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§0. ABSTRACT

In this paper we study the hyperbolicity in the Gromov sense of metric spaces. We deduce the
hyperbolicity of a space from the hyperbolicity of its “building block components”, which can be
joined following an arbitrary scheme. These results are especially valuable since they simplify notably
the topology and allow to obtain global results from local information. Some interesting theorems
about the role of punctures and funnels on the hyperbolicity of Riemann surfaces can be deduced from
the conclusions of this paper.

§1. INTRODUCTION

A good way to understand the important connections between graphs and Potential Theory on
Riemannian manifolds (see e.g. [ARY], [CFPR], [FR], [HS], [K1], [K2], [S]) is to study the Gromov
hyperbolic spaces. This approach allows to establish a general setting to work simultaneously with
graphs and manifolds, in the context of metric spaces. Besides, the idea of Gromov hyperbolicity
grasps the essence of negatively curved spaces, and has been successfully used in the theory of groups
(see e.g. [GH] and the references therein).

Although there exist some interesting examples of hyperbolic spaces (see the examples after Defini-
tion 1), the literature gives no good guide about how to determine whether or not a space is hyperbolic.
This limitation can be somehow got round, since the theory allows to obtain powerful results about
non-hyperbolic spaces which have hyperbolic universal coverings. As topological “obstacles” may pre-
vent a space from being hyperbolic, the possibility of studying its universal covering instead, which is
always free of obstacles, implies a substantial simplification, and sometimes let us extract important
information about the space itself (see [P]).

However, as was stated above, the characterization of hyperbolic spaces remains open. Recently,
some interesting results about the hyperbolicity of Euclidean bounded domains with their quasihyper-
bolic metric have made significant progress in this direction (see [BHK] and the references therein).

Originally, we were interested in studying when non-exceptional Riemann surfaces equipped with its
Poincaré metric were Gromov hyperbolic. However, we have proved several theorems on hyperbolicity
for general metric spaces, which are interesting by themselves and have important consequences for
Riemann surfaces (see [PRT]). Although one should expect Gromov hyperbolicity in non-exceptional
Riemann surfaces due to its constant curvature —1, this turns out to be untrue in general, since
topological obstacles can impede it: for instance, the two-dimensional jungle-gym (a Z2-covering of a
torus with genus two) is not hyperbolic. Let us recall that in the case of modulated plane domains,
quasihyperbolic metric and Poincaré metric are equivalent. One can find results on hyperbolicity of
Riemann surfaces in [RT] and [PRT].
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Here we present the outline of the main results. We refer to the next sections for the definitions

and the precise statements of the theorems.

The main aim in this paper is obtaining global results on hyperbolicity from local information.
That was the idea that lead us to think of a space X as the union of some “pieces” or “building block
components” {X,}nea-

Our first theorem (see Theorem 1) states that if the above mentioned pieces X, are joined together
following a tree-like design (that is, avoiding the creation of extra topological obstacles), then the
uniform hyperbolicity of the pieces guarantees the hyperbolicity of the global space X.

However, if pieces are joined together in a general graph-like style (that is to say, the hypothesis
on simple topological connections is removed), the uniform hyperbolicity of pieces is no longer enough
to guarantee the hyperbolicity of the global space X. But, surprisingly, if Y is a graph that models
appropriately the connections among uniformly hyperbolic pieces X,,’s, the hyperbolicity of Y let us
assure the hyperbolicity of X. (This fact turns out to be obvious when Y is a tree.)

It is noticeable that the graph Y must comply with some metrical requests in order to be an
acceptable model for the connections among the pieces X,,. However, Y is not required at all to
model the subspaces themselves (which might be arbitrarily wide far away from the connections).
Taking advantage of these facts, Theorem 2 provides a much more general frame, since it does not
require that the space Y used as a model to stick the pieces together is a graph.

When applied to Riemann surfaces these theorems let us deduce interesting consequences. In
[PRT, Theorems 3.2 and 3.4] we work on the role of punctures and funnels of a Riemann surface in its
hyperbolicity. These results allow, in many cases, to forget punctures and funnels in order to analyze
the hyperbolicity of a Riemann surface; this fact can be a significant simplification in the topology of
the surface, and therefore makes easier the study of its hyperbolicity.

It is a remarkable fact that the constants appearing in the theorems of this paper depend just on

a small number of parameters. This is a common place in the theory of hyperbolic spaces (see e.g.
theorems A, B and C).

Notations. We denote by X or X,, geodesic metric spaces. By dx, Lx and Bx we shall denote,
respectively, the distance, the length and the balls in the metric of X.

Finally, we denote by k; positive constants which can assume different values in different theorems.

Acknowledgements. We would like to thank Professors J. L. Fernandez and M. V. Melian for

some useful discussions.

§2. RESULTS IN METRIC SPACES

In our study of hyperbolic Gromov spaces we use the notations of [GH]. We give now the basic
facts about these spaces. We refer to [GH] for more background and further results.
Definition 1. Let us fix a point w in a metric space (X, d). We define the Gromov product of

z,y € X with respect to the point w as
1
(@ly)w = 5 (dz, w) +d(y,w) = d(z,y)) > 0.



We say that the metric space (X, d) is d-hyperbolic (§ > 0) if

(@2)w > min {(@|y)w, (y]2)w} -9,

for every z,y,z,w € X. We say that X is hyperbolic (in the Gromov sense) if the value of § is not

important.

It is convenient to remark that this definition of hyperbolicity is not universally accepted, since
sometimes the word hyperbolic refers to negative curvature or to the existence of Green’s function.

However, in this paper we only use the word hyperbolic in the sense of Definition 1.

Ezamples: (1) Every bounded metric space X is (diam X)-hyperbolic (see e.g. [GH, p.29]).

(2) Every complete simply connected Riemannian manifold with sectional curvature which is
bounded from above by —k, with k& > 0, is hyperbolic (see e.g. [GH, p.52]).

(3) Every tree with edges of arbitrary length is O-hyperbolic (see e.g. [GH, p.29]).

Definition 2. If v : [a,b] — X is a continuous curve in a metric space (X, d), we can define the

length of v as

L) = sup { D d(y(ti) 7(t) s a=to <t < - <ty = b}

We say that v is a geodesic if it is an isometry, i.e. L(7|yqs) = d(v(t),7(s)) = |t — s| for every
s,t € [a,b]. We say that X is a geodesic metric space if for every z,y € X there exists a geodesic
joining = and y; we denote by [z,y] any of such geodesics (since we do not require uniqueness of
geodesics, this notation is ambiguous, but it is convenient). It is clear that every geodesic metric

space is path-connected.

Definition 3. If X is a geodesic metric space and J = {J1, Ja, ..., Jp}, with J; C X, we say that
J is 0-thin if for every x € J; we have that d(z,U;jx;J;) < d. If 1,202,253 € X, a geodesic triangle
T = {1, 22,23} is the union of three geodesics [z1, 2], [T2, 23] and [z3,2z1]. The space X is d-thin

(or satisfies the Rips condition with constant ¢) if every geodesic triangle in X is §-thin.

If we have a triangle with two identical vertices, we call it a “bigon”. Obviously, every bigon in a

é-thin space is d-thin.

Definition 4. Given a geodesic triangle T' = {z,y, z} in a geodesic metric space X, let Tg be
a Euclidean triangle with sides of the same length than 7. Since there is no possible confusion,
we will use the same notation for the corresponding points in 7' and Tg. The maximum inscribed
circle in Ty meets the side [z,y] (respectively [y, 2], [z, z]) in a point 2’ (respectively 2', y') such that
d(z,z") = d(z,y"), dy,z') = d(y,2") and d(z,z') = d(z,y"). We call the points z',y’, 2, the internal
points of {z,y, z}. There is a unique isometry f of the triangle {x,y, 2} onto a tripod (a tree with one
vertex w of degree 3, and three vertices z'', y", 2 of degree one, such that d(z",w) = d(z,2") = d(z,y’),
d(y",w) = d(y,z") = d(y,z") and d(z",w) = d(z,2') = d(z,y')). The triangle {z,y,z} is é-fine if
f(p) = f(q) implies that d(p,q) < ¢. The space X is d-fine if every geodesic triangle in X is d-fine.

A basic result is that hyperbolicity is equivalent to Rips condition and to be fine:



Theorem A. ([GH, p.41]) Let us consider a geodesic metric space X .
(1) If X is §-hyperbolic, then it is 40-thin and 46-fine.

(2) If X is d-thin, then it is 40-hyperbolic and 46-fine.

(3) If X is 6-fine, then it is 25-hyperbolic and 6-thin.

We present now the class of maps which play the main role in the theory.

Definition 5. A function between two metric spaces f : X — Y is a quasi-isometry if there are

constants a > 1, b > 0 with
1
- dx(z1,m2) — b < dy(f(z1), f(x2)) < adx(z1,22) + b, for every z1,z2 € X.

A such function is called an (a,b)-quasi-isometry. We say that the image of f is e-full (for some
e > 0) if for every y € Y there exists x € X with dy(y, f(z)) < e. We say that X and Y are
quasi-isometrically equivalents if there exists a quasi-isometry between X and Y, with image e-full,
for some € > 0. An (a, b)-quasigeodesic in X is an (a, b)-quasi-isometry between an interval of R and
X. An (a,b)-quasigeodesic segment in X is an (a, b)-quasi-isometry between a compact interval of R
and X.

Let us observe that a quasi-isometry can be discontinuous.

Remark. It is well known (see e.g. [K1], [K2]) that quasi-isometrical equivalence is an equivalence
relation. In fact, if f : X — Y is an (a, b)-quasi-isometry with image e-full, then there exists a
function g : ¥ — X which is an (a,2ae + ab)-quasi-isometry. In particular, if f is a surjective
(a, b)-quasi-isometry, then g is an (a, ab)-quasi-isometry (in this case we can choose as g(y) any point

in f~(y)).

Quasi-isometries are important since they are the maps which preserve hyperbolicity:

Theorem B. ([GH, p.88]) Let us consider an (a,b)-quasi-isometry between two geodesic metric
spaces f : X — Y. If Y is 6-hyperbolic, then X is &' -hyperbolic, where &' is a constant which only
depends on &, a and b. Besides, if the image of f is e-full for some € > 0, then X is hyperbolic if and
only if Y is hyperbolic.

It is well-known that if f is not e-full, the hyperbolicity of X does not imply the hyperbolicity of

Y: it is enough to consider the inclusion of R in R? (which is indeed an isometry).

Definition 6. Let us consider H > 0, a metric space X, and subsets Y, Z C X. The set Vg (V) :=
{r € X :d(z,Y) < H} is called the H-neighborhood of Y in X. The Hausdorff distance of Y to Z is
defined by H(Y,Z) :=inf{H >0: Y CVy(2), Z CVg(Y)}.

The following is a beautiful and useful result:

Theorem C. ([GH, p.87]) For each 6 >0, a > 1 and b > 0, there exists a constant H = H(d,a,b)
with the following property:
Let us consider a §-hyperbolic geodesic metric space X and an (a,b)-quasigeodesic g starting in x

and finishing in y. If v is a geodesic joining x and y, then H(g,v) < H.

This property is known as geodesic stability. Mario Bonk has proved that, in fact, geodesic stability
is equivalent to hyperbolicity [B].



Along this paper we will work with topological subspaces of a geodesic metric space X. There is a

natural way to define a distance in these spaces:

Definition 7. If X is a path-connected subset of a geodesic metric space (X, d), then we associate

to it the restricted distance
dx,(z,y) := dx|x,(z,y) :==inf {L(y) : v C X, is a continuous curve joining z and y} > dx (z,y).

Theorem 1 below allows to transfer the study of the hyperbolicity of a certain space X to their
“building block components” X,, determined by the following definition.

Definition 8. We say that a geodesic metric space X has a decomposition, if there exists a family

mmb, where for each

of geodesic metric spaces {Xp}nea with X = UpeaX,, and X, N X, = User
n € A, {nt,,}m. are pairwise disjoint closed subsets of X, (ni,, = @ is allowed); furthermore any
geodesic segment in X meets at most a finite number of ¢ ’s.

We say that X, with n € A, is a (ki1, ko, k3)-tree-piece if it satisfies the following properties:

(@) $I,m < 1 (then we can write 1%, = nm); if §1um = 1, then X \ 7, is not connected and a, b
are in different connected components of X \ 7, for any a € X, \ nnm, b € Xon \ nm.-

(b) diamx, (nm) < ki for every m # n, and there exists A, C A, such that diamyx, (7nm) <
kz dx, (am, nk) if m # k and m, k € Ap, and 3, o, diamx, (mm) < k3.

We say that a geodesic metric space X has a tree-decomposition if it has a decomposition and there

exist positive constants ki, ko, k3, such that every X,,, with n € A, is a (ky, k2, k3 )-tree-piece.

We wish to emphasize that condition diamx, (.m) < ki1 is not very restrictive: if the space is
“wide” at every point (in the sense of long injectivity radius, as in the case of simply connected
spaces) or “narrow” at every point (as in the case of trees), it is easier to study its hyperbolicity; if

we can found narrow parts (as n,,) and wide parts, the problem is more difficult and interesting.

Remarks.

1. Obviously, condition (b) is required only for Npnm, Nuk 7# 9.

2. The sets A and A,, do not need to be countable.

3. The hypothesis diamx, (Nnm) < k2 dx, (am, Mnk) holds if we have dx, (nm, nk) > kb, since
diamyx, (Npm) < k1.

4. Condition (a) for every n € A guarantees that the graph R = (V, E) constructed in the following
way is a tree: V = Upea{vn} and [vp,vy] € E if and only if 9y, # .

The following result is an improvement of Theorem 2.4 in [RT], using a completely different line of
argument; furthermore, this proof provides an explicit expression for the constants involved. It will
be used in the proof of Theorem 2 and can be applied to the study of the hyperbolicity of Riemann
surfaces (see [PRT, Propositions 3.1 and 3.2]).

Theorem 1. Let us consider a geodesic metric space X with a tree-decomposition { X, }nen. Then
X is §-hyperbolic if and only if there exists a constant k4 such that X, is kq-hyperbolic for every
n € A.



Furthermore, if X, is ka-hyperbolic, we can take § = 4(2ky +4ks +2H (ka, 2 max{1, ko }, 4k1 + 2k3)),
where H is the constant in Theorem C; if X is §-hyperbolic, we can take ky = 16 max{1, kg}(26+ kv +
k3 + H((S, 2max{1, kg}, 2k1 + 2]{73)) .

Observe that the sets 1, do not need to be connected and therefore we can create a finite number

of “handles” each time we paste two pieces.

The conclusion of Theorem 1 is not true without hypothesis (b) in Definition 8, as it is shown in
following examples:

The set Q = {z =z +iy: = > 0,y > 0}, with its Euclidean distance, is not hyperbolic, but @ is
the union of the 1-thin pieces X,, = {z € Q@ : n —1 < |z| < n}.

Let us consider any funnel F' with boundary 7. The results on [RT] gives that F' is hyperbolic.
However, it is the union of the non-uniformly hyperbolic pieces X, = {z € F: n—1 < d(z,7) < n}
(the hyperbolicity constant of X, is comparable with L(0X,,)).

The proof of Theorem 1 gives the following results.

Corollary 1. Let us consider a geodesic metric space X with a decomposition {X,}nen. Let us
assume that, for some fized ng € A, Xp, is a (ki, ko, k3)-tree-piece and it is kq-hyperbolic. If T is
a geodesic triangle in X and X, intersects at least two sides of T, then X, NT is §*thin, with
0% :=3k1 /2 + 4ky + 2H (k4,2 max{1, ko },4k1 + 2ks3).

Corollary 2. Let us consider a §-hyperbolic geodesic metric space X with a decomposition { X, }nen
Let us assume that, for some fized ng € A, X, is a (ki, k2, k3)-tree-piece. Then Xy, is do-thin, with
(50 = 4max{1, k2}(25 + kl + k3 + H((S, 2max{1, kg}, 2]{71 + 2k3)) .

In order to prove Theorem 1 we need some technical results.

Lemma 1. Let us consider a geodesic metric space X and a geodesic n = [zg, Topt+1] = U?ﬂ'l[a:j,l , a:J]I
For each 1 < j <n, let us consider a continuous curve 1); joining r2j—1 and xs;, such that L(n}) < a
for every 1 < j <n and L(n;) < bL([v25,2j41]) for every 1 < j <n — 1. If ' is the curve obtained
from n by replacing [v2;1,22;] by nj, then n' is a continuous (2max{1,b}, 2a)-quasigeodesic with its

arc-length parametrization.

Proof of Lemma 1. Let us consider the arc-length parametrizations n : [0,{]] — X and 7’ :

[0,I'] — X. We can write [0,1] = U?Zf[tj,l,tj] and [0,1'] = U?Q}Ll[lj,l,lj], such that n'(l;) = n(t;)

z;j for every 0 < j < 2n+ 1, 7'([l2j,l2j+1]) = [22), T2j41] for every 0 < j < n and 1'([laj—1,12;]) = nj
for every 1 < j < n. The hypothesis give that lo; —l5j_1 < a for every 1 < j < n and laj —lyj—1 <
b(laj41 — laj) for every 1 < j <n —1.

Since we consider n' with its arc-length parametrization, then, for every s,t € [0,l'], we have
d(n'(t),n'(s)) < L(n'([s, 1])) = [t — s].

If s,t € [l2j,12541], then d(n'(t),n'(s)) = |t — s| for every 0 < j < n.

If s € [l2;,l241] and t € [l2j,12;+1], without loss of generality, we can assume that i < j; then there



exist s’ € [tQi,t2i+1] and t' € [tgj,t2j+1] such that

j—1

d(n' (t),0'(s)) = d((t'),n(s") > taivr — '+ Y (bargr — tax) +1' — o
k—it1
1
=lziy1 — s+ 3 Z (Lokt1 — Lok + loggr — log) + 8 — Iy
k=i+1
1 . j—1 Jj—1
> 5(12i+1 —s+b Z (lag = log—1) + Z (lakg1 — lax)
k=i+1 k=i+1
1 . 1 a
+ l2j — l2j_1 —a+t— l2j) > 5 mln{l,b }(t — S) — 5

In the general case, if s,¢ € [0,1'] there exist s* € [l2;,l2i41] and t* € [laj,12j41], with |s —s*| < a/2
and |t — t*| < a/2. Hence
3a

1
(' (t*),n'(s*)) —a > =min{1,b '}|t* — s*| — =
2 2

U

d(n'(t),n'(s)) >
> %min{l,b71}|t—s| — 2a. O

Lemma 2. Let us consider a geodesic metric space X and a continuous (a,b)-quasigeodesic with
its arc-length parametrization 7 : [0,1] — X, such that [0,1] = U?Zf[tj_l,tj]. For each 1 < j < n,
let us consider a continuous curve 1 joining n(tzj—1) and n(tz;) such that Z?Zl L(n;) < c. Ifn' is the
curve obtained from 1 by substituting n([ta;j—1,t2;]) by nj, thenn' is a continuous (a, b+ (1+3a=1)e/2)-

quasigeodesic with its arc-length parametrization.

Proof of Lemma 2. Let us consider the arc-length parametrization n' : [0,1'] — X. We can write
0,17 = U211, 15], such that 1f (1) = n(t;) for every 0 < j < 2n+1, 1/ ([agy aga]) = 1(lts5, t2j1])
for every 0 < j <n and n'([laj—1,l25]) = 17;- for every 1 < j < n. We have that Z?Zl(lgj —lyj1) <e

Since we consider n’ with its arc-length parametrization, then, for every s,t¢ € [0,1'], we have that
d(n'(t),n'(s)) < L(n'([s,t])) = |t — s|. In order to prove the other inequality, we have:

If s,t € [laj,l2j41], then d(n'(t),n'(s)) > a™'|t — s| — b for every 0 < j < n.

If s € [los,1241] and t € [l2,12541], without loss of generality we can assume that ¢ < j; then there

exist s’ € [tQi,t2i+1] and t' € [tgj,t2j+1] such that

d(n' (t),n'(s)) = d(n(t"),n(s") > a |t = s'| = b

2j-1
=a" (t' — 15 + Z (te1 — te) +t2ip1 — 8') -b
k=2i+1
251
> Cfl(t — i+ Y (kg —le) + laigs — S) —(b+a""tc)
k=2i+1

=a '(t—s)—(b+a te).
In the general case, if s,t € [0,1], there exist s* € [l2;,l2i41] and t* € [laj,l2j+1], with |s — s*|+ |t —
t*| < ¢/2. Hence
d(n' (t),n'(s)) > d('(t"),1'(s")) = ¢/2 > a ' |t" = 87| = (b+a " c+c/2)
>a tt—s|— (b+3a te/24¢/2). O



Lemma 3. Let us consider an (a,b)-quasigeodesic ¢1 : [a, 8] — X and two continuous curves
with arc-length parametrization qo : (o — dy,0] — X, q2 : [8, 5 + d2] — X, verifying qo(a) = q1 (@)
and q2(B8) = q1(B). Then the curve q := qo U q1 U gz is an (a,b+ (1 +a1)(dy + dz))-quasigeodesic.

Proof of Lemma 3. We consider the case s € [@ —dy, ] and t € [3, 5 + da], since the other cases

are easier.

d(q(t),q(s)) < d(q(t),q1(B)) + d(q1(B), q1(a)) + d(q1 (), q(s))
<ds+a(f—a)+b+d <alt—s)+b+d +do,

d(q(t),q(s)) > d(q1(B), q1(a)) — d(q(t),q1(B)) — d(q1(a), q(s))
>a ' (B-—a)—b—di —dy>a ' (t—s)—a  (di+do) —b—dy —dy. O

Definition 9. Let us consider three quasigeodesic segments .J; joining x1 and z, J> joining 25 and
x4, Js joining x3 and 7, in a metric space. We say that T' = {Jy, J», J3} is an (a, b, ¢)-quasigeodesic

triangle if .J1, Jo, J3 are (a,b)-quasigeodesics and d(x;, z}) < cfor 1 <i < 3.

Lemma 4. For each §,b,c > 0 and a > 1, there exists a constant K = K(d,a,b,c) with the
following property:

If X is a d-hyperbolic geodesic metric space and T C X is an (a, b, c)-quasigeodesic triangle, then
T is K-thin. Furthermore, K = 40 + ¢+ 2H (6, a,b+ 2¢), where H is the constant in Theorem C.

Proof of Lemma 4. We consider three geodesic segments [z}, x2], [z}, 23] and [z],z1]. By
Lemma 3 (with d; = 0 and dy < ¢), the curves s(z1,z2) = Jy U [z}, 23], s(x2,23) = Jo U [z}, 3]
and s(xg,z1) := J3 U [z}, z1] are (a,b + 2¢)-quasigeodesics. By Theorem C, there exist geodesics
{[z1, 2], [®2, 3], [23, 21]} with H(s(zi,x;), [z, 2;]) < H, for some constant H = H(d,a,b+ 2c).

We prove now that the (a, b+ 2¢, 0)-quasigeodesic triangle 7' = {.J1, Jo, J3 } is (46 + 2H)-thin. Let
us consider any permutation {x;, z;,x;} of {x1, 22,23} and & € s(z;, x;); then there exists 2’ € [z;, z;]
with d(z,2') < H.

Since the geodesics {[z1, 2], [z2, %3], [z3,21]} are a geodesic triangle 46-thin, there exists y' €
[, zk] U [k, 2;] with d(z',y") < 4. Now we can choose y € s(zj,z) U s(zy, z;) with d(y,y’) < H.
Hence, T" is (40 + 2H)-thin.

Consequently, T is K-thin, with K := 4§ 4+ ¢+ 2H, since [z}, 2], [}, z3] and [z}, 2] have length

less or equal than c. O

Definition 10. Let us assume that we have a triangle T' (not necessarily geodesic) with vertices
{z1,22,23}; we denote by z;x; the side of T joining z; with z;. We consider now another triangle T'

[

;x; is obtained by a certain kind of modification of z;z;. We say

with vertices {«},z}, 25} such that ]

that z € T and z' € T' are in corresponding sides if z € x;x; and 2’ € xla’. for some 1, j.
g J i

Proof of Theorem 1. Let us assume that X, is k4-hyperbolic for every n € A.

We consider a geodesic triangle T' = {a,b,c} in X. We fix z € T; if z belongs to two sides of T,
there is nothing to prove; if z only belongs to one side of T', we denote by A the union of the sides of
T which does not intersect z. Without loss of generality we can assume that z € [a, b].

If T C X, for some n, then T is 4k4-thin, by Theorem A.



We assume that T intersects several X,,’s. We intend to study 7" in each of those X,,’s separately.
Let us fix n € A. We consider first the case in which every side of T intersect X,,. We construct
a quasigeodesic triangle T,, C X,, modifying T in the following way: If [a,b] C X,, we consider
[an,bs] = [a,b]. If [a,b] is not contained in X,,, then we consider g : [0,l]] — X as an oriented
geodesic joining a and b. By hypothesis, the geodesic segment g meets at most a finite number of

Nam’S. Let us define
to :=min{0 <t <1: g(t) € X, }, tr:=max{0 <t <l:g(t) e Xp}.
First of all, let us assume that g meets Upeca, Mnm. We define
t; :=min{to <t <t;: g(t) € Umea, Mam} -

There exists this minimum since g is a continuous function in a compact interval and gN (Umea, Nnm)
is a compact set: each 7,,, is a closed set and g meets at most a finite number of 7,,,’s.

Then there is m; € A, such that g(t!) € Dum,, and we define
2 :=max{to <t <t;: g(t) € Nm, } -
In a similar way, we define recursively
th=min{t?_, <t <t;: g(t) € Umea,Mnm};
if g(t!) € Nom,, for some m; € A,,, we take
t? :=max{t;_, <t <t;: g(t) € Num.} -

We can continue this choice for 1 < i < r. We define ¢’ as the restriction of g to the closed set
[to, ti] U [t3,t3] U --- U [t2 |, t}] U [t2,4]. Observe that ¢’ C X,. Now, let us choose geodesics g; in
X,, connecting g(t}) and g¢(t?). We define v := ¢ Ug; Uga U---Ug,. By Lemma 1, we have that
v:[0,L] — X, is a continuous (2 max{1, k2 }, 2k1 )-quasigeodesic with its arc-length parametrization
(observe that v(0) = g(to) and v(L) = g(t;)).

If g does not meet Upea, Num (or if ¢t} =t7 for 1 <i < 7), we take v = g.

We assume now that v meets U,,¢ 4, Nnm- If we repeat the previous argument, then we can find a

m! ¢ A, for which we have

51 :=min{0 <5< L:v(s) € Npmr }, s7:=max{0<s<L: y(8) € Nmt }-
In a similar way, there exist m?,...,m’ for which we define recursively for i = 2,...,7,
sti=min{s? | <s<L:n(s) € Numi}, 57 :=max{s?_; <8< L:n(s) € Npmi}-

We define 4" as a restriction of v to the closed set [0, sj] U[s3, s3] U---U[s3, L]; we also have ' C X,.
Now, let us choose geodesics h; in X, connecting y(s}) and v(s?). We define ay := v'Uhy UhaU- - -Uh,;.
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If ; : [0,1;] — X, is its arc-length parametrization, Lemma 2 gives that ay is a (2max{1, k2}, 2k, +
2ks3)-quasigeodesic.

If v does not meet U,,g 4, nm (or if s; = s7 for 1 <i < j), we take a; = 1.

In a similar way, we construct the quasigeodesics ay : [0,l5] — X, and a3 : [0,3] — X,
corresponding to the sides [b, ¢] and [c, a] respectively.

Observe that if a;(l1) # a2(0), then both points belong to some 7,.,, since we have a tree-
decomposition; condition (b) gives that dx, (a1 (l1),a2(0)) < ki. The same is true if as(l2) # as3(0),
and if a3 (l3) # a1(0). Hence T}, := ayUasUag is a (2max{1, k2 }, 2k1 +2k3, k1 )-quasigeodesic triangle.
Lemma 4 gives that T), is d;-thin, with 6, = k; + 4k4 + 2H (k4,2 max{1, ko}, 4k1 + 2k3), where H is
the constant in Theorem C.

If z € X,,, without loss of generality we can assume that z € ay; if A’ := as U ag, then there exists
z' € A" with dx, (z,A") =dx, (z,2') < 61. If 2/ € A, then dx(z,A) < ;. If 2’ ¢ A, then, there exists
20 € A such that dx, (20, 2") < k1/2; then, dx (z, A) < dx, (z,2") + dx, (z',20) < 61 + k1/2.

If only two sides of T intersect X,,, we have the same result since we can see a bigon as a triangle

with two equal vertices. These facts prove Corollary 1. We finish now the proof of Theorem 1.

If An X,, = @, then z belongs to some geodesic gy C ¢ joining some 7, with itself such that A N
X, # &, since we have a tree-decomposition. By (b), there exists 2z’ € go NN with dx(z,2") < k1 /2,
and then, there exists zg € ANX,, such that dx,, (20, 2") < d1+k1/2. Consequently, dx (z, A) < §;1+k;,
and X is d-thin with § := 2ky + 4k4 + 2H (k4,2 max{1, k2 }, 4k, + 2k3).

Let us assume that X is §-hyperbolic.

We prove now that the inclusion i : X,, — X is a (2max{1, k2 }, 2k; + 2k3)-quasi-isometry.

Given z,y € X,, we have that dx(z,y) < dx, (z,y), since there are more curves joining z and y in
X than in X,,. In order to prove the other inequality, let us consider a geodesic g in X joining = and y.
If g C X, then dx (z,y) = dx, (,y). Inother case, we can define t1,7,..., 1,17, 51, 57,...,5}, 57, and
the (2 max{1, k2 }, 2k1 + 2k3)-quasigeodesic a; : [0,1;] — X, joining z and y as in the proof of the first
part of the theorem. Since a; has its arc-length parametrization,  min{1, k; '} L(a1) — 2(k1 + k3) <
dx (a1(0), 1 (1)) = dx (x,y)-

Since «; is a continuous curve in X, joining = and y, dx, (z,y) < L(a1), and then
1 _
5 mln{17 kQ l}an (may) - 2(k1 + k3) < dx (xay) < an (l’,y)

Hence, if X is 6-hyperbolic, then X, is 4 max{1, k2 } (25—!— ki+ks+H(0,2max{1,ka}, 2k, +2k3))—thin
(see [GH, p.88]).
Let us observe that in this proof of the hyperbolicity of X,, we do not use that the other pieces are

tree-pieces; this gives Corollary 2. O

Theorem 2 below let us move the study of the hyperbolicity of a certain space X to another space
Y with simpler structure, so long as between them there exists the type of relationship described by

the following definition.
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Definition 11. We say that two geodesic metric spaces X and Y (in this order) have comparable
decompositions, if there exist decompositions { X, }pea of X and {Y,, },ea of Y, and constants k;, with
the following properties:

(a) If Xp, N Xy = Uier,,. Nhm, then Y, MYy, = Uier,, 0k, and ¢f,, = @ if and only if n¢,, = @.

(b) For any n,m, i, diamx, (n’,,) < ki and diamy;, (o?,.) < k;.

(¢) We can split A into F UG and F into F; U Fy with:

(cl) If n € G, X, is a (ki1, ko, k3)-tree-piece.

(2) Ifn € F, diamx, (n,,) < k2 dx, (n;m,nik) and diamy,, (0%,,) < k2 dy, (0%, aZLk) if (m, i) #
(k).

(¢3) I n € Fy, for each nj,,,, # 1., there exists a geodesic v/ in X,,, joining 7%, with 7/, and

(h,b%nk)—quasi—isometry fijnk :’yfr];nk N A

4 C Yy, with h¥  starting in o/, and finishing in

oppand 3o cp D s b . < ks, such that for any =,y € Uy, k.7, with corresponding points

"Y€ Unk whmnlw we have k- dX (z,y) — ks < dy, (z',y").
(c4) If n € Fy, there exists a (kg,0)-quasi-isometry f, : X,, — Y,,, with f,,(n’

Mm

) € O
Remarks.
Obviously, these conditions are required only for ni  of +# &.

The sets A, F,G and I,,,, do not need to be countable.

. The hypothesis (¢2) trivially holds if for n € F, dx,, (nnm,nnk) > kb and dy, (0!
).

The hypothesis (¢3) can be relaxed: let us consider any connected component B of U,erXp;

> k/‘2’

Onm» nk)

1.
2.
3. We obviously have ¢, = ni . and L, = Lnn.
4
by (b
5.

the proof of Theorem 2 gives that it is enough to have Eneps’m kyirj b < ks, for any s, where
Ff:={n € F, : X,, C Bs} (see the construction of T in the proof of Theorem 2).

6. As a consequence of (c3), we have that k; 'dx, (z,n%,) — ki — ks < dy, (fmnk(a:), ot ), for every
x€ql andrt.

7. Since condition (¢3) can be tedious to check, it could be interesting to check instead the following
statement which implies (¢3):

(¢3') If n € Fi, we have that k;* < dx, (7, 75)/dy, (0,00 ) < kg, diamx, (Upnint,,,) < ks
and diamy, (Uy,;0%,) < ks.

In the decomposition of X one can find pieces of two different types: {X,}ner and {X, }neq. The
connections among a piece X,, with n € G, and the rest of the pieces are simple enough for being
X, a tree-piece. The connections of the pieces X,,, with n € F, do not have topological restrictions;
therefore, besides (b) and (¢2) (as in the case n € G), they must be controlled somehow: the conditions
(¢3) and (c4) let us assure that the connections between X, and the rest of the pieces must be alike
to the ones in Y;,. Observe that condition (¢3) involves just a small subset of points of each X,,, with
n € Fi.

In spite of lengthening Definition 11, splitting A into the union of the three types of sets Fy, F5 and
G is an extremely convenient course of action: on the one hand, the wider the range of possibilities,

the easier it will be to fit a certain piece into one of them. On the other hand, the determination of
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the conditions that X,, must verify when n belongs to Fi, F> or GG, is not arbitrary at all. In fact,
what lies behind is an appropriate modelization for the study of the following problem in Riemann
surfaces (see [PRT]): Given a Riemann surface S, another one S* can be obtained from S by removing
a union of simply connected closed sets {Ey, }menr- In [PRT] it is proved that S is hyperbolic if and
only if S* is hyperbolic, when {E,,} are sufficiently separated. Theorem 2 is used in the proof of the
latest statement: The idea is to consider some neighborhoods of {E,,} as pieces {S,} (in S* we take
Sk, = 8Sm \ En). G is defined as the set of m’s belonging to M such that S,, is a tree-piece; F is
the rest of indices of M, and F5 is the set of indices which parametrizes the connected components
of S\ UnemSm (in S* we take the same connected components). Finally, Definition 11 has been

formulated by abstracting the essential properties of pieces in each of the three sets.

Theorem 2. Let us assume that two geodesic metric spaces X and Y have comparable decompo-
sitions. If Y is &'-hyperbolic and there exists a constant kg such that X, is ke-hyperbolic for every
n € A\ Fa, then X is 6-hyperbolic, with § a constant which only depends on &' and k;.

There is an explicit expression of ¢ at the end of the proof of Theorem 2.

It is obvious that (c4) is much more restrictive than (¢3); however, it is a small price to pay in

return for not having to check the hyperbolicity of pieces in F5.

We can see this theorem as a version of Theorem B: if A = Fj, condition (¢3) says somehow that
there is a quasi-isometry of a small subset of X on a subset of Y. From a dual point of view, we
can consider that there is a quasi-isometry of a subset of ¥ on a subset of X; in this case we have
the surprising result that the hyperbolicity of the original space implies the hyperbolicity of the final

space.

The hyperbolicity of X does not imply the uniform hyperbolicity of X,, in general (this is another
difference with Theorem 1). In fact, the hyperbolicity of X does not guarantee the hyperbolicity of
each X,,, as it is shown in the following example: let us consider X; as the Cayley graph of the group
Z2, and X, the tree with a countable number of edges of length 1 with a common vertex vg; we
construct X by gluing in a bijective way each vertex of Xo (except for vg) with a vertex of X;; it is
clear that X is hyperbolic since it is bounded, and that X is not hyperbolic. In the same line, it is
easy to construct a locally finite graph X = U, X,, with lim,,_,+ 6(X,,) = co.

Next, we provide some conditions which guarantee the hyperbolicity of X,,.

Proposition 1. Let X be a §-hyperbolic geodesic metric space with a decomposition as in Definition
11. If for somen € A there exist constants kr > 1, ks > 0, with dx,, (n;m,nik) < krdx (n;m,nik)—l-kg,
for any m, k,i, j, then X,, is ke-hyperbolic, with ke := 4k7 (46+k; ' (2k1 +ks)+2H (6, kr, k7 (2k1+ks))),

where H is the constant in Theorem C.

The following result is weaker than the one in Proposition 1, but it has the advantage that it only
involves distances in X,,. In fact, this is the best possible general result involving just distances in

X,,; besides it allows to get sharper constants.

Proposition 2. Let X be a §-hyperbolic geodesic metric space with a decomposition as in Definition

11. If for some n € A there exists a positive constant k; with diamx, (Ummém) < ky, then X, is
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(0 + 3k7/2)-hyperbolic.

Corollary 3. Let us assume that two geodesic metric spaces X and Y have comparable decompo-
sitions, that Y is hyperbolic, and that there exists a positive constant ky with diamx, (Upmint..) < ky
for every n € A. Then X is hyperbolic if and only if there exists a constant kg such that X,, is
kg-hyperbolic for every n € A.

Proof of Theorem 2. Let us consider a geodesic triangle T' = {a, b, c} in X. It is obvious that if
T C X, for some n € A\ F», then T is 4kg-thin by hypothesis. In other case (i.e., whether T' C X, with
n € F5 or T intersects several X,,’s), the main idea of the proof is to choose successively quasigeodesic
triangles T1, T, T3, T4 in X (closely related to T'), which will allow to construct a quasigeodesic triangle
T5 in Y (related to Ty). Since Y is hyperbolic, then T is thin by Lemma 4, and we will use this
information in order to obtain that 7T is also thin. One of the main obstacles is that although X
and Y have similar connections among their components, each pair of spaces X,, and Y,, can be very
different (in fact, a quasi-isometry might not exist between X,, and Y,,).

Even though the main idea is simple, the proof is long and technical; in order to make the arguments
more transparent, we collect some results we need along the proof in technical lemmas. Most of them
will be proved in the last section of the paper.

A partial goal is to obtain a triangle Ty in X easily transformable into another triangle 75 in Y (in
fact, TN X, is contained in Uy, 477, . if n € A\ Fy). In order to do this, the first step is to obtain
a triangle Ty in X such that for any n € A\ F», each connected component of 77 N X, is a geodesic in
X,,- Recall that although each connected component of SN X, of any side S of T is a geodesic in X,
there can exist connected components of T'N X,, (containing a vertex of T') which are not geodesics
in X,,.

We start with the construction of T7.

Let us assume that in the piece X, there is at least one vertex a of T'. If n € F», we do not change
TN X,. (In particular, if T C X,,, with n € F,, then T} = T.) Let us consider now n € A\ F», and
let us call n, to the connected component of T'N X, which contains a.

Case 1. Assume first that n, only contains a vertex of T. We denote by x1,z> the end points
of .. Then, we consider a geodesic triangle T, = {a,z1,22} in X,, with [a,z1],[a,z2] C T. Let
us denote by a; the internal point of T, in the geodesic [z1,z2] in X,,. We define n,, := [z1,22] =
[z1,a1] U[ay,x2] C T,. If b € X, (where m can be either n or not) and the connected component 7,
of T'N X,,, which contains b does not contain ¢, then we can proceed with the vertices b, ¢ in a similar
way that with a. In this case, T7 is defined as the (not necessarily geodesic) triangle connecting the

vertices a1, b1, c1, obtained from T' by replacing 14, 75, 9 Y Day, M6y, Ne, TeSpectively.

Case 2. Let us assume now that b € n, and ¢ ¢ n,.

Without loss of generality, we can assume that 7, starts in z;, ends in z2, and meets a before than
b. We consider the quadrilateral n, U [z1,22] C X,, and we draw its diagonal [a,z3] (We can get a
similar result by drawing [b, 1]), obtaining two geodesic triangles in X,,: T, = {a, 21,22} (with the
internal points u1 € [a,x2],u2 € [21,22] and uz € [a,21]), Tp = {a,b,z2} (with the internal points

v1 € [a,x2],v2 € [b,x2] and v € [a, b]).
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Case 2.1. We consider first the situation dx, (z2,v1) < dx, (z2,u1). We denote by by the point
in [x1, 2] with dx, (z2,b1) = dx, (x2,v1). If we denote a; := w2, we can define n,, = [z1,22] =
[z1,a1] U [a1, 1] U [b1,22] C T,. We define n., as in Case 1. Then we construct the triangle T}

connecting the vertices a1, b1, 1, obtained from T by replacing 14, ne by 14, 7c, respectively.

Case 2.2. We consider the situation dx, (z2,v1) > dx, (z2,u1). If we denote a; := by := us, we
can define 1,, := [z1,22] = [x1,a1]U[a1, 23] C T,. We define ., as in Case 1. Then we construct the

bigon 77 connecting the vertices a1, c;, obtained from T by replacing 74, 7. by 74,,7¢, respectively.

Case 3. Finally, let us assume that b,c € n,. Without loss of generality, we can assume that 7,
starts in x1, ends in x5, and meets a before than b and meets b before than c.

We consider the pentagon n,U[z1, z2] C X, and we draw its diagonals [z, b], [b, 2], obtaining three
geodesic triangles in X,,: T, = {a,b, 21} (with the internal points s; € [a,b], s2 € [a, 1], 53 € [b,21]),
Ty, = {b,x1, 22} (with the internal points uy € [b,x2],us € [b,z1] and ug € [x1,22]), T, = {b,c,x2}
(with the internal points v1 € [c, z2],v2 € [b, c] and v3 € [b, z2]).

Case 3.1. We consider first the situation dx, (z1,s3) < dx, (x1,u2) and dx, (z2,v3) < dx, (x2,u1).
We denote by a; the point in [z, x2] with dx, (z1,a1) = dx, (x1,s3), and by ¢; the point in [z1, z»]
with dx, (z2,¢1) = dx, (z2,v3). If we denote by := us, we can define n,, := [z1,22] = [21, 1] U
[a1,b1] U [b1,c1] U [e1,z2] C Tp. Then we construct the triangle 77 connecting the vertices ay,by, ¢,

obtained from 7' by replacing n, by 7q, -

Case 3.2. We consider now the situation dx_ (x1,s3) > dx, (x1,us2) and dx, (z2,v3) < dx, (x2,u1).
We define a; := by := uz, and we denote by ¢; the point in [z, zs] with dx, (z2,c1) = dx, (22, v3).
We can define 7,, := [z1,22] = [z1,a1] U [a1,c1] U [e1,22] C Tp. Then we construct the bigon Ty

connecting the vertices aq,c1, obtained from T' by replacing n, by n,, -

Case 3.3. The situation dx, (z1,s3) < dx, (z1,u2) and dx, (z2,v3) > dx, (z2,u1) is symmetric to

Case 3.2, changing the roles of a and c.

Case 3.4. Finally, we consider the situation dx, (1, s3) > dx, (x1,u2) and dx, (x2,v3) > dx, (z2,u1)J]

In this case, we do not construct the triangle 7;.
Lemma 5. If Ty is §;-thin, then T is 0g-thin, with 0y := max{d; + 16kq, 18ks}.
See the proof of Lemma 5 in Section 3.
We have the following elementary fact.

Lemma 6. Let us consider a metric space X, an interval I, an (a,b)-quasigeodesic g : I — X and

a curve g1 : I — X such that d(g(t),g1(t)) < ¢ for everyt € I. Then g; is a (a,b+2c)-quasigeodesic.
Proof. For any s,t € I, we have that

d(g1(t),91(s)) <d(g1(t),g(t)) + d(g(t),9(s)) + d(g(s),91(s)) < alt — 5] + b+ 2c,
>d

g
d(g1(t), 91(s)) > d(g(t),9(s)) — d(g1(t), g(t)) — d(g(s), 91(s)) 2 a” |t —s| =b—2c. O

Lemma 7. Fach side of Ty is a (1, 16ks)-quasigeodesic with its arc-length parametrization. Fur-

thermore, each connected component of Ty N Xy, is a geodesic in Xy, if n € A\ Fa.
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See the proof of Lemma 7 in Section 3.

As a second step, we split the triangle 77 in several parts; Corollary 1 will allow to forget the part
of Ty which intersects the pieces X,, with n € G (see Lemma 8).

We consider the connected components {B;}secs of the set UpepX,,. We can study the triangle T
in each piece of {Bs}ses and of {X,,}heq. We denote by T» the quasigeodesic triangle T} N By, for
some fixed s € S; in fact, we should write 7% instead of T5, but our notation is simpler and there will
be no place to confusion. Let us observe that T is the union of three sides (possibly not continuous)
joining as with b}, bs with ¢ and ¢ with al.

Recall that we want to obtain a triangle T, in X contained in Umm,k,m'ﬁink- As a third step, we
construct the triangle T3 in order to remove from 75 the connected components of 7> N X,, which join
some 1!, with itself.

We define the triangle T3 in the following way:

Without loss of generality we can consider a side g; of T} as the oriented curve from a; to b;. We
have that az = g1 (a) and by, = g;(8), for some real numbers a < 3. By hypothesis, g; meets at most
a finite number of 7l ’s. Let us assume that g; meets Uy, m in%,,,. As we consider g; : [, ] — X,

let us define
thi=min{fa <t < B: gi(t) € Unm.ilom } -
There exists this minimum since g; is a continuous function in a compact interval and g; N (Unmm;m)

is a compact set: each ni  is a closed set and g; meets at most a finite number of n? ’s.

Then g, (t}) € n ,,,, for some ny,my, i1, and we define

tl:=max{a <t<B: q(t)€ni,. }.

nimsi

In a similar way, we define recursively
t;=min{t;_, <t <B: gi(t) € Upmilhm} s
if g1(t}) € nf{jm]., for some nj,m;,ij, we take
t? = max{t?_l <t<B:agit) € nf{'jm]_}.

We can continue this choice for 1 < j <r. We define j := a if & # t{, and ¢}, := B if § # 2.

We define g3 (in this case) as the restriction of g; to the set [, t1]U (¢, ¢3]U---U(t2_ |, tL U (2, B).
If g, does not intersects Up m.ifky,, We take g3 = g1. We define ag := ap if o < #} and a3 := g1 (¢?) if
a = t}; we define b} := b}, if t2 < B and b} := gy (t) if t2 = (3. g3 is a left continuous curve between a3
and by. We consider a similar construction with the other sides of T». The triangle T5 is the union of

these three curves.

Lemma 8. IfTj is 63-thin, then Ty is max{d3+kq,d* }-thin, with 6* := 3k, /2+4ke+2H (ke, 2 max{1, ko }, 4k +

2ks3), where H is the constant in Theorem C.



16

Proof. We study the triangle T} in each piece of {B;}secs and of { X, }nea-

Recall that (c1) gives that for any n € G, X, is a (ki, ko, k3)-tree-piece. Corollary 1 gives that
T3 N X, is 6*-thin for every n € G(we can assume that X,, intersects at least two sides of T5; if X,
had intersected only one side of 77, this part of 77 would have been removed during the construction
of T3, since X, is a tree-piece). We consider now T; N B; for each s.

By (b) and the construction of T3, given any z € T} N By, there exists 2o € T3 in the corresponding
side of z, with dx (z, z2) < dx, (2, 22) < k1. Then there exists w in the union of the two other sides of

T5 with dx (w, z2) < d3. Since T3 C T1 N By, we have the result. O

Lemma 9. Fach side of T3 is a (1+ke, k1 + 16ks)-quasigeodesic with its arc-length parametrization.

Furthermore, each connected component of T3 N X,, is a geodesic in X,, if n € Fy.
See the proof of Lemma 9 in Section 3.

Remark. After the construction of 73 and lemmas 8 and 9, without loss of generality we can
assume that there is a unique component By, i.e. that T3 is a (1 + ko2, k1 + 16kg, k1 )-quasigeodesic

triangle in X, with A = F and G = 2.

We construct the triangle Ty by changing each geodesic segment in T3 joining ni =~ with nZLk by a
new geodesic v . This triangle and conditions (¢3) and (c4) will allow to obtain a triangle T5 in YV’
in an obvious way.

These are the details in the construction of T}:

Each connected component of T3 is a geodesic segment gznk in some X,,, joining n!,, with nfbk. If
n € Fi, (c3) gives that for each g7 . there exists a geodesic v, . in X,,, joining 0}, with ., and

a (ka, bznk)—quasi—isometry fgnk : Van — hznk CY,. If n € F», we define ffr{nk as the restriction

of f, to g;{nk, yfr];nk = gff;nk, and hifmk = :r]mk(ﬁink) (Then, f:gnk is a (k4,bznk)—quasi—isometry,
with b7 . :=0.)

We obtain Ty in X by replacing each g7 . by ~,7 . We only need to choose the vertices of T}, if
some vertex of T3 is in Upem, Xn:

Let us consider n € F; and the arc-length parametrizations g/ . : [0,/] — X and 7%/ , :[0,1'] —
X. We observe first that (¢2) gives I’ — [ = Lx(ﬂgnk) - LX(g;{nk) < diamy, (ni,,) + diamy, (nfm) <

QkQLX(ank) = 2kyl. Therefore we conclude I'/l < 1 + 2ko, and symmetrically I/1' < 1 + 2ks.

Lemma 10. Let us consider an absolute continuous and bijective function between two intervals
w: I — J with ¢! < |u| < e, and an (a,b)-quasigeodesic g : J — X. Then gou: I — X is an

(ac, b)-quasigeodesic.
Proof. We have that ¢ 1|t — s| < |u(t) — u(s)| < ¢|t — 5|, and hence
a et —s|—b<a Mu(t) —u(s) —b < d(g(u(t), g(u(s))) < alu(t) —u(s)|+b< aclt —s|+b. O

Lemma 11. Let us consider two geodesics v1 : [0,l;] — X and v : [0,ls] — X in a 0-fine
space X, with d(1(0),72(0)) < ¢ and d(y (1), 72 (0)) < e. Then diy(6), 2 (lat /1)) < 26 + e, for
t e [0, ll]

See the proof of Lemma, 11 in Section 3.
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We consider the reparametrization g% . (It/I') : [0,1'] — X of g% . recall that I'/1,1/I' < 1+
2ky. Using these local reparametrizations, if Gs : Jy — X and G4 : [y — X are arc-length
parametrizations of T3 and T, (respectively), we can construct a global bijection u : Iy — Jp (in
fact, a continuous juxtaposition of straight lines) with (1 + 2k2)~! < |u/] < 1+ 2ks. Since G3 o u and
G4 are defined over the same interval Iy, if (G3 o u)(g) is a vertex in T3, for some ty € Iy, we can
define G4(to) as its corresponding vertex in Ty. Lemmas 9 and 10 give that if g3 = (G5 o u)|r, is a
side of T3, for some interval I, then gz is a ((1+ k2)(1 + 2k2), k1 + 16kg)-quasigeodesic. Observe that
g4 := G4|; is an arc-length parametrization of the side of Ty corresponding to gs. Since we have (b),
Lemma 11 gives that dx (g3(t), g4(t)) < 8ke + Tk, for every t € I. Then, Lemma 6 implies that g4 is
a (14 k2)(1 + 2k2), 15k; + 32kg)-quasigeodesic. Consequently we obtain the following result.

Lemma 12. Fach side of Ty is a ((1+ k2)(1 + 2k2), 15k + 32kg)-quasigeodesic with its arc-length
parametrization. Furthermore, each connected component of Ty N X,, is a geodesic in X,, if n € Fy.
If Ty is 64-thin, then T3 is (04 + 14k; + 16ks)-thin.

Proof. We have proved the first two statements. In order to prove the last one we only need to
remark that for every point in any side of T3 there is another one in the corresponding side of Ty
which is at distance 7k; + 8kg at most; the same result is true if we change the roles of T3 and T}.
O

Let us observe that if T C X,,, with n € F5, then Ty =T.
So far, we have modified the original triangle in X to obtain a new one T, which can now be easily
transformed into a triangle 75 in Y by replacing yfr];nk C X, by thk CY,. We take the canonical

parametrization f (4% (1)) in h" . where t is the arc-length parameter for v/ .

Lemma 13. Each side of Ts is a (d1,ds)-quasigeodesic with its canonical parametrization, where
do = (]. + kg)(l + 2k2)k4, d1 = do(]. + kg)(l + 2k2) and

d2 = Imax {kl + (]. + kg)k5, k4(15k1 + 32k6) + k5, d()_l(17k1 + 32k6) + 2(]{71 + k5) + (]. + 2k2)71k5} .

In fact, the proof of Lemma 13 (see Section 3) gives the following result.

Corollary 4. For any x,y € Ty with corresponding points x',y’ € Ts, we have that dx(x,y) <
do dy(l'l,y,) + 2k1 + d0(2(k1 + k5) + (]. + 2’62)71]{75).

By Lemma 13, the sides of Ts are (di,dz)-quasigeodesics. By (b) and the construction of Tk, we
have that an end point of any side of T has an end point of another side at distance less or equal than
k1. Since Y is ¢’-hyperbolic, Lemma 4 gives that T is d5-thin with 05 := 46’ + ki +2H (6", dy, d> +2k1).
Now Corollary 4 gives that Ty is d4-thin, with &4 := dod5 + 2k1 + do(2(k1 + ks) + (1 + 2k2) " ks).

Lemma 12 gives that T3 is d3-thin with d3 := d4 + 14k; + 16ks. By Lemma 8, we have that T}
is d;-thin with §; := max{ds + k1,0*}, where §* = 3k /2 + 4k¢ + 2H (k¢, 2 max{1, ka}, 4k + 2k3).
Theorem 2 is now a consequence of Lemma 5, and we have ¢ := 4(d; + 16ks), since 01 > 2kg (in fact,
01 > b3 > 16kg). O
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Proof of Proposition 1. Firstly we prove that the inclusion i : X,, — X is a (kr, k; ' (2k1 + kg))-
quasi-isometry.

Given z,y € X,,, we have that dx(z,y) < dx, (z,y), since there are more curves joining = and y in
X than in X,,. In order to prove the other inequality, let us consider a geodesic g in X joining x and

y. If g C X,,, then dx (z,y) = dx, (z,y). In other case, we have for some m, k,1, j,

dx (,y) > dx, (€, 0hm) + dx (o, nhy) + dx, (y,7)
> dx, (@, 1) + k7 dx, (s M) + dx, (1) = ksky!
> k7' (dx, (z,0)) + diamx, (0h,,)+ dx, (D, )+ diamux, (0),) + dx, (y, 1) — 2k1 — ks)
> ki ldx, (2,y) — k7' (2K + ks).

Hence, since X is 6-hyperbolic, then X, is kr (46 + k' (2k1 + ks) + 2H (8, k7, k7 ' (2k1 + ks)))-thin (see
[GH, p.88]). 0

Proof of Proposition 2. Given z,y € X,,, we have that
dX ('Ta y) S an ('Ta y) S dX (l‘, y) + diaan (Umln;m) S dX ('Ta y) + k7 .

If we denote by (z,y)w and (z,y)w,n the Gromov products in X and X, respectively, the last inequal-

ities give for any z,y,w € X,
(way)w7n - k7 S (way)w S (Cﬂ,y)w,n + k7/2 .

Then, we deduce for any z,y, z,w € X, that
(-Ta Z)w,n > ('Ta Z)w - k7/2 > min{(xay)wa (yaz)w} -0 k7/2
> min{(z,Y)wn — k7, (Y, 2)wn — kr} — 0 — k7/2 > min{(2, Y)wn, (¥, 2)wn} —0 —3k7/2.

Hence, X, is (6 4+ 3k;/2)-hyperbolic. O

§3. PROOF OF TECHNICAL LEMMAS

Lemma 5. For each point z in one side of T, we denote by A = A(z) the union of the two other
sides of T. If we are in case 3.4 we have dx(z,A) < 18kg. In other case, we have either:

(1) dx(z,A) < 12kg, or

(2) there exists a point z1 € Ty with dx(z,21) < 8kg, and besides z and z1 are in corresponding
sides.

Moreover, for each point z, in one side of Ty there exists a point z € T with dx(z,z1) < 8kg, and
furthermore z and z1 are in corresponding sides.

Consequently, if Ty is d1-thin, then T is do-thin, with dp := max{d; + 16ks, 18ke}.

Proof. Recall that if n € Fy, then T} N X,, = T N X,,. Consequently, we can assume that the
vertices of T" belong to U,ca\ r, Xn, since in other case the argument is easier.
If 2 ¢ n, Umy U, then 2z € Ty and we have (2) with z; = z. In other case we can assume that

z € n,. We consider now the same cases in the construction of 77 in the proof of Theorem 2.
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Case 1. We have that n, C X, only contains a vertex of T. Let us denote by ai,z},z} the
internal points of the geodesics [z1, x2], [a, 22], [a, 1] in X, respectively. We have n,, 1= [z1,22] =
[x1,a1] U [a1,22] C T,. Since T, is 4kg-fine in X,, by the hypothesis and Theorem A, if z € [z1,z}]
then there exists z1 € [x1,a1] with dx (z1,2) < dx, (21, 2) < 4kg, and if z € [z}, z2] then there exists
21 € [ay, x| with dx(z1,2) < 4ke; then, we have (2). If z € [a,2]], we can take w € [a,z}] with
dx(z,w) < 4kg; z € [a, xb], we can take w € [a, 2] with dx(z,w) < 4kg; then, we have (1).

Case 2. We have now that b € 1, and ¢ ¢ 7,.

Case 2.1. We consider the situation dx, (z2,v1) < dx, (z2,u1). We denote by ) the point in
[a,v3] C [a,b] with dx, (a,u1) = dx, (a,u}).

(i) If z € [x1,u3] C [71, a], then there exists z; € [z1,a41] such that dx(z,21) < 4ks.

(ii) If z € [u},v3], then there exists z; € [a1,b1] such that dx(z,z;) < 8kg, since the triangles Ty,
and Ty are 4kg-fine.

(iii) If z € [z2, v2] C [22,D], then there exists z; € [by, x2] with dx(z, 2z1) < 8ks.

In these three cases we have (2).

(iv) If z € [a, us], then there exists w € [a, u}] such that dx(z,w) < 8kg.

(v) If z € [a, u}], then there exists w € [a, us] such that dx (z,w) < 8ks.

(vi) If z € [b,v3], then there exists w € [b,v2] such that dx (z,w) < 4ks.

(vii) If z € [b, vo], then there exists w € [b,v3] such that dx(z,w) < 4ks.

In these four cases we have (1).

Case 2.2. We consider the situation dx, (z2,v1) > dx, (x2,u1). Let us recall that a; = b;. We
denote by v] the point in [a,u3] C [a,z1] with dx,(a,v1) = dx, (a,v]) and by u} the point in
[v2, 23] C [b, z2] with dx, (z2,u1) = dx, (x2,u}).

(i) If z € [x1,u3] C [z1, a], then there exists z; € [z1,a1] such that dx(z,21) < 4ks.

(ii) If z € [x2,u]] C [z2,b], then there exists z; € [by, z2] with dx(z, z1) < 8kg.

In these two cases we have (2).

iii) If 2 € [a,v}], then there exists w € [a,vs] such that dx (z,w) < 8ks.

iv) If z € [a,vs], then there exists w € [a,v]] such that dx (z,w) < 8ks.

v) If z € [b, 3], then there exists w € [b, v2] such that dx (z,w) < 4ks.

vi) If z € [b,vs], then there exists w € [b,v3] such that dx(z,w) < 4ks.

vii) If 2z € [ug,v]], then there exists w € [v2,u]] C [b,u]] such that dx (z,w) < 8ks.

~ o~ o~ o~~~

viil) If 2z € [vs, u}], then there exists w € [v],us] C [a,us3] such that dx (z,w) < 8ks.

In these five cases we have (1).
Case 3. We have now that b, c € n,.

Case 3.1. We consider the situation dx,(x1,s3) < dx, (v1,us) and dx, (z2,v3) < dx, (x2,u1).
We denote by wh the point in [b,s1] C [a,b] with dx, (b,u2) = dx, (b,u}), and by u} the point in
[b,v2] C [b,c] with dx, (b,u1) = dx, (b,u}).

(i) If z € [z1,82] C [x1,a], then there exists z; € [z1,a1] such that dx(z,21) < 8kg, since the
triangles T, and T} are 4kg-fine.

(ii) If z € [s1,ub], then there exists z; € [aq, b1] such that dx(z, z1) < 8kg.
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(iii) If z € [u], v2], then there exists z; € [by, c1] such that dx(z,z1) < 8kg.

(iv) If z € [z2,v1] C [x2, ], then there exists z; € [¢1, x2] with dx (z,21) < 8ks.

In these four cases we have (2).

(v) If z € [a, s2], then there exists w € [a, s1] such that dx (z,w) < 4ks. We have a similar result if
z € [a, s1].

(vi) If z € [b, u}], then there exists w € [b,u}] such that dx(z,w) < 12ks. We have a similar result
if z € [b,u}].

(vii) If z € [¢, vo], then there exists w € [c,v;1] such that dx(z,w) < 4ks. We have a similar result
if z € [c,mn].

In these three cases we have (1).

Case 3.2. We have the situation dx, (z1,s3) > dx, (z1,u2) and dx, (z2,v3) < dx, (v2,u1). We
denote by uf the point in [z, s2] C [21,a] with dx, (21, us2) = dx,, (21,u}), by u} the point in [b, vs] C
[b,c] with dx, (b,u1) = dx, (b,u}), and by s} the point in [b,vs] C [b, ] with dx, (b, s3) = dx,, (b, s5).

(i) If z € [x1,ub] C [a,c], then there exists z; € [1,a4] such that dx(z,21) < 8ks.

(ii) If z € [u],v2] C [b, ], then there exists z; € [b1, ¢1] such that dx(z,z1) < 8kg.

(iii) If z € [z2,v1] C [a, ], then there exists z; € [c1, x2] with dx (2, z1) < 8ks.

In these three cases we have (2).

(iv) If z € [a, s2], then there exists w € [a, s1] such that dx (z,w) < 4ks. We have a similar result
if z € [a, s1].

(v) If z € [b, 1], then there exists w € [b, s§] such that dx(z,w) < 12kg. We have a similar result
if z € [b, s5].

(vi) If z € [¢, v2], then there exists w € [¢, v1] such that dx(z,w) < 4kg. We have a similar result if
z € [e,m].

(vii) If z € [u), s2], then there exists w € [u}, s5] such that dx(z,w) < 12ks. We have a similar
result if z € [u], s§].

In these four cases we have (1).
Case 3.3 is similar to 3.2.

Case 3.4. We have the situation dx, (x1,s3) > dx, (z1,us) and dx, (z2,v3) > dx, (22, u1). Without
loss of generality we can assume that dx, (b,v3) > dx, (b, s3), since the other case is similar. We denote
by v4 the point in [b,us] C [b,21] with dx, (b,vs3) = dx, (b,v%), by v§ the point in [z1,s2] C [21,4]
with dx, (z1,v}) = dx, (z1,v%), and by s{ the point in [b,v2] C [b, ¢] with dx, (b,s1) = dx, (b, s}).

(i) If z € [a, s2], then there exists w € [a, $1] such that dx (z,w) < 4ks. We have a similar result if
z € [a, s1].

(ii) If z € [b, s1], then there exists w € [b, s|] such that dx (z,w) < 12ks. We have a similar result
if z € [b, 1]

(iii) If z € [c, v2], then there exists w € [¢,v1] such that dx (z,w) < 4ks. We have a similar result if
z € [c,v1].

(iv) If z € [v¥, s2], then there exists w € [vq,s]] such that dx(z,w) < 12ks. We have a similar

result if z € [ve, s1].
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(v) In other case, z € [v§,v1] C [a,c]. We have that Lx ([v§,v1]) = dx (v, v1) < 12kg; consequently
dx(z,{vy,v1}) < 6ks and dx(z, A) < 6kg + 12ks = 18ks.

This finishes the proof of the first part of the lemma. The proof of the second one follows a similar

argument and is easier, since there is no dichotomy.

Finally, let us see that T} is §;-thin in X implies that T is §p-thin in X. We consider z € T'; if z
satisfies (1), there is nothing to prove. In other case, there exists z; € T} such that dx(z,2;) < 8ks and
z and 21 are in corresponding sides. Since T is §;-thin in X, there exists wy € T} with dx (z1,w1) < &1
and w; in the union of the two other sides. The second part of the lemma gives that there exists
w € A with dx (wy,w) < 8kg. Therefore dx (z, A) < dx(z,w) < &1 + 16ks. O

Lemma 7. Fach side of Ty is a (1, 16ks)-quasigeodesic with its arc-length parametrization. Fur-

thermore, each connected component of Ty N Xy, is a geodesic in Xy, if n € A\ Fa.

Proof. We can assume that the vertices of T belong to U,e\ 7, X», since in other case the argument
is easier.

The second statement is a direct consequence of the construction of 77. This first one is a conse-
quence of Lemma 6 and the construction of T;:

If g: J — X is a geodesic side of 7', Lemma 6 gives that it is enough to check that there exists a
subinterval I C J such that g; : I — X is the arc-length parametrization for the corresponding side
in Ty of g, and that dx (g(t), g1(t)) < 8k for every t € I.

We consider now the same cases in the construction of 77 in the proof of Theorem 2.

Case 1. If [xq, 2] C g, then we substitute this interval for [z;,a;] in order to obtain g;, and then
we have dx (g(t), g1(t)) < 4kg in these arcs, since T, is 4kg-fine. The case [z2,x]] C g is similar.

Case 2. If [z1,u3] C g, then we substitute this interval for [z, a;] in order to obtain g;, and then

we have dx (g(t), 91(t)) < 4ke in these arcs. The case [z2,v2] C g is similar, with constant 8k, since
T, and T}, are 4kg-fine.

Case 2.1. If g = [a, b], then [u},v3] C g and g1 = [a1,b1]. We have dx(g(t),g1(t)) < 8k in g;.

Case 2.2. If g = [a, b], then a; = b; and g; is this unique point.

Case 3.1. If [z1, s2] C g, then we substitute this interval for [z1,a4] in order to obtain g, and then
we have dx (g(t), g1(t)) < 8kg in these arcs. The case [z2,v1] C ¢ is similar.

If g = [a,b], then [s1,u}] C g and g1 = [a1,b1]. We have dx(g(t), g1(t)) < 8kg in g1. If g = [b,¢],
then [u],vs] C g and g1 = [b1,¢1]. We have dx (g(t), 91(t)) < 8kg in g¢;.

Case 3.2. If g = [a,c], we have [z1,ub] U [z2,v1] C g, and then we substitute these intervals for
[z1,a1] U [22,c1] (respectively) in order to obtain gq; then we have dx (g(t), g1(t)) < 8k in these arcs.

If g = [b,c], then [u},v2] C g and g1 = [b1,¢1]. We have dx (g(t), g1(t)) < 8kg in g;.

If g = [a,b], then a; = by and g; is this unique point.

Case 3.3 is similar to 3.2; we do not consider 3.4 since in this case we do not have T7. a

Lemma 9. Fach side of T3 is a (1+ ke, k1 + 16ks)-quasigeodesic with its arc-length parametrization.

Furthermore, each connected component of T3 N X, is a geodesic in X,, if n € Fy.
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Proof. We can assume that the vertices of T" belong to U,ecr, Xy, since in other case the argument
is easier.

The second statement is a direct consequence of the construction of 73 and Lemma 7. In order
to see the first one, let us consider an arc-length parametrization g; : [0,{] — X of one side of
T;. Without loss of generality we can assume that g;(0) = ay and g1(I) = b5. g1 is a (1, 16kg)-
quasigeodesic by Lemma 7. We consider now an arc-length parametrization g3 : [0,I'] — X of the
side of T3 corresponding to g;. If g3 = g1, there is nothing to prove.

In other case, if 5, € [0,1'] there exist s* € (£7_,,t;] and t* € (t7_,,¢;] such that s = s* — -
th), t=1* = Y012 — 1), ga(s) = g1(s*) and g3(t) = g1 (t*). Provided that i = j, we have that

dx(g5(t), 93(5)) = dx (92 (t"), 91(s")) < [t = s™[ = [t — 5],
dx (g3(t), 95(s)) = dx (g1 (t*), g1 (s*)) > |t* — s*| — 16kg = |t — s| — 16k .
Otherwise, we can assume that i < j. Then we have that
j-1

dx (gs(t), 93(s) = dx (g1 (t"), g1 (")) <" —s" =t —s+ > (th —t;),
k=i

dx(g3(t),g3(s)) = dx (g1 (t*), g1(s*)) > t* — s* — 16kg >t — s — 16k .

Observe that (c2) gives ti , —t7 > k5 '(t7 — tL). This fact implies that

j—2 Jj=2
t—s > (o — 1) > k'Y (t; — ;).
k=i k=i
This inequality and (b) give
j-2
dx(g3(t),93(8)) St —s+ D (8 —tp) + 154 —tjy < (Lt ho)(t —8) + k. O
k=i

Lemma 11. Let us consider two geodesics v1 : [0,11] — X and v, : [0,l3] — X in a 0-fine
space X, with d(v1(0),72(0)) < ¢ and d(71(l1),72(l2)) < ¢. Then d(vi(t),v2(l2t/l1)) < 26 + Te, for
te[0,0h].

Proof. Without loss of generality we can assume that Iy < ls. We consider the geodesic quadri-
lateral @ = {71(0),71(11),72(l2),72(0)} and the geodesic triangles T1 = {v1(0),71(l1),72(0)} (with
internal points p1 € 71, p2 € [11(11),72(0)], ps € [11(0),72(0)]) and T3 = {71 (l1),72(I2),72(0)} (with
internal points g1 € [v1(l1),72(0)], g2 € 72, g3 € [1(l1),72(12)]).

Let us call ¢] the point in v with d(y1(l1),q1) = d(n(l),q1) = d(n(l),q3) =: v1, and p} the
point in v» with d(v2(0),p5) = d(72(0),p2) = d(12(0),p3) =: us. We define u; := d(y1(0),p1) =
d(7(0),p3), and v := d(v2(l2),q2) = d(72(l2), q3).- Observe that d(y1(0),72(0)) = u1 + u2 < ¢ and
d(y1(l1),72(l2)) = v1 +v2 < e

We can assume that u; + v < Iy = L(y1), since the another case is simpler; this fact implies
u2 +v2 < lo = L(y2). Since T7 and T3 are 0-fine, we have that d(y; (¢t + u1), v2(t + u2)) < 24, for every
t€[0,l1 —up —v1].



23

Observe that d(y1(t),y2(t)) < 26 + ¢, for every t € [0,11 — uy — vy]:

d(y1(t),72(t)) < d(yi(t), yi(t 4+ w1)) + d(yi(t +wr), y2(t + u2)) + d(y2(t + u2),72(t))
<wup +20+us <206 +c.

Ifte [ll —u; — v, ll], we have that

d(v1(t),72(t) <d(yi(t),y1(lh —ur —v1)) +d(n(l —ur —v1), 72 (l —ur —v1))
+d(v2(li — w1 —v1),72(t))
<ur+v+20+c+u +v1 <25+ 5¢.

Then we have d(v1(t),y2(t)) < 26 + 5¢, for every t € [0,14].

The same argument with parametrizations which reverse the orientation, gives d(y(t), v2(t + o —
l1)) <26 + B¢, for every t € [0,14].

Observe now that t < lxt/ly <t+1ls — 1y, and Iy — [; < 2¢. Consequently we have

d(n1 (), 72(l2t/1)) < d(71(8),72(8)) + d(v2(t), Y2(lat/11)) <20+ 5+ 1 =l <26+ 7c. O

Lemma 13. FEach side of T5 is a (dy,ds)-quasigeodesic with its canonical parametrization, where
do := (1 + k‘Q)(l + 2]{22)]{?4, dy = do(l + k‘Q)(l + 2k72) and

ds := max {kl + (1 + k‘Q)k‘5, k‘4(15k‘1 + 32]%) + ks, d()_l(17k71 + 32k6) + 2(k1 + k‘5) + (1 + 2k72)_1k5} .

Proof. Let us consider a side g4 : I — X in Ty with its arc-length parametrization, and its
corresponding side g5 in 75 with its canonical parametrization.

Given s,t € I, let us choose a geodesic v in Y between g5(s) an gs(t).

By hypothesis, v meets at most a finite number of ¢¢,.’s. Let us assume first that v does not meet

Un,m,i0hm- Then v CY,,, for some n € A, and we have by (c3) and (c4)

dy (g5(t), 95(5)) = dy, (95(t), 95()) > ki 'dx,, (94 (1), 9a(s)) — ks > ki dx (g4 (t), 9a(s)) — ks -

Let us assume now that v meets Uy m i0%,,. Our goal is to split v into some curves joining two
closed sets o, and oZLk in Y,,, so that we can relate them with the geodesics 7:,{”,6 C X,, joining n¢,,
with 7, mentioned in (¢3) for n € Fi; if n € F> we can take as v,’ . any geodesic joining Nt with

n . Iy [a, B] — Y, let us define
vi :==min{a <v < B: V(W) € Upm.iohm}-

There exists this minimum since 7 is a continuous function in a compact interval and v N (Up m,i0h,,)
,m,

is a compact set: each of,, is a closed set and v meets at most a finite number of o?,’s.

Then y(vi) € ot

v m, » for some ny,my,i;, and we define

v i=max{a <v<f:y@w) €ait 1.

nimi

In a similar way, we define recursively

vj :==min{v]_; <v<B:(v) € Unom.iTom};
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. 1 i .
if v(vj) € 0v;m;, for some n;,m;,i;, we take

v? = max{v?_l <v<B:yv) €al

J njmj}'

We can continue this choice for 1 < j < r. We have that
-
dy (g5(t),95(5)) = Ly(7) = B—a >v] —a+ Y (v —v; )+ —v}.
k=2

. ig—1 ik h _ _ _ _
Given on, ym,_, and o}k, we have ng_1 = ng, Ng—1 = Mg, ME—1 = N OF Mk_1 = M.

Since 0}, = 0},,, by simplicity in the notation we can assume that my_; = n; and that the curve
Th—11k ie—11k e e—1 ; . . . ik—1%k .
e _1nemi © Yng_yngmy JOINING 0y i,y and o7k - is contained in Y, . If v nymy ¢ (o, Br] —

Xn, (k=2,...,r), then (c3) and (c4) give that

szlank (’Y:ka11117’:k mp (Bk)’ ’Y:l’:c:lllﬁkmk (Oék)) - bifki—lliflk mp
S dY"k ( :117—1117’:1@ mp (’yflkkilliflzk mp (Bk))’ :117—1117’:1@ mp (’yflkkilliflzk mp (ak))) :
By (2
Y ( )’ d I—10k I—1%k I—10k i—1%k
Yoy, ( Ng—1NEMEk (’Ynk—lnkmk (Bk))’ Ng—1NEMEk (’Ynk—lnkmk (ak)))
S diamynk (071113;11 mk—l) + dY"k (U:kaill Mp—1? O':ka mk)

< (]. + 2k2) dynk (o-ik_1 s ) .

Ne—1Mk—17 " NEpMk

+ diamymc (affkmk)

Consequently we have

1,2 Th—1 2
Uk Vk—1 Z dYnk (Unk—lmk—l’ankmk)

> (14 2ky) " dy,, (i (e 2 (Bi))s it (k2% (@)

> (1 2k) (k3 o, (6 (B0, i () = BN, )

We have that 3([a,v{]) C Y, or 7([a,0l]) € Yin,, and 1([o2,]) C Vi, or 1([v2,]) C Yim,. By
simplicity in the notation, we can assume that v([a, v1]) C Y, and y([vZ,8]) C Y,,.. Then Remark 6

before Theorem 2 gives

1 i1

v —a > dy,, (95(5), 05 m,) > ki tdx,, (94(5), 705, ) — K1 — s,
B—o}>dy, (95(t),0 ) > kytdx,, (9a(),1770,.) — k1 — ks

Consequently we have

dy (95(1), 95(5)) > vl —a+ Y (vk —vi 1) + B -0}
k=2

Z k4_1an1 (94(5)777;117111) - kl - k5 + kzl_lanT (94(t)777;:m,1) - kl - ks
+ (1 + 2k2)_1 Z (kzzlank (W:L’ek:llzﬁkmk (Bk)7’)/11:1,kk7_111’r’:kmk (ak)) - bf’fki_lli:’clkmk)
k=2
> kytdx,, (94(5), Mk, ) + K1 Mdx,, (94(8), 1 ) — 2(ky + ks) — (14 2k2) ks

(L4 2ke) " e N dx, (Y L (B, v L (o).
k=2
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Now we want to obtain a continuous curve 4’ in X joining g4(s) with g4(t).

By (c2) we can choose geodesics v; in X,,,, (2 < k < r — 1) joining y e (Br) with

i lhg1
Tneng41me41 (ak+1 )7 such that

LX"k+1 (7]") = dX"k+1 (’Y;kki"’z:ilkarl (ak+1)7 ’yftkk_,lliﬁkmk (Bk))

< ke dX"k+1 (’y?l%kklflz:LmkH (ﬂkﬁLl)”y?l%kklfIz:LmkH (ak+1)) :

By (b) we can choose a geodesic v; in X, joining g4(s) with 752 (), such that

Lx, (m)=dx,, (g4(S),7;11i22m2 (a2)) < dx,, (94(5)#7217711) + ki,

and a geodesic v, in X, joining v =t . (B,) with g4(t), such that Lx, (w) <dx, (94(t),n )+
k.
We consider now the continuous curve v in X joining g4(s) with g4(t) obtained by the juxtaposition
ih—1%k r

of the geodesics {7y}, and {Vny i nums Joea-

On the one hand, these facts give

dx (g4(t), 94(s)) < Lx () <dx, (94(s),mit ) + k1 +dx,, (94(t), 0 0n.) +
+ (1 + k2) Z ank (7721,’2__1127’;kmk (ﬂk)a ’Y:ka__lllr’;kmk (ak))
k=2
< 2ky +do(2(k1 + ks) + (14 2k2) " "ks) + do (kz;_ldxnl (94(s), 15 )

\
kb, (9407, )+ (U 2k2) T Ry 1Y di, (90, (i), 1, (k)
k=2

— 2k + k) — (14 2k2)*1k5)
< 2kt + do(2(k1 + ks) + (1 + 2k2) " ks) + do dy (g5 (t), g5 (s))

(recall that do := (1 + k2)(1 + 2k2)k4); then we have Corollary 4, since so far we have not used that
g4(s) and g4(t) belong to the same side of T}.
On the other hand, Lemma 12 gives

(1 + k‘Q)il(l + 2k2)71|t — S| — 15k1 — 32k < dx(g4(t),g4(.9)) .
Consequently we have
dy (gs(t),g5(5)) > dy (1 + ko) 7' (1 4 2ko) 7 |t — 5| — dy L (17ky + 32k6) — 2(k1 + ks) — (14 2ko) " 'ks5 .

In order to see the other inequality, we consider the domain I of g5 and s,t € I, with s < t.
If g5([s, t]) does not intersect with any o¢,., then gs([s,#]) C R for some m,n, k,i,;j. This fact,

nm>» mnk?
(¢3) and (c4) give

dy (95(1),95(s)) < dy, (95(1),95(5)) < kadx, (94(t), 94(s)) + ks .

In other case, we can split the interval [s, ¢] into a union of intervals [ug, u1]U (w1, us] U+ - U (w1, uy],
with I > 1, such that gs((w, 1,u,]) C hiri CY, (1<r<l),u =sandu =t We have that

Mprnpkn

irjr . woe denote by g5(ur—1+) the other end point of hironTk .

95(uy) is an end point of hirFr . e
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1 —2), and dy, (gs(wi-1+),95(ui—1)) < k1. These facts, (¢3)

(95(urs1), g5(ur+)) (1 <1 <
4) and Lemma 12 give

Nr41

By (b) and (c2) we have that dy, ., (95(ur+), g5(ur)) < kady,
, (e

-1 -2

dy (g5(t),95(5)) <Y dv,, . (95 (uri1), g5 (urt)) + D dy,  (95(ur+),g5(ur))

r=0 r=1
+dy, (95 (ui—1+), g5 (u-1))

-1

Sk + (14 k) Z danﬂ (95(UT+1)795(UT+))
r=0
-1

S kl + (1 + k2) Z (k4 an,.+1 (94(UT+1)7g4(u'r'+)) + br)
r=0

-1
<k + (14 k) ks+ (14 k2) k‘42 [ps1 — up| < (14 ko) kalt — s| + ki + (1 + ko) ks .

r=0
Consequently we have the result. a
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