and
let (λ, ξ, ν) be a solution of (17) and a extreme point of A. Then, there exist©
z1, z2, ...zK

ª ⊂ ∆ and a linear convex combination

KX
k=1

tkδzk , t1, t2, ...tK ≥ 0,
KX
k=1

tk = 1,

such that
³
λ, ξ,

PK
k=1 tkδzk

´
also solves (17) and is a extreme point ofA. Furthermore,

if K∗ is the number of strictly positive components of (λ, ξ) then K∗+K ≤ r+ s+1.

Proof. The existence of (λ, ξ, ν) follows from Lemma 4, and Lemma 6 guarantees
the existence of

PK
k=1 tkδzk with

γX
i=1

αi

µZ
∆i

E (yhzi) dνi

¶
=

γX
i=1

αi

ÃZ
∆i

E (yhzi) d

Ã
KX
k=1

tkδzk

!!
,

h = 1, 2, ..., n. Thus,
³
λ, ξ,

PK
k=1 tkδzk

´
∈ A and we can assume that tk 6= 0, k =

1, 2, ...,K. If
³
λ, ξ,

PK
k=1 tkδzk

´
is not a extreme point of A then

PK
k=1 tkδzk can

be replaced by a new linear convex combination
PK

k=1 τ kδzk such that (τ k)
K
k=1 is a

extreme point of the set composed of those (τ̃k)
K
k=1 with non-negative components,PK

k=1 τ k = 1 and

γX
i=1

αi

µZ
∆i

E (yhzi) dνi

¶
=

γX
i=1

αi

ÃZ
∆i

E (yhzi) d

Ã
KX
k=1

τ̃ kδzk

!!
.

Now it is easy to see that
³
λ, ξ,

PK
k=1 τkδzk

´
is a extreme point of A.

Finally, it only remains to see that K∗ + K ≤ n + 1 (we still denote by K the

number of nun-null components of (τ k)
K
k=1). Since

³
λ, ξ,

PK
k=1 τkδzk

´
∈ A one has

Pm
j=1E (qjyh)λj −

PK
k=1 τ k

£R
∆
(
Pγ

i=1 αiE (yhz))
¤
dδzk = 0, h = 1, 2, ..., rPm

j=1E (qjyh)λj − ξh −
PK

k=1 τ k
£R
∆
(
Pγ

i=1 αiE (yhz))
¤
dδzk = 0, h = r + 1, ..., r + sPK

k=1 τk = 1
λ ≥ 0, ξ ≥ 0, τ ≥ 0


(22)

If one fixes the whole set of parameters in the system above except (λ, ξ) and τ =
(τ k)

K
k=1 we already know that there is a solution in the unknown (λ, ξ, τ ). Moreover,
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since our concrete (λ, ξ, τ) is a extreme point of A it is also a extreme point of the
set of solutions of the system above. Hence, (λ, ξ, τ) is a Basic Feasible Solution
(Anderson and Nash, 1987) and whence it cannot have more than n+ 1 (number of
equations) strictly positive components. ¤

Remark 3. Notice that the necessary and sufficient optimality conditions (15) may
be simplified by using the latter theorem. ¤

Remark 4. (Simplex-like Algorithm). Anderson and Nash (1987) presented a
simplex-like algorithm that solves some semi-infinite linear optimization problems.
Since their approach does not exactly fit our Problem (17), we will adapt the method.
However, we will just present the algorithm without proofs, because they are quite
similar to those provided by the authors above.

Step1. Fix a initial Basic Feasible Solution (extreme point)
³
λ, ξ,

PK
k=1 tkδzk

´
satisfying the conditions stated in Theorem 7. In order to find this first Basic Feasible
Solution (BFS) one can follow those procedures indicated in Anderson and Nash
(1987).
Consider the matrix of System (22) above

A =

 (E (yhqj))
h=r,j=m
h=1,j=1 (0)r×s

¡£R
∆
(
Pγ

i=1 αiE (yhz))
¤
dδzk

¢h=r,k=K
h=1,k=1

(E (yhqj))
h=r+s,j=m
h=r+1,j=1 −Is×s

¡£R
∆
(
Pγ

i=1 αiE (yhz))
¤
dδzk

¢h=r+s,k=K
h=r+1,k=1

(0)1×m (0)1×s ((1, 1, ..., 1)1×K

 ,
whose dimensions equal (n+ 1)× (m+ s+K). Consider a sub-matrix B taking the
columns of A associated with non-null elements of

³
λ, ξ,

PK
k=1 tkδzk

´
. Theorem 7

guarantees that B has less than (n+ 1) columns or exactly (n+ 1) columns. In the
first case this BFS is said to be degenerated and non-degenerated in the second one.
If we were facing degeneration then we would add some columns of A so as to reach
a square and regular B. Consider finally the row matrix

c = (−b1,−b2, ...,−bm, 0, .0, ..., 0)

with (m+ s+K) columns and the row matrix cB with (n+ 1) columns that is ob-
tained taking from c those elements associated with the columns of A composing B
(henceforth, basic columns).

Step2. Compute the matrices

B−1A and cBB−1A− c.
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It is trivial to show that those columns of B−1A associated with the basic columns
generate the identity matrix and, consequently, those elements of cBB−1A− c associ-
ated with the basic columns must vanish. In particular, all of the elements associated
with

PK
k=1 tkδzk must vanish.

Consider the function

∆ 3 z 7−→ Φ (z) = cBB
−1


¡£R

∆
(
Pγ

i=1 αiE (yhz))
¤
dδz
¢h=r
h=1¡£R

∆
(
Pγ

i=1 αiE (yhz))
¤
dδz
¢h=n
h=r+1

1

 ∈ IR (23)

We can extend the matrix B−1A by adding a new row and a two new columns. We
obtain the simplex tableau

cBB
−1A− c. −Pm

j=1 bjλj (jl)jl
(hl)hl

(zkl
)kl

 B−1A, B−1


0
.
.
1


 (24)

indicating those variables that are basic (first column), their values (last column) and
the objective level.

Optimality Criterion. If there are no negative elements in cBB−1A− c and
Φ (z) ≥ 0 (25)

for every z ∈ ∆ then
³
λ, ξ,

PK
k=1 tkδzk

´
solves (17). The algorithm ends here.

Otherwise we must go to Step 3.

Step3. Scenario 1. Assume that cBB−1A − c contains a negative element. It is
associated with a non-basic column of A,

(E (yhqj))
h=r,j=m
h=1,j=1

(E (yhqj))
h=r+s,j=m
h=r+1,j=1

.

.

.
0


or (0, ..., 0, 0, ...,−1, ..., 0, 0)t

related to a non-basic variable λj0 or ξh0
that will become basic in a new iteration

of the algorithm. Denote by A0 the column above and compute the column matrix
(which is a column of B−1A)¡

η1, η2, ..., ηn+1
¢t
= B−1A0. (26)
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It may be easily proved that there exists a positive element in the column matrix
above since, otherwise, Problem (17) would be unbounded, contradicting Assumption
I. Take

η =Min

½½
λjl
ηl
; ηl > 0

¾
∪
½
ξhl

ηl
; ηl > 0

¾
∪
½
tkl

ηl
; ηl > 0

¾¾
, (27)

with the obvious notations (
¡
(λjl) ,

¡
ξhl

¢
, (tkl

)
¢
= B−1 (0, 0, ..., 1)t is in the last column

of (24) and represents here the “old” or non-optimal basic feasible solution). The
minimum value is attained at the element representing the variable that will give up
being basic in the next iteration. Therefore we have modified the set a basic variables,
and we can solve System (22) so as to obtain a new BFS. The objective value has
been improved in the new BFS and we have to go back to Step 1.
However, some computations can be accelerated if one proceeds as follows: Call

“pivot” P to that element of B−1A in the position where the minimum (27) above is
reached. Update the row of B−1A and Tableau (24) containing the pivot by dividing
the whole row by P (one will obtain the new value 1 instead of P ). Update cBB−1A−c
and the remainder rows of B−1A and (24) by subtracting from the old one the new
row containing the pivot multiplied by Pl, element in the corresponding row and in
the same column as the pivot. Modify the subscripts included in the first column of
(24) so as to reflect the new basic variables. We can now go back to Step 2 and we
have already updated

³
λ, ξ,

PK
k=1 tkδzk

´
, B−1A, cBB−1A− c and (24).

Step3. Scenario 2. Assume that cBB−1A − c does not contain any negative
element but there exists z̃ ∈ ∆ with Φ (z̃) < 0. Obviously, z̃ does not belong to the
set

©
z1, z2, ...zK

ª
. If possible, choose z̃ so as to solve

Min {Φ (z) ; z ∈ ∆} . (28)

Otherwise choose an arbitrary z̃ making negative the value of Φ. z̃ will belong to the
next BFS and we have to determine to variable to leave the basis. In order to do
that we follow the same way as in the previous scenario. Thus, let

A0 =


¡£R

∆
(
Pγ

i=1 αiE (yhz̃))
¤
dδz̃
¢h=r
h=1¡£R

∆
(
Pγ

i=1 αiE (yhz̃))
¤
dδz̃
¢h=n
h=r+1

1


compute (26), and the value η of (27) will indicate the variable to stop being basic.
Now we can solve System (22) so as to obtain a new BFS and we have to go back to
Step 1. We can simplify some computations if we update

³
λ, ξ,

PK
k=1 tkδzk

´
, B−1A,
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cBB
−1A−c and (24) by proceeding as in the previous case. If so, it is worth to extend

“the old B−1A, cBB−1A − c and (24)” before the computations by adding the new
column 

Φ (z̃)

B−1


¡£R

∆
(
Pγ

i=1 αiE (yhz̃))
¤
dδz̃
¢h=r
h=1¡£R

∆
(
Pγ

i=1 αiE (yhz̃))
¤
dδz̃
¢h=n
h=r+1

1


 .

Final Note. If the optimality criterion of Step 2 does not hold and we go to the
second scenario of Step 3 then we should choose z̃ ∈ ∆ such that Φ (z̃) were as small
(negative) as possible (we should even solve Problem (28)), in order to achieve a
fast convergence of the algorithm to the solution. Thus, this pivotal step might be
important, although it is worth to recall that the objective function does not directly
depend on the ν variable, whose unique effect is on the constraints of the problem.
Anyway, since Φ is linear in the z variable (see (23)), one can check the value of Φ
in the extreme points of ∆ in order to get an element z̃ as close as possible to the
solution of (28)). ¤

6. Some significant risk functions
This section will be devoted to present several examples of risk functions satisfying
(1), i.e., such that the developed methodology applies. We will not be exhaustive
and will only summarize the most important properties of some significant particular
cases.

All the examples are positively homogeneous and convex functions. Thus, if we
maximize a generalized Sharpe ratio (GSR), quotient between the expected risk pre-
mium and the risk excess with respect to the risk-free security, then we will obtain
a special strategy that composes the efficient portfolios in a “new risk/return frame-
work”. Indeed, once we fix the risk function, we can outperform every feasible portfo-
lio by adequately combining the riskless asset and the strategy maximizing the GSR.
This property is similar to that well known in the CAPM model, where the risk func-
tion is the standard deviation and efficiency is achieved if and only if one diversifies
between the riskless security and the Market Portfolio. Obviously, the maximization
of the GSR is equivalent to the minimization of the risk level under an appropriate
linear constraint on the expected risk premium, i.e., the here proposed methodology
applies. In some sense one can interpret that we are constructing a “new index” that
solves those problems generates by asymmetries and fat tails.

Example 1. Standard Deviation. The standard deviation σ2 is the dispersion
measure used in classical portfolio selection and the equilibrium models CAPM and
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APT . It is defined over the Banach space L2. According to the results of Rockafellar
et al. (2006a), Expression (1) holds if (see (2) and (3))

∆̃σ2 = ∆σ2 − {1} = {z ∈ L2; E (z) = 1, kz − 1k2 ≤ 1}− {1}
= {z ∈ L2; E (z) = 0, kzk2 ≤ 1}

,

which is a σ (L2, L2)−compact set because it is bounded (recall the Alaoglu‘s The-
orem). The related risk measure also satisfies (1) if we take the compact space ∆σ.
Since, for a general probability space (Ω,F , µ), ∆σ contains non-positive random
variables, the risk measure is not decreasing, and therefore it is not coherent in the
sense of Artzner et al. (1999) (see Rockafellar et al., 2006a). This is a drawback be-
cause risk measures try to represent capital requirements, and higher pay-offs might
lead to higher initial capital reserves. As already said, the deviation measure σ2 is
not compatible with the second order stochastic dominance (SOSD) if asymmetric
returns are involved (Ogryczak and Ruszczynski, 2002).

Example 2. p−Deviation. The p−deviation is given by Lp 3 y 7−→ σp (y) =

k(y − E(y))kp = [E |y − E(y)|p]1/p ∈ IR, where p ∈ [1,∞). Since k.kq is the dual
norm of k.kp we have that kykp = Sup

n
E(yz); z ∈ Lq, kzkq ≤ 1

o
holds for every

y ∈ Lp. Hence,

σp (y) = k(y −E(y))kp = Sup
n
E [(y − E(y)) z] ; z ∈ Lq, kzkq ≤ 1

o
= Sup

n
E(yz)−E(y)E(z); z ∈ Lq, kzkq ≤ 1

o
= Sup

n
E [y (z − E(z))] ; z ∈ Lq, kzkq ≤ 1

o
= Sup

n
E (y(−z)) ; z = E(z0)− z0, z0 ∈ Lq, kz0kq ≤ 1

o
= Sup

n
E (y(−z)) ; z ∈ ∆̃σp

o
.

Since Lq 3 z 7−→ E(z) − z ∈ Lq is σ (Lq, Lp)−continuous and the unit ball of Lq is
σ (Lq, Lp)−compact (Alaoglu‘s Theorem), ∆̃σp is σ (Lq, Lp)−compact, i.e, Expres-
sion (1) and the theory developed in this paper apply.
As in the previous example, ∆σp = ∆̃σp + {1} contains non-positive random vari-

ables and, therefore, the associated risk measure is non-decreasing and non-coherent
in general.
The absolute deviation σ1 (y) = E |y − E (y)|, y ∈ L1, presents a significant

property. Indeed, it is always compatible with the SOSD (Ogryczak and Ruszczynski,
2002).

Example 3. Worst Conditional Expectation. The worst conditional expec-
tation (WCE) is a coherent risk measure introduced in Artzner et al. (1999) and
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defined on the space L1. It is expectation bounded and can be represented if we take

∆WCE = C̄o

½
χΩ0

µ (Ω0)
; Ω0 ∈ F , µ (Ω0) > µ0

¾
⊂ L∞

µ0 ∈ (0, 1) being the level of confidence (see Rockafellar et al., 2006a). ∆WCE is
σ (L∞, L1)−compact with the same arguments as in the previous case.

Example 4. Conditional Value at Risk. The conditional value at risk
(CV aR), defined on L1, is becoming a very important risk measure, quite analyzed
in theoretical studies and quite used by traders in practice. It is coherent and Rock-
afellar et al. (2006a) stated that it is expectation bounded and can be represented
with

∆CV aR =

½
z ∈ L∞; 0 ≤ z ≤ 1

µ0
, E (z) = 1

¾
⊂ L∞

µ0 ∈ (0, 1) being the level of confidence. ∆CV aR is obviously convex and it is also
σ (L∞, L1)−compact for the same reasons as Examples 2 and 3. The extreme set
of ∆CV aR is important to make it easier to deal with Condition (25) and Problem
(28). If µ is atomless then it is composed of those random variables taking the form
(1/µ0)χΩ0

, Ω0 ∈ F , µ (Ω0) = µ0. Rockafellar et al. (2006a) show that CV aR and
WCE are closely related. The deviation associated with CV aR can also my treated
with our methodology since it is represented by the same convex compact set with
−1, (1/µ0) − 1 and E (z) = 0 rather than 0, (1/µ0) and E (z) = 1. Despite its
growing importance, CV aR is not compatible with the SOSD, as we will see in the
next example.

Example 5. Distortion Functions. The examples above do not satisfy the
whole set of “suitable properties” (coherent and bounded expectation risk measures
such that they or their deviations are compatible with the SOSD) but we will “solve
it” in our last example.
Wang (2000) considers a non-decreasing function g : [0, 1] 7−→ [0, 1] with g(0) =

0 and g(1) = 1, and a general risk measure with the “heuristic form” Rg(y) =
− R 1

0
F−1y (t)dg(t), where Fy stands for the distribution function of the random variable

y, and F−1y must be adequately defined. If g is continuous in [0, 1] and piecewise
differentiable in (0, 1) then the expression above gives

Rg(y) = −
Z 1

0

F−1y (t)g0(t)dt. (29)

A special important case is

g(t) =

½
(1/µ0) t, t ≤ µ0
1, t ≥ µ0
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that leads to CV aR. Wang justifies his proposal by several reasons. Among them,
he shows simple numerical examples illustrating that CV aR might present some
drawbacks in particular practical problems. The idea of Wang is formalized in Whirch
and Hardy (2006), where it is established that Rg is compatible with the SOSD if
and only if g is strictly concave, case in which Rg is also coherent.
There are many risk measures given by (29) satisfying a set of desirable conditions

for which our methodology applies. For example, suppose that g is two times con-
tinuously differentiable in [0, 1] and with strictly negative second derivative in (0, 1).
Then Rg is defined in L1, compatible with the SOSD, and it may be stated that (1)
holds if ∆g is the weakly∗−closed convex hull of

{0} ∪ ©z ∈ L∞; z(ω) = g0 [µ (y ≤ y (ω))] , y ∈ L1ª .
Since g0 is non-negative and bounded from above, ∆g is σ (L∞, L1)−compact and
(according to Rockafellar et al., 2006a) Rg is coherent and expectation bounded, that
is, Rg satisfies the whole set of “ideal properties” and the methodology of this paper
applies. A important example in Actuarial Sciences is the “dual power transform”,
generated by gκ(t) = 1− (1− t)κ , κ ≥ 2.
Wang also proposed the distorting function g (t) = Ψ (a+Ψ−1 (t)), with a > 0

and Ψ denoting the cumulative function of the standard normal distribution. Then
Rg is defined in L2, compatible with the SOSD, and it may be stated that (1) holds
if ∆g is the weakly−closed convex hull of

{0} ∪ ©z ∈ L2; z(ω) = g0 [µ (y ≤ y (ω))] , y ∈ L2ª .
Since g0 is non-negative and belongs to L2[0, 1] (when [0, 1] is endowed with the
Measure of Lebesgue), ∆g is σ (L2, L2)−compact and (according to Rockafellar et
al., 2006a) Rg is coherent and expectation bounded.

7. Conclusions
Capital requirements of Financial Institutions, fat-tailed return distributions and
asymmetric returns have provoked a growing interest in modern risk analysis. Re-
searchers, regulators and practitioners are sharing in the development of new methods
measuring risk levels of investment strategies.
Portfolio optimization is complex in practice when general risk functions (mea-

sures) are involved. These functions are usually non-differentiable and it is also
complex to apply the properties of Convex (or convex-like) Programming. Thus,
the development of appropriate optimality conditions and algorithms is becoming an
important topic.
Due to the Representation Theorems of Risk Measures we have transformed a (vec-

tor) Risk Minimization Problem of Portfolio Choice Theory into a Minimax Problem,
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and consequently, into a dual pair of Linear Programming Problems between infinite-
dimensional Banach spaces of continuous functions and inner regular σ−additive
measures. Accordingly, necessary and sufficient optimality conditions have been es-
tablished. They do not draw on the concept of subgradient, and some probability
measures are involved as multipliers.
Under very general conditions the dual problem becomes semi-infinite, allowing

for a simplex-like algorithm leading to both primal and dual solutions. Thus, one has
a practical method to obtain optimal strategies and their sensitivities. Furthermore,
in the semi-infinite case the dual solution is achieved at a convex combination of Dirac
deltas, allowing for new versions and interpretations of the optimality conditions.
The theory applies for many coherent, expectation bounded and/or deviation risk

measures and, therefore, it can be particularized to address those special cases we
may be interested in.
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