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omposition.x0. Abstra
tIn this paper we study the hyperboli
ity in the Gromov sense of metri
 spa
es. We dedu
e thehyperboli
ity of a spa
e from the hyperboli
ity of its \building blo
k 
omponents", whi
h 
an bejoined following an arbitrary s
heme. These results are espe
ially valuable sin
e they simplify notablythe topology and allow to obtain global results from lo
al information. Some interesting theoremsabout the role of pun
tures and funnels on the hyperboli
ity of Riemann surfa
es 
an be dedu
ed fromthe 
on
lusions of this paper. x1. Introdu
tionA good way to understand the important 
onne
tions between graphs and Potential Theory onRiemannian manifolds (see e.g. [ARY℄, [CFPR℄, [FR℄, [HS℄, [K1℄, [K2℄, [S℄) is to study the Gromovhyperboli
 spa
es. This approa
h allows to establish a general setting to work simultaneously withgraphs and manifolds, in the 
ontext of metri
 spa
es. Besides, the idea of Gromov hyperboli
itygrasps the essen
e of negatively 
urved spa
es, and has been su

essfully used in the theory of groups(see e.g. [GH℄ and the referen
es therein).Although there exist some interesting examples of hyperboli
 spa
es (see the examples after De�ni-tion 1), the literature gives no good guide about how to determine whether or not a spa
e is hyperboli
.This limitation 
an be somehow got round, sin
e the theory allows to obtain powerful results aboutnon-hyperboli
 spa
es whi
h have hyperboli
 universal 
overings. As topologi
al \obsta
les" may pre-vent a spa
e from being hyperboli
, the possibility of studying its universal 
overing instead, whi
h isalways free of obsta
les, implies a substantial simpli�
ation, and sometimes let us extra
t importantinformation about the spa
e itself (see [P℄).However, as was stated above, the 
hara
terization of hyperboli
 spa
es remains open. Re
ently,some interesting results about the hyperboli
ity of Eu
lidean bounded domains with their quasihyper-boli
 metri
 have made signi�
ant progress in this dire
tion (see [BHK℄ and the referen
es therein).Originally, we were interested in studying when non-ex
eptional Riemann surfa
es equipped with itsPoin
ar�e metri
 were Gromov hyperboli
. However, we have proved several theorems on hyperboli
ityfor general metri
 spa
es, whi
h are interesting by themselves and have important 
onsequen
es forRiemann surfa
es (see [PRT℄). Although one should expe
t Gromov hyperboli
ity in non-ex
eptionalRiemann surfa
es due to its 
onstant 
urvature �1, this turns out to be untrue in general, sin
etopologi
al obsta
les 
an impede it: for instan
e, the two-dimensional jungle-gym (a Z2-
overing of atorus with genus two) is not hyperboli
. Let us re
all that in the 
ase of modulated plane domains,quasihyperboli
 metri
 and Poin
ar�e metri
 are equivalent. One 
an �nd results on hyperboli
ity ofRiemann surfa
es in [RT℄ and [PRT℄.1The resear
h of the se
ond author was partially supported by a grant fromDGI (BFM 2000-0022) Spain.2The resear
h of the third author was supported by a grant fromDGI (BFM 2000-0022) Spain. Typeset by AMS-TEX1
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2 Here we present the outline of the main results. We refer to the next se
tions for the de�nitionsand the pre
ise statements of the theorems.The main aim in this paper is obtaining global results on hyperboli
ity from lo
al information.That was the idea that lead us to think of a spa
e X as the union of some \pie
es" or \building blo
k
omponents" fXngn2�.Our �rst theorem (see Theorem 1) states that if the above mentioned pie
es Xn are joined togetherfollowing a tree-like design (that is, avoiding the 
reation of extra topologi
al obsta
les), then theuniform hyperboli
ity of the pie
es guarantees the hyperboli
ity of the global spa
e X .However, if pie
es are joined together in a general graph-like style (that is to say, the hypothesison simple topologi
al 
onne
tions is removed), the uniform hyperboli
ity of pie
es is no longer enoughto guarantee the hyperboli
ity of the global spa
e X . But, surprisingly, if Y is a graph that modelsappropriately the 
onne
tions among uniformly hyperboli
 pie
es Xn's, the hyperboli
ity of Y let usassure the hyperboli
ity of X . (This fa
t turns out to be obvious when Y is a tree.)It is noti
eable that the graph Y must 
omply with some metri
al requests in order to be ana

eptable model for the 
onne
tions among the pie
es Xn. However, Y is not required at all tomodel the subspa
es themselves (whi
h might be arbitrarily wide far away from the 
onne
tions).Taking advantage of these fa
ts, Theorem 2 provides a mu
h more general frame, sin
e it does notrequire that the spa
e Y used as a model to sti
k the pie
es together is a graph.When applied to Riemann surfa
es these theorems let us dedu
e interesting 
onsequen
es. In[PRT, Theorems 3.2 and 3.4℄ we work on the role of pun
tures and funnels of a Riemann surfa
e in itshyperboli
ity. These results allow, in many 
ases, to forget pun
tures and funnels in order to analyzethe hyperboli
ity of a Riemann surfa
e; this fa
t 
an be a signi�
ant simpli�
ation in the topology ofthe surfa
e, and therefore makes easier the study of its hyperboli
ity.It is a remarkable fa
t that the 
onstants appearing in the theorems of this paper depend just ona small number of parameters. This is a 
ommon pla
e in the theory of hyperboli
 spa
es (see e.g.theorems A, B and C).Notations. We denote by X or Xn geodesi
 metri
 spa
es. By dX , LX and BX we shall denote,respe
tively, the distan
e, the length and the balls in the metri
 of X .Finally, we denote by ki positive 
onstants whi
h 
an assume di�erent values in di�erent theorems.A
knowledgements. We would like to thank Professors J. L. Fern�andez and M. V. Meli�an forsome useful dis
ussions. x2. Results in metri
 spa
esIn our study of hyperboli
 Gromov spa
es we use the notations of [GH℄. We give now the basi
fa
ts about these spa
es. We refer to [GH℄ for more ba
kground and further results.De�nition 1. Let us �x a point w in a metri
 spa
e (X; d). We de�ne the Gromov produ
t ofx; y 2 X with respe
t to the point w as(xjy)w := 12 �d(x;w) + d(y; w) � d(x; y)� � 0 :



3We say that the metri
 spa
e (X; d) is Æ-hyperboli
 (Æ � 0) if(xjz)w � min�(xjy)w; (yjz)w	� Æ ;for every x; y; z; w 2 X . We say that X is hyperboli
 (in the Gromov sense) if the value of Æ is notimportant.It is 
onvenient to remark that this de�nition of hyperboli
ity is not universally a

epted, sin
esometimes the word hyperboli
 refers to negative 
urvature or to the existen
e of Green's fun
tion.However, in this paper we only use the word hyperboli
 in the sense of De�nition 1.Examples: (1) Every bounded metri
 spa
e X is (diamX)-hyperboli
 (see e.g. [GH, p.29℄).(2) Every 
omplete simply 
onne
ted Riemannian manifold with se
tional 
urvature whi
h isbounded from above by �k, with k > 0, is hyperboli
 (see e.g. [GH, p.52℄).(3) Every tree with edges of arbitrary length is 0-hyperboli
 (see e.g. [GH, p.29℄).De�nition 2. If 
 : [a; b℄ �! X is a 
ontinuous 
urve in a metri
 spa
e (X; d), we 
an de�ne thelength of 
 as L(
) := supn nXi=1 d(
(ti�1); 
(ti)) : a = t0 < t1 < � � � < tn = bo :We say that 
 is a geodesi
 if it is an isometry, i.e. L(
j[t;s℄) = d(
(t); 
(s)) = jt � sj for everys; t 2 [a; b℄. We say that X is a geodesi
 metri
 spa
e if for every x; y 2 X there exists a geodesi
joining x and y; we denote by [x; y℄ any of su
h geodesi
s (sin
e we do not require uniqueness ofgeodesi
s, this notation is ambiguous, but it is 
onvenient). It is 
lear that every geodesi
 metri
spa
e is path-
onne
ted.De�nition 3. If X is a geodesi
 metri
 spa
e and J = fJ1; J2; : : : ; Jng, with Jj � X , we say thatJ is Æ-thin if for every x 2 Ji we have that d(x;[j 6=iJj) � Æ. If x1; x2; x3 2 X , a geodesi
 triangleT = fx1; x2; x3g is the union of three geodesi
s [x1; x2℄, [x2; x3℄ and [x3; x1℄. The spa
e X is Æ-thin(or satis�es the Rips 
ondition with 
onstant Æ) if every geodesi
 triangle in X is Æ-thin.If we have a triangle with two identi
al verti
es, we 
all it a \bigon". Obviously, every bigon in aÆ-thin spa
e is Æ-thin.De�nition 4. Given a geodesi
 triangle T = fx; y; zg in a geodesi
 metri
 spa
e X , let TE bea Eu
lidean triangle with sides of the same length than T . Sin
e there is no possible 
onfusion,we will use the same notation for the 
orresponding points in T and TE . The maximum ins
ribed
ir
le in TE meets the side [x; y℄ (respe
tively [y; z℄, [z; x℄) in a point z0 (respe
tively x0, y0) su
h thatd(x; z0) = d(x; y0), d(y; x0) = d(y; z0) and d(z; x0) = d(z; y0). We 
all the points x0; y0; z0; the internalpoints of fx; y; zg. There is a unique isometry f of the triangle fx; y; zg onto a tripod (a tree with onevertex w of degree 3, and three verti
es x00; y00; z00 of degree one, su
h that d(x00; w) = d(x; z0) = d(x; y0),d(y00; w) = d(y; x0) = d(y; z0) and d(z00; w) = d(z; x0) = d(z; y0)). The triangle fx; y; zg is Æ-�ne iff(p) = f(q) implies that d(p; q) � Æ. The spa
e X is Æ-�ne if every geodesi
 triangle in X is Æ-�ne.A basi
 result is that hyperboli
ity is equivalent to Rips 
ondition and to be �ne:



4 Theorem A. ([GH, p.41℄) Let us 
onsider a geodesi
 metri
 spa
e X.(1) If X is Æ-hyperboli
, then it is 4Æ-thin and 4Æ-�ne.(2) If X is Æ-thin, then it is 4Æ-hyperboli
 and 4Æ-�ne.(3) If X is Æ-�ne, then it is 2Æ-hyperboli
 and Æ-thin.We present now the 
lass of maps whi
h play the main role in the theory.De�nition 5. A fun
tion between two metri
 spa
es f : X �! Y is a quasi-isometry if there are
onstants a � 1; b � 0 with1a dX(x1; x2)� b � dY (f(x1); f(x2)) � adX (x1; x2) + b ; for every x1; x2 2 X:A su
h fun
tion is 
alled an (a; b)-quasi-isometry. We say that the image of f is "-full (for some" � 0) if for every y 2 Y there exists x 2 X with dY (y; f(x)) � ". We say that X and Y arequasi-isometri
ally equivalents if there exists a quasi-isometry between X and Y , with image "-full,for some " � 0. An (a; b)-quasigeodesi
 in X is an (a; b)-quasi-isometry between an interval of R andX . An (a; b)-quasigeodesi
 segment in X is an (a; b)-quasi-isometry between a 
ompa
t interval of Rand X .Let us observe that a quasi-isometry 
an be dis
ontinuous.Remark. It is well known (see e.g. [K1℄, [K2℄) that quasi-isometri
al equivalen
e is an equivalen
erelation. In fa
t, if f : X �! Y is an (a; b)-quasi-isometry with image "-full, then there exists afun
tion g : Y �! X whi
h is an (a; 2a" + ab)-quasi-isometry. In parti
ular, if f is a surje
tive(a; b)-quasi-isometry, then g is an (a; ab)-quasi-isometry (in this 
ase we 
an 
hoose as g(y) any pointin f�1(y)).Quasi-isometries are important sin
e they are the maps whi
h preserve hyperboli
ity:Theorem B. ([GH, p.88℄) Let us 
onsider an (a; b)-quasi-isometry between two geodesi
 metri
spa
es f : X �! Y . If Y is Æ-hyperboli
, then X is Æ0-hyperboli
, where Æ0 is a 
onstant whi
h onlydepends on Æ, a and b. Besides, if the image of f is "-full for some " � 0, then X is hyperboli
 if andonly if Y is hyperboli
.It is well-known that if f is not "-full, the hyperboli
ity of X does not imply the hyperboli
ity ofY : it is enough to 
onsider the in
lusion of R in R2 (whi
h is indeed an isometry).De�nition 6. Let us 
onsider H > 0, a metri
 spa
e X , and subsets Y; Z � X . The set VH(Y ) :=fx 2 X : d(x; Y ) � Hg is 
alled the H-neighborhood of Y in X . The Hausdor� distan
e of Y to Z isde�ned by H(Y; Z) := inffH > 0 : Y � VH (Z); Z � VH(Y )g.The following is a beautiful and useful result:Theorem C. ([GH, p.87℄) For ea
h Æ � 0, a � 1 and b � 0, there exists a 
onstant H = H(Æ; a; b)with the following property:Let us 
onsider a Æ-hyperboli
 geodesi
 metri
 spa
e X and an (a; b)-quasigeodesi
 g starting in xand �nishing in y. If 
 is a geodesi
 joining x and y, then H(g; 
) � H.This property is known as geodesi
 stability. Mario Bonk has proved that, in fa
t, geodesi
 stabilityis equivalent to hyperboli
ity [B℄.



5Along this paper we will work with topologi
al subspa
es of a geodesi
 metri
 spa
e X . There is anatural way to de�ne a distan
e in these spa
es:De�nition 7. If X0 is a path-
onne
ted subset of a geodesi
 metri
 spa
e (X; d), then we asso
iateto it the restri
ted distan
edX0 (x; y) := dX jX0(x; y) := inf �L(
) : 
 � X0 is a 
ontinuous 
urve joining x and y	 � dX (x; y) :Theorem 1 below allows to transfer the study of the hyperboli
ity of a 
ertain spa
e X to their\building blo
k 
omponents" Xn determined by the following de�nition.De�nition 8. We say that a geodesi
 metri
 spa
e X has a de
omposition, if there exists a familyof geodesi
 metri
 spa
es fXngn2� with X = [n2�Xn and Xn \ Xm = [i2Inm�inm, where for ea
hn 2 �, f�inmgm;i are pairwise disjoint 
losed subsets of Xn (�inm = ? is allowed); furthermore anygeodesi
 segment in X meets at most a �nite number of �inm's.We say that Xn, with n 2 �, is a (k1; k2; k3)-tree-pie
e if it satis�es the following properties:(a) ℄Inm � 1 (then we 
an write �inm = �nm); if ℄Inm = 1, then X n �nm is not 
onne
ted and a; bare in di�erent 
onne
ted 
omponents of X n �nm for any a 2 Xn n �nm, b 2 Xm n �nm.(b) diamXn(�nm) � k1 for every m 6= n, and there exists An � �, su
h that diamXn(�nm) �k2 dXn(�nm; �nk) if m 6= k and m; k 2 An, and Pm=2An diamXn(�nm) � k3.We say that a geodesi
 metri
 spa
e X has a tree-de
omposition if it has a de
omposition and thereexist positive 
onstants k1; k2; k3; su
h that every Xn, with n 2 �, is a (k1; k2; k3)-tree-pie
e.We wish to emphasize that 
ondition diamXn(�nm) � k1 is not very restri
tive: if the spa
e is\wide" at every point (in the sense of long inje
tivity radius, as in the 
ase of simply 
onne
tedspa
es) or \narrow" at every point (as in the 
ase of trees), it is easier to study its hyperboli
ity; ifwe 
an found narrow parts (as �nm) and wide parts, the problem is more diÆ
ult and interesting.Remarks.1. Obviously, 
ondition (b) is required only for �nm; �nk 6= ?.2. The sets � and An do not need to be 
ountable.3. The hypothesis diamXn(�nm) � k2 dXn(�nm; �nk) holds if we have dXn(�nm; �nk) � k02, sin
ediamXn(�nm) � k1.4. Condition (a) for every n 2 � guarantees that the graph R = (V;E) 
onstru
ted in the followingway is a tree: V = [n2�fvng and [vn; vm℄ 2 E if and only if �nm 6= ?.The following result is an improvement of Theorem 2.4 in [RT℄, using a 
ompletely di�erent line ofargument; furthermore, this proof provides an expli
it expression for the 
onstants involved. It willbe used in the proof of Theorem 2 and 
an be applied to the study of the hyperboli
ity of Riemannsurfa
es (see [PRT, Propositions 3.1 and 3.2℄).Theorem 1. Let us 
onsider a geodesi
 metri
 spa
e X with a tree-de
omposition fXngn2�. ThenX is Æ-hyperboli
 if and only if there exists a 
onstant k4 su
h that Xn is k4-hyperboli
 for everyn 2 �.



6 Furthermore, if Xn is k4-hyperboli
, we 
an take Æ = 4(2k1+4k4+2H(k4; 2maxf1; k2g; 4k1+2k3)),where H is the 
onstant in Theorem C; if X is Æ-hyperboli
, we 
an take k4 = 16maxf1; k2g�2Æ+k1+k3 +H(Æ; 2maxf1; k2g; 2k1 + 2k3)�.Observe that the sets �nm do not need to be 
onne
ted and therefore we 
an 
reate a �nite numberof \handles" ea
h time we paste two pie
es.The 
on
lusion of Theorem 1 is not true without hypothesis (b) in De�nition 8, as it is shown infollowing examples:The set Q = fz = x + iy : x � 0; y � 0g, with its Eu
lidean distan
e, is not hyperboli
, but Q isthe union of the 1-thin pie
es Xn = fz 2 Q : n� 1 � jzj � ng.Let us 
onsider any funnel F with boundary 
. The results on [RT℄ gives that F is hyperboli
.However, it is the union of the non-uniformly hyperboli
 pie
es Xn = fz 2 F : n� 1 � d(z; 
) � ng(the hyperboli
ity 
onstant of Xn is 
omparable with L(�Xn)).The proof of Theorem 1 gives the following results.Corollary 1. Let us 
onsider a geodesi
 metri
 spa
e X with a de
omposition fXngn2�. Let usassume that, for some �xed n0 2 �, Xn0 is a (k1; k2; k3)-tree-pie
e and it is k4-hyperboli
. If T isa geodesi
 triangle in X and Xn0 interse
ts at least two sides of T , then Xn0 \ T is Æ�-thin, withÆ� := 3k1=2 + 4k4 + 2H(k4; 2maxf1; k2g; 4k1 + 2k3).Corollary 2. Let us 
onsider a Æ-hyperboli
 geodesi
 metri
 spa
e X with a de
omposition fXngn2�.Let us assume that, for some �xed n0 2 �, Xn0 is a (k1; k2; k3)-tree-pie
e. Then Xn0 is Æ0-thin, withÆ0 := 4maxf1; k2g�2Æ + k1 + k3 +H(Æ; 2maxf1; k2g; 2k1 + 2k3)�.In order to prove Theorem 1 we need some te
hni
al results.Lemma 1. Let us 
onsider a geodesi
 metri
 spa
e X and a geodesi
 � = [x0; x2n+1℄ = [2n+1j=1 [xj�1; xj ℄.For ea
h 1 � j � n, let us 
onsider a 
ontinuous 
urve �0j joining x2j�1 and x2j , su
h that L(�0j) � afor every 1 � j � n and L(�0j) � bL([x2j ; x2j+1℄) for every 1 � j � n� 1. If �0 is the 
urve obtainedfrom � by repla
ing [x2j�1; x2j ℄ by �0j , then �0 is a 
ontinuous (2maxf1; bg; 2a)-quasigeodesi
 with itsar
-length parametrization.Proof of Lemma 1. Let us 
onsider the ar
-length parametrizations � : [0; l℄ �! X and �0 :[0; l0℄ �! X . We 
an write [0; l℄ = [2n+1j=1 [tj�1; tj ℄ and [0; l0℄ = [2n+1j=1 [lj�1; lj ℄, su
h that �0(lj) = �(tj) =xj for every 0 � j � 2n+ 1, �0([l2j ; l2j+1℄) = [x2j ; x2j+1℄ for every 0 � j � n and �0([l2j�1; l2j ℄) = �0jfor every 1 � j � n. The hypothesis give that l2j � l2j�1 � a for every 1 � j � n and l2j � l2j�1 �b(l2j+1 � l2j) for every 1 � j � n� 1.Sin
e we 
onsider �0 with its ar
-length parametrization, then, for every s; t 2 [0; l0℄, we haved(�0(t); �0(s)) � L(�0([s; t℄)) = jt� sj.If s; t 2 [l2j ; l2j+1℄, then d(�0(t); �0(s)) = jt� sj for every 0 � j � n.If s 2 [l2i; l2i+1℄ and t 2 [l2j ; l2j+1℄, without loss of generality, we 
an assume that i < j; then there



7exist s0 2 [t2i; t2i+1℄ and t0 2 [t2j ; t2j+1℄ su
h thatd(�0(t); �0(s)) = d(�(t0); �(s0)) � t2i+1 � s0 + j�1Xk=i+1(t2k+1 � t2k) + t0 � t2j= l2i+1 � s+ 12 j�1Xk=i+1 �l2k+1 � l2k + l2k+1 � l2k�+ t� l2j� 12�l2i+1 � s+ b�1 j�1Xk=i+1(l2k � l2k�1) + j�1Xk=i+1(l2k+1 � l2k)+ l2j � l2j�1 � a+ t� l2j� � 12 minf1; b�1g(t� s)� a2 :In the general 
ase, if s; t 2 [0; l0℄ there exist s� 2 [l2i; l2i+1℄ and t� 2 [l2j ; l2j+1℄, with js� s�j � a=2and jt� t�j � a=2. Hen
ed(�0(t); �0(s)) � d(�0(t�); �0(s�))� a � 12 minf1; b�1gjt� � s�j � 3a2� 12 minf1; b�1gjt� sj � 2a: �Lemma 2. Let us 
onsider a geodesi
 metri
 spa
e X and a 
ontinuous (a; b)-quasigeodesi
 withits ar
-length parametrization � : [0; l℄ �! X, su
h that [0; l℄ = [2n+1j=1 [tj�1; tj ℄. For ea
h 1 � j � n,let us 
onsider a 
ontinuous 
urve �0j joining �(t2j�1) and �(t2j) su
h thatPnj=1 L(�0j) � 
. If �0 is the
urve obtained from � by substituting �([t2j�1; t2j ℄) by �0j , then �0 is a 
ontinuous (a; b+(1+3a�1)
=2)-quasigeodesi
 with its ar
-length parametrization.Proof of Lemma 2. Let us 
onsider the ar
-length parametrization �0 : [0; l0℄ �! X . We 
an write[0; l0℄ = [2n+1j=1 [lj�1; lj ℄, su
h that �0(lj) = �(tj) for every 0 � j � 2n+1, �0([l2j ; l2j+1℄) = �([t2j ; t2j+1℄)for every 0 � j � n and �0([l2j�1; l2j ℄) = �0j for every 1 � j � n. We have that Pnj=1(l2j � l2j�1) � 
.Sin
e we 
onsider �0 with its ar
-length parametrization, then, for every s; t 2 [0; l0℄, we have thatd(�0(t); �0(s)) � L(�0([s; t℄)) = jt� sj. In order to prove the other inequality, we have:If s; t 2 [l2j ; l2j+1℄, then d(�0(t); �0(s)) � a�1jt� sj � b for every 0 � j � n.If s 2 [l2i; l2i+1℄ and t 2 [l2j ; l2j+1℄, without loss of generality we 
an assume that i < j; then thereexist s0 2 [t2i; t2i+1℄ and t0 2 [t2j ; t2j+1℄ su
h thatd(�0(t); �0(s)) = d(�(t0); �(s0)) � a�1jt0 � s0j � b= a�1�t0 � t2j + 2j�1Xk=2i+1(tk+1 � tk) + t2i+1 � s0�� b� a�1�t� l2j + 2j�1Xk=2i+1(lk+1 � lk) + l2i+1 � s�� (b+ a�1
)= a�1(t� s)� (b+ a�1
):In the general 
ase, if s; t 2 [0; l0℄, there exist s� 2 [l2i; l2i+1℄ and t� 2 [l2j ; l2j+1℄, with js� s�j+ jt�t�j � 
=2. Hen
ed(�0(t); �0(s)) � d(�0(t�); �0(s�))� 
=2 � a�1jt� � s�j � (b+ a�1
+ 
=2)� a�1jt� sj � (b+ 3a�1
=2 + 
=2): �



8 Lemma 3. Let us 
onsider an (a; b)-quasigeodesi
 q1 : [�; �℄ �! X and two 
ontinuous 
urveswith ar
-length parametrization q0 : [� � d1; �℄ �! X, q2 : [�; � + d2℄ �! X, verifying q0(�) = q1(�)and q2(�) = q1(�). Then the 
urve q := q0 [ q1 [ q2 is an (a; b+ (1 + a�1)(d1 + d2))-quasigeodesi
.Proof of Lemma 3. We 
onsider the 
ase s 2 [�� d1; �℄ and t 2 [�; � + d2℄, sin
e the other 
asesare easier.d(q(t); q(s)) � d(q(t); q1(�)) + d(q1(�); q1(�)) + d(q1(�); q(s))� d2 + a(� � �) + b+ d1 � a(t� s) + b+ d1 + d2 ;d(q(t); q(s)) � d(q1(�); q1(�)) � d(q(t); q1(�)) � d(q1(�); q(s))� a�1(� � �) � b� d1 � d2 � a�1(t� s)� a�1(d1 + d2)� b� d1 � d2 : �De�nition 9. Let us 
onsider three quasigeodesi
 segments J1 joining x1 and x02, J2 joining x2 andx03, J3 joining x3 and x01, in a metri
 spa
e. We say that T = fJ1; J2; J3g is an (a; b; 
)-quasigeodesi
triangle if J1; J2; J3 are (a; b)-quasigeodesi
s and d(xi; x0i) � 
 for 1 � i � 3.Lemma 4. For ea
h Æ; b; 
 � 0 and a � 1, there exists a 
onstant K = K(Æ; a; b; 
) with thefollowing property:If X is a Æ-hyperboli
 geodesi
 metri
 spa
e and T � X is an (a; b; 
)-quasigeodesi
 triangle, thenT is K-thin. Furthermore, K = 4Æ + 
+ 2H(Æ; a; b+ 2
), where H is the 
onstant in Theorem C.Proof of Lemma 4. We 
onsider three geodesi
 segments [x02; x2℄, [x03; x3℄ and [x01; x1℄. ByLemma 3 (with d1 = 0 and d2 � 
), the 
urves s(x1; x2) := J1 [ [x02; x2℄, s(x2; x3) := J2 [ [x03; x3℄and s(x3; x1) := J3 [ [x01; x1℄ are (a; b + 2
)-quasigeodesi
s. By Theorem C, there exist geodesi
sf[x1; x2℄; [x2; x3℄; [x3; x1℄g with H(s(xi; xj); [xi; xj ℄) � H , for some 
onstant H = H(Æ; a; b+ 2
).We prove now that the (a; b+2
; 0)-quasigeodesi
 triangle T 0 = fJ1; J2; J3g is (4Æ+2H)-thin. Letus 
onsider any permutation fxi; xj ; xkg of fx1; x2; x3g and x 2 s(xi; xj); then there exists x0 2 [xi; xj ℄with d(x; x0) � H .Sin
e the geodesi
s f[x1; x2℄; [x2; x3℄; [x3; x1℄g are a geodesi
 triangle 4Æ-thin, there exists y0 2[xj ; xk℄ [ [xk; xi℄ with d(x0; y0) � 4Æ. Now we 
an 
hoose y 2 s(xj ; xk) [ s(xk; xi) with d(y; y0) � H .Hen
e, T 0 is (4Æ + 2H)-thin.Consequently, T is K-thin, with K := 4Æ + 
+ 2H , sin
e [x02; x2℄, [x03; x3℄ and [x01; x1℄ have lengthless or equal than 
. �De�nition 10. Let us assume that we have a triangle T (not ne
essarily geodesi
) with verti
esfx1; x2; x3g; we denote by xixj the side of T joining xi with xj . We 
onsider now another triangle T 0with verti
es fx01; x02; x03g su
h that x0ix0j is obtained by a 
ertain kind of modi�
ation of xixj . We saythat z 2 T and z0 2 T 0 are in 
orresponding sides if z 2 xixj and z0 2 x0ix0j for some i; j.Proof of Theorem 1. Let us assume that Xn is k4-hyperboli
 for every n 2 �.We 
onsider a geodesi
 triangle T = fa; b; 
g in X . We �x z 2 T ; if z belongs to two sides of T ,there is nothing to prove; if z only belongs to one side of T , we denote by A the union of the sides ofT whi
h does not interse
t z. Without loss of generality we 
an assume that z 2 [a; b℄.If T � Xn for some n, then T is 4k4-thin, by Theorem A.



9We assume that T interse
ts several Xn's. We intend to study T in ea
h of those Xn's separately.Let us �x n 2 �. We 
onsider �rst the 
ase in whi
h every side of T interse
t Xn. We 
onstru
ta quasigeodesi
 triangle Tn � Xn modifying T in the following way: If [a; b℄ � Xn, we 
onsider[an; bn℄ = [a; b℄. If [a; b℄ is not 
ontained in Xn, then we 
onsider g : [0; l℄ �! X as an orientedgeodesi
 joining a and b. By hypothesis, the geodesi
 segment g meets at most a �nite number of�nm's. Let us de�net0 := minf0 � t � l : g(t) 2 Xng ; tl := maxf0 � t � l : g(t) 2 Xng :First of all, let us assume that g meets [m2An�nm. We de�net11 := minft0 � t � tl : g(t) 2 [m2An�nmg :There exists this minimum sin
e g is a 
ontinuous fun
tion in a 
ompa
t interval and g\ ([m2An�nm)is a 
ompa
t set: ea
h �nm is a 
losed set and g meets at most a �nite number of �nm's.Then there is m1 2 An su
h that g(t11) 2 �nm1 , and we de�net21 := maxft0 � t � tl : g(t) 2 �nm1g :In a similar way, we de�ne re
ursivelyt1i := minft2i�1 < t � tl : g(t) 2 [m2An�nmg ;if g(t1i ) 2 �nmi , for some mi 2 An, we taket2i := maxft2i�1 < t � tl : g(t) 2 �nmig :We 
an 
ontinue this 
hoi
e for 1 � i � r. We de�ne g0 as the restri
tion of g to the 
losed set[t0; t11℄ [ [t21; t12℄ [ � � � [ [t2r�1; t1r℄ [ [t2r; tl℄. Observe that g0 � Xn. Now, let us 
hoose geodesi
s gi inXn 
onne
ting g(t1i ) and g(t2i ). We de�ne 
 := g0 [ g1 [ g2 [ � � � [ gr. By Lemma 1, we have that
 : [0; L℄ �! Xn is a 
ontinuous (2maxf1; k2g; 2k1)-quasigeodesi
 with its ar
-length parametrization(observe that 
(0) = g(t0) and 
(L) = g(tl)).If g does not meet [m2An�nm (or if t1i = t2i for 1 � i � r), we take 
 = g.We assume now that 
 meets [m=2An�nm. If we repeat the previous argument, then we 
an �nd am1 =2 An for whi
h we haves11 := minf0 � s � L : 
(s) 2 �nm1g ; s21 := maxf0 � s � L : 
(s) 2 �nm1g :In a similar way, there exist m2; : : : ;mj for whi
h we de�ne re
ursively for i = 2; : : : ; j,s1i := minfs2i�1 < s � L : �(s) 2 �nmig ; s2i := maxfs2i�1 < s � L : �(s) 2 �nmig :We de�ne 
0 as a restri
tion of 
 to the 
losed set [0; s11℄[ [s21; s12℄[ � � � [ [s2j ; L℄; we also have 
0 � Xn.Now, let us 
hoose geodesi
s hi in Xn 
onne
ting 
(s1i ) and 
(s2i ). We de�ne �1 := 
0[h1[h2[� � �[hj .



10If �1 : [0; l1℄ �! Xn is its ar
-length parametrization, Lemma 2 gives that �1 is a (2maxf1; k2g; 2k1+2k3)-quasigeodesi
.If 
 does not meet [m=2An�nm (or if s1i = s2i for 1 � i � j), we take �1 = 
.In a similar way, we 
onstru
t the quasigeodesi
s �2 : [0; l2℄ �! Xn and �3 : [0; l3℄ �! Xn
orresponding to the sides [b; 
℄ and [
; a℄ respe
tively.Observe that if �1(l1) 6= �2(0), then both points belong to some �nm, sin
e we have a tree-de
omposition; 
ondition (b) gives that dXn(�1(l1); �2(0)) � k1. The same is true if �2(l2) 6= �3(0),and if �3(l3) 6= �1(0). Hen
e Tn := �1[�2[�3 is a (2maxf1; k2g; 2k1+2k3; k1)-quasigeodesi
 triangle.Lemma 4 gives that Tn is Æ1-thin, with Æ1 = k1 + 4k4 + 2H(k4; 2maxf1; k2g; 4k1 + 2k3), where H isthe 
onstant in Theorem C.If z 2 Xn, without loss of generality we 
an assume that z 2 �1; if A0 := �2 [ �3, then there existsz0 2 A0 with dXn(z; A0) = dXn(z; z0) � Æ1. If z0 2 A, then dX(z; A) � Æ1. If z0 =2 A, then, there existsz0 2 A su
h that dXn(z0; z0) � k1=2; then, dX (z; A) � dXn(z; z0) + dXn(z0; z0) � Æ1 + k1=2.If only two sides of T interse
t Xn, we have the same result sin
e we 
an see a bigon as a trianglewith two equal verti
es. These fa
ts prove Corollary 1. We �nish now the proof of Theorem 1.If A \Xn = ?, then z belongs to some geodesi
 g0 � g joining some �mk with itself su
h that A \Xm 6= ?, sin
e we have a tree-de
omposition. By (b), there exists z0 2 g0\�mk with dX(z; z0) � k1=2,and then, there exists z0 2 A\Xm su
h that dXm(z0; z0) � Æ1+k1=2. Consequently, dX(z; A) � Æ1+k1,and X is Æ-thin with Æ := 2k1 + 4k4 + 2H(k4; 2maxf1; k2g; 4k1 + 2k3).Let us assume that X is Æ-hyperboli
.We prove now that the in
lusion i : Xn �! X is a (2maxf1; k2g; 2k1 + 2k3)-quasi-isometry.Given x; y 2 Xn, we have that dX(x; y) � dXn(x; y), sin
e there are more 
urves joining x and y inX than in Xn. In order to prove the other inequality, let us 
onsider a geodesi
 g in X joining x and y.If g � Xn, then dX(x; y) = dXn(x; y). In other 
ase, we 
an de�ne t11; t21; : : : ; t1r; t2r; s11; s21; : : : ; s1j ; s2j , andthe (2maxf1; k2g; 2k1+2k3)-quasigeodesi
 �1 : [0; l1℄ �! Xn joining x and y as in the proof of the �rstpart of the theorem. Sin
e �1 has its ar
-length parametrization, 12 minf1; k�12 gL(�1)� 2(k1 + k3) �dX(�1(0); �1(l1)) = dX (x; y).Sin
e �1 is a 
ontinuous 
urve in Xn joining x and y, dXn(x; y) � L(�1), and then12 minf1; k�12 gdXn(x; y)� 2(k1 + k3) � dX (x; y) � dXn(x; y):Hen
e, if X is Æ-hyperboli
, thenXn is 4maxf1; k2g�2Æ+k1+k3+H(Æ; 2maxf1; k2g; 2k1+2k3)�-thin(see [GH, p.88℄).Let us observe that in this proof of the hyperboli
ity of Xn we do not use that the other pie
es aretree-pie
es; this gives Corollary 2. �Theorem 2 below let us move the study of the hyperboli
ity of a 
ertain spa
e X to another spa
eY with simpler stru
ture, so long as between them there exists the type of relationship des
ribed bythe following de�nition.



11De�nition 11. We say that two geodesi
 metri
 spa
es X and Y (in this order) have 
omparablede
ompositions, if there exist de
ompositions fXngn2� of X and fYngn2� of Y , and 
onstants ki, withthe following properties:(a) If Xn \Xm = [i2Inm�inm, then Yn \ Ym = [i2Inm�inm, and �inm = ? if and only if �inm = ?.(b) For any n;m; i; diamXn(�inm) � k1 and diamYn(�inm) � k1.(
) We 
an split � into F [G and F into F1 [ F2 with:(
1) If n 2 G, Xn is a (k1; k2; k3)-tree-pie
e.(
2) If n 2 F , diamXn(�inm) � k2 dXn(�inm; �jnk) and diamYn(�inm) � k2 dYn(�inm; �jnk) if (m; i) 6=(k; j).(
3) If n 2 F1, for ea
h �inm 6= �jnk, there exists a geodesi
 
ijmnk in Xn, joining �inm with �jnk, anda (k4; bijmnk)-quasi-isometry f ijmnk : 
ijmnk �! hijmnk � Yn, with hijmnk starting in �inm and �nishing in�jnk, and Pn2F1 Pm;k;i;j bijmnk � k5, su
h that for any x; y 2 [m;k;i;j
ijmnk, with 
orresponding pointsx0; y0 2 [m;k;i;jhijmnk, we have k�14 dXn(x; y)� k5 � dYn(x0; y0).(
4) If n 2 F2, there exists a (k4; 0)-quasi-isometry fn : Xn �! Yn, with fn(�inm) � �inm.Remarks.1. Obviously, these 
onditions are required only for �inm; �inm 6= ?.2. The sets �; F;G and Inm do not need to be 
ountable.3. We obviously have �inm = �imn and Inm = Imn.4. The hypothesis (
2) trivially holds if for n 2 F , dXn(�inm; �jnk) � k02 and dYn(�inm; �jnk) � k02,by (b).5. The hypothesis (
3) 
an be relaxed: let us 
onsider any 
onne
ted 
omponent Bs of [n2FXn;the proof of Theorem 2 gives that it is enough to have Pn2F s1 ;m;k;i;j bijmnk � k5, for any s, whereF s1 := fn 2 F1 : Xn � Bsg (see the 
onstru
tion of T2 in the proof of Theorem 2).6. As a 
onsequen
e of (
3), we have that k�14 dXn(x; �tnr)� k1 � k5 � dYn(f ijmnk(x); �tnr), for everyx 2 
ijmnk and r; t.7. Sin
e 
ondition (
3) 
an be tedious to 
he
k, it 
ould be interesting to 
he
k instead the followingstatement whi
h implies (
3):(
30) If n 2 F1, we have that k�17 � dXn(�inm; �jnk)=dYn(�inm; �jnk) � k7, diamXn([mi�inm) � k8and diamYn([mi�inm) � k8.In the de
omposition of X one 
an �nd pie
es of two di�erent types: fXngn2F and fXngn2G. The
onne
tions among a pie
e Xn, with n 2 G, and the rest of the pie
es are simple enough for beingXn a tree-pie
e. The 
onne
tions of the pie
es Xn, with n 2 F , do not have topologi
al restri
tions;therefore, besides (b) and (
2) (as in the 
ase n 2 G), they must be 
ontrolled somehow: the 
onditions(
3) and (
4) let us assure that the 
onne
tions between Xn and the rest of the pie
es must be aliketo the ones in Yn. Observe that 
ondition (
3) involves just a small subset of points of ea
h Xn, withn 2 F1.In spite of lengthening De�nition 11, splitting � into the union of the three types of sets F1; F2 andG is an extremely 
onvenient 
ourse of a
tion: on the one hand, the wider the range of possibilities,the easier it will be to �t a 
ertain pie
e into one of them. On the other hand, the determination of



12the 
onditions that Xn must verify when n belongs to F1; F2 or G, is not arbitrary at all. In fa
t,what lies behind is an appropriate modelization for the study of the following problem in Riemannsurfa
es (see [PRT℄): Given a Riemann surfa
e S, another one S� 
an be obtained from S by removinga union of simply 
onne
ted 
losed sets fEmgm2M . In [PRT℄ it is proved that S is hyperboli
 if andonly if S� is hyperboli
, when fEmg are suÆ
iently separated. Theorem 2 is used in the proof of thelatest statement: The idea is to 
onsider some neighborhoods of fEmg as pie
es fSmg (in S� we takeS�m := Sm n Em). G is de�ned as the set of m's belonging to M su
h that Sm is a tree-pie
e; F1 isthe rest of indi
es of M , and F2 is the set of indi
es whi
h parametrizes the 
onne
ted 
omponentsof S n [m2MSm (in S� we take the same 
onne
ted 
omponents). Finally, De�nition 11 has beenformulated by abstra
ting the essential properties of pie
es in ea
h of the three sets.Theorem 2. Let us assume that two geodesi
 metri
 spa
es X and Y have 
omparable de
ompo-sitions. If Y is Æ0-hyperboli
 and there exists a 
onstant k6 su
h that Xn is k6-hyperboli
 for everyn 2 � n F2, then X is Æ-hyperboli
, with Æ a 
onstant whi
h only depends on Æ0 and ki.There is an expli
it expression of Æ at the end of the proof of Theorem 2.It is obvious that (
4) is mu
h more restri
tive than (
3); however, it is a small pri
e to pay inreturn for not having to 
he
k the hyperboli
ity of pie
es in F2.We 
an see this theorem as a version of Theorem B: if � = F1, 
ondition (
3) says somehow thatthere is a quasi-isometry of a small subset of X on a subset of Y . From a dual point of view, we
an 
onsider that there is a quasi-isometry of a subset of Y on a subset of X ; in this 
ase we havethe surprising result that the hyperboli
ity of the original spa
e implies the hyperboli
ity of the �nalspa
e.The hyperboli
ity of X does not imply the uniform hyperboli
ity of Xn in general (this is anotherdi�eren
e with Theorem 1). In fa
t, the hyperboli
ity of X does not guarantee the hyperboli
ity ofea
h Xn, as it is shown in the following example: let us 
onsider X1 as the Cayley graph of the groupZ2, and X2 the tree with a 
ountable number of edges of length 1 with a 
ommon vertex v0; we
onstru
t X by gluing in a bije
tive way ea
h vertex of X2 (ex
ept for v0) with a vertex of X1; it is
lear that X is hyperboli
 sin
e it is bounded, and that X1 is not hyperboli
. In the same line, it iseasy to 
onstru
t a lo
ally �nite graph X = [nXn with limn!1 Æ(Xn) =1.Next, we provide some 
onditions whi
h guarantee the hyperboli
ity of Xn.Proposition 1. Let X be a Æ-hyperboli
 geodesi
 metri
 spa
e with a de
omposition as in De�nition11. If for some n 2 � there exist 
onstants k7 � 1; k8 � 0, with dXn(�inm; �jnk) � k7 dX(�inm; �jnk)+k8,for any m; k; i; j; then Xn is k6-hyperboli
, with k6 := 4k7�4Æ+k�17 (2k1+k8)+2H(Æ; k7; k�17 (2k1+k8))�,where H is the 
onstant in Theorem C.The following result is weaker than the one in Proposition 1, but it has the advantage that it onlyinvolves distan
es in Xn. In fa
t, this is the best possible general result involving just distan
es inXn; besides it allows to get sharper 
onstants.Proposition 2. Let X be a Æ-hyperboli
 geodesi
 metri
 spa
e with a de
omposition as in De�nition11. If for some n 2 � there exists a positive 
onstant k7 with diamXn([mi�inm) � k7, then Xn is



13(Æ + 3k7=2)-hyperboli
.Corollary 3. Let us assume that two geodesi
 metri
 spa
es X and Y have 
omparable de
ompo-sitions, that Y is hyperboli
, and that there exists a positive 
onstant k7 with diamXn([mi�inm) � k7for every n 2 �. Then X is hyperboli
 if and only if there exists a 
onstant k6 su
h that Xn isk6-hyperboli
 for every n 2 �.Proof of Theorem 2. Let us 
onsider a geodesi
 triangle T = fa; b; 
g in X . It is obvious that ifT � Xn for some n 2 �nF2, then T is 4k6-thin by hypothesis. In other 
ase (i.e., whether T � Xn withn 2 F2 or T interse
ts several Xn's), the main idea of the proof is to 
hoose su

essively quasigeodesi
triangles T1; T2; T3; T4 in X (
losely related to T ), whi
h will allow to 
onstru
t a quasigeodesi
 triangleT5 in Y (related to T4). Sin
e Y is hyperboli
, then T5 is thin by Lemma 4, and we will use thisinformation in order to obtain that T is also thin. One of the main obsta
les is that although Xand Y have similar 
onne
tions among their 
omponents, ea
h pair of spa
es Xn and Yn 
an be verydi�erent (in fa
t, a quasi-isometry might not exist between Xn and Yn).Even though the main idea is simple, the proof is long and te
hni
al; in order to make the argumentsmore transparent, we 
olle
t some results we need along the proof in te
hni
al lemmas. Most of themwill be proved in the last se
tion of the paper.A partial goal is to obtain a triangle T4 in X easily transformable into another triangle T5 in Y (infa
t, T \Xn is 
ontained in [m;k;i;j
ijmnk if n 2 � nF2). In order to do this, the �rst step is to obtaina triangle T1 in X su
h that for any n 2 � nF2, ea
h 
onne
ted 
omponent of T1 \Xn is a geodesi
 inXn. Re
all that although ea
h 
onne
ted 
omponent of S \Xn of any side S of T is a geodesi
 in Xn,there 
an exist 
onne
ted 
omponents of T \ Xn (
ontaining a vertex of T ) whi
h are not geodesi
sin Xn.We start with the 
onstru
tion of T1.Let us assume that in the pie
e Xn there is at least one vertex a of T . If n 2 F2, we do not 
hangeT \Xn. (In parti
ular, if T � Xn, with n 2 F2, then T1 = T .) Let us 
onsider now n 2 � n F2, andlet us 
all �a to the 
onne
ted 
omponent of T \Xn whi
h 
ontains a.Case 1. Assume �rst that �a only 
ontains a vertex of T . We denote by x1; x2 the end pointsof �a. Then, we 
onsider a geodesi
 triangle Ta = fa; x1; x2g in Xn with [a; x1℄; [a; x2℄ � T . Letus denote by a1 the internal point of Ta in the geodesi
 [x1; x2℄ in Xn. We de�ne �a1 := [x1; x2℄ =[x1; a1℄ [ [a1; x2℄ � Ta. If b 2 Xm (where m 
an be either n or not) and the 
onne
ted 
omponent �bof T \Xm whi
h 
ontains b does not 
ontain 
, then we 
an pro
eed with the verti
es b; 
 in a similarway that with a. In this 
ase, T1 is de�ned as the (not ne
essarily geodesi
) triangle 
onne
ting theverti
es a1; b1; 
1, obtained from T by repla
ing �a; �b; �
 by �a1 ; �b1 ; �
1 respe
tively.Case 2. Let us assume now that b 2 �a and 
 =2 �a.Without loss of generality, we 
an assume that �a starts in x1, ends in x2, and meets a before thanb. We 
onsider the quadrilateral �a [ [x1; x2℄ � Xn and we draw its diagonal [a; x2℄ (we 
an get asimilar result by drawing [b; x1℄), obtaining two geodesi
 triangles in Xn: Ta = fa; x1; x2g (with theinternal points u1 2 [a; x2℄; u2 2 [x1; x2℄ and u3 2 [a; x1℄), Tb = fa; b; x2g (with the internal pointsv1 2 [a; x2℄; v2 2 [b; x2℄ and v3 2 [a; b℄).



14 Case 2.1. We 
onsider �rst the situation dXn(x2; v1) < dXn(x2; u1). We denote by b1 the pointin [x1; x2℄ with dXn(x2; b1) = dXn(x2; v1). If we denote a1 := u2, we 
an de�ne �a1 := [x1; x2℄ =[x1; a1℄ [ [a1; b1℄ [ [b1; x2℄ � Ta. We de�ne �
1 as in Case 1. Then we 
onstru
t the triangle T1
onne
ting the verti
es a1; b1; 
1, obtained from T by repla
ing �a; �
 by �a1 ; �
1 respe
tively.Case 2.2. We 
onsider the situation dXn(x2; v1) � dXn(x2; u1). If we denote a1 := b1 := u2, we
an de�ne �a1 := [x1; x2℄ = [x1; a1℄[ [a1; x2℄ � Ta. We de�ne �
1 as in Case 1. Then we 
onstru
t thebigon T1 
onne
ting the verti
es a1; 
1, obtained from T by repla
ing �a; �
 by �a1 ; �
1 respe
tively.Case 3. Finally, let us assume that b; 
 2 �a. Without loss of generality, we 
an assume that �astarts in x1, ends in x2, and meets a before than b and meets b before than 
.We 
onsider the pentagon �a[[x1; x2℄ � Xn and we draw its diagonals [x1; b℄, [b; x2℄, obtaining threegeodesi
 triangles in Xn: Ta = fa; b; x1g (with the internal points s1 2 [a; b℄; s2 2 [a; x1℄, s3 2 [b; x1℄),Tb = fb; x1; x2g (with the internal points u1 2 [b; x2℄; u2 2 [b; x1℄ and u3 2 [x1; x2℄), T
 = fb; 
; x2g(with the internal points v1 2 [
; x2℄; v2 2 [b; 
℄ and v3 2 [b; x2℄).Case 3.1. We 
onsider �rst the situation dXn(x1; s3) < dXn(x1; u2) and dXn(x2; v3) < dXn(x2; u1).We denote by a1 the point in [x1; x2℄ with dXn(x1; a1) = dXn(x1; s3), and by 
1 the point in [x1; x2℄with dXn(x2; 
1) = dXn(x2; v3). If we denote b1 := u3, we 
an de�ne �a1 := [x1; x2℄ = [x1; a1℄ [[a1; b1℄ [ [b1; 
1℄ [ [
1; x2℄ � Tb. Then we 
onstru
t the triangle T1 
onne
ting the verti
es a1; b1; 
1,obtained from T by repla
ing �a by �a1 .Case 3.2. We 
onsider now the situation dXn(x1; s3) � dXn(x1; u2) and dXn(x2; v3) < dXn(x2; u1).We de�ne a1 := b1 := u3, and we denote by 
1 the point in [x1; x2℄ with dXn(x2; 
1) = dXn(x2; v3).We 
an de�ne �a1 := [x1; x2℄ = [x1; a1℄ [ [a1; 
1℄ [ [
1; x2℄ � Tb. Then we 
onstru
t the bigon T1
onne
ting the verti
es a1; 
1, obtained from T by repla
ing �a by �a1 .Case 3.3. The situation dXn(x1; s3) < dXn(x1; u2) and dXn(x2; v3) � dXn(x2; u1) is symmetri
 toCase 3.2, 
hanging the roles of a and 
.Case 3.4. Finally, we 
onsider the situation dXn(x1; s3) � dXn(x1; u2) and dXn(x2; v3) � dXn(x2; u1).In this 
ase, we do not 
onstru
t the triangle T1.Lemma 5. If T1 is Æ1-thin, then T is Æ0-thin, with Æ0 := maxfÆ1 + 16k6; 18k6g.See the proof of Lemma 5 in Se
tion 3.We have the following elementary fa
t.Lemma 6. Let us 
onsider a metri
 spa
e X, an interval I, an (a; b)-quasigeodesi
 g : I �! X anda 
urve g1 : I �! X su
h that d(g(t); g1(t)) � 
 for every t 2 I. Then g1 is a (a; b+2
)-quasigeodesi
.Proof. For any s; t 2 I , we have thatd(g1(t); g1(s)) � d(g1(t); g(t)) + d(g(t); g(s)) + d(g(s); g1(s)) � ajt� sj+ b+ 2
 ;d(g1(t); g1(s)) � d(g(t); g(s))� d(g1(t); g(t)) � d(g(s); g1(s)) � a�1jt� sj � b� 2
 : �Lemma 7. Ea
h side of T1 is a (1; 16k6)-quasigeodesi
 with its ar
-length parametrization. Fur-thermore, ea
h 
onne
ted 
omponent of T1 \Xn is a geodesi
 in Xn, if n 2 � n F2.



15See the proof of Lemma 7 in Se
tion 3.As a se
ond step, we split the triangle T1 in several parts; Corollary 1 will allow to forget the partof T1 whi
h interse
ts the pie
es Xn with n 2 G (see Lemma 8).We 
onsider the 
onne
ted 
omponents fBsgs2S of the set [n2FXn. We 
an study the triangle T1in ea
h pie
e of fBsgs2S and of fXngn2G. We denote by T2 the quasigeodesi
 triangle T1 \ Bs, forsome �xed s 2 S; in fa
t, we should write T s2 instead of T2, but our notation is simpler and there willbe no pla
e to 
onfusion. Let us observe that T2 is the union of three sides (possibly not 
ontinuous)joining a2 with b02, b2 with 
02 and 
2 with a02.Re
all that we want to obtain a triangle T4 in X 
ontained in [n;m;k;i;j
ijmnk. As a third step, we
onstru
t the triangle T3 in order to remove from T2 the 
onne
ted 
omponents of T2 \Xn whi
h joinsome �inm with itself.We de�ne the triangle T3 in the following way:Without loss of generality we 
an 
onsider a side g1 of T1 as the oriented 
urve from a1 to b1. Wehave that a2 = g1(�) and b02 = g1(�), for some real numbers � < �. By hypothesis, g1 meets at mosta �nite number of �inm's. Let us assume that g1 meets [n;m;i�inm. As we 
onsider g1 : [�; �℄ �! X ,let us de�ne t11 := minf� � t � � : g1(t) 2 [n;m;i�inmg :There exists this minimum sin
e g1 is a 
ontinuous fun
tion in a 
ompa
t interval and g1\([n;m;i�inm)is a 
ompa
t set: ea
h �inm is a 
losed set and g1 meets at most a �nite number of �inm's.Then g1(t11) 2 �i1n1m1 , for some n1;m1; i1, and we de�net21 := maxf� � t � � : g1(t) 2 �i1n1m1g :In a similar way, we de�ne re
ursivelyt1j := minft2j�1 < t � � : g1(t) 2 [n;m;i�inmg ;if g1(t1j ) 2 �ijnjmj , for some nj ;mj ; ij , we taket2j := maxft2j�1 < t � � : g1(t) 2 �ijnjmjg :We 
an 
ontinue this 
hoi
e for 1 � j � r. We de�ne t20 := � if � 6= t11, and t1r+1 := � if � 6= t2r .We de�ne g3 (in this 
ase) as the restri
tion of g1 to the set [�; t11℄[ (t21; t12℄[ � � � [ (t2r�1; t1r℄[ (t2r ; �℄.If g1 does not interse
ts [n;m;i�inm, we take g3 = g1. We de�ne a3 := a2 if � < t11 and a3 := g1(t21) if� = t11; we de�ne b03 := b02 if t2r < � and b03 := g1(t1r) if t2r = �. g3 is a left 
ontinuous 
urve between a3and b03. We 
onsider a similar 
onstru
tion with the other sides of T2. The triangle T3 is the union ofthese three 
urves.Lemma 8. If T3 is Æ3-thin, then T1 is maxfÆ3+k1; Æ�g-thin, with Æ� := 3k1=2+4k6+2H(k6; 2maxf1; k2g; 4k1+2k3), where H is the 
onstant in Theorem C.



16 Proof. We study the triangle T1 in ea
h pie
e of fBsgs2S and of fXngn2G.Re
all that (
1) gives that for any n 2 G, Xn is a (k1; k2; k3)-tree-pie
e. Corollary 1 gives thatT3 \ Xn is Æ�-thin for every n 2 G(we 
an assume that Xn interse
ts at least two sides of T3; if Xnhad interse
ted only one side of T1, this part of T1 would have been removed during the 
onstru
tionof T3, sin
e Xn is a tree-pie
e). We 
onsider now T1 \ Bs for ea
h s.By (b) and the 
onstru
tion of T3, given any z 2 T1 \Bs, there exists z2 2 T3 in the 
orrespondingside of z, with dX (z; z2) � dXn(z; z2) � k1. Then there exists w in the union of the two other sides ofT3 with dX(w; z2) � Æ3. Sin
e T3 � T1 \ Bs, we have the result. �Lemma 9. Ea
h side of T3 is a (1+k2; k1+16k6)-quasigeodesi
 with its ar
-length parametrization.Furthermore, ea
h 
onne
ted 
omponent of T3 \Xn is a geodesi
 in Xn, if n 2 F1.See the proof of Lemma 9 in Se
tion 3.Remark. After the 
onstru
tion of T3 and lemmas 8 and 9, without loss of generality we 
anassume that there is a unique 
omponent Bs, i.e. that T3 is a (1 + k2; k1 + 16k6; k1)-quasigeodesi
triangle in X , with � = F and G = ?.We 
onstru
t the triangle T4 by 
hanging ea
h geodesi
 segment in T3 joining �inm with �jnk by anew geodesi
 
ijmnk. This triangle and 
onditions (
3) and (
4) will allow to obtain a triangle T5 in Yin an obvious way.These are the details in the 
onstru
tion of T4:Ea
h 
onne
ted 
omponent of T3 is a geodesi
 segment gijmnk in some Xn, joining �inm with �jnk. Ifn 2 F1, (
3) gives that for ea
h gijmnk there exists a geodesi
 
ijmnk in Xn, joining �inm with �jnk, anda (k4; bijmnk)-quasi-isometry f ijmnk : 
ijmnk �! hijmnk � Yn. If n 2 F2, we de�ne f ijmnk as the restri
tionof fn to gijmnk, 
ijmnk := gijmnk, and hijmnk := f ijmnk(
ijmnk). (Then, f ijmnk is a (k4; bijmnk)-quasi-isometry,with bijmnk := 0.)We obtain T4 in X by repla
ing ea
h gijmnk by 
ijmnk. We only need to 
hoose the verti
es of T4, ifsome vertex of T3 is in [n2F1Xn:Let us 
onsider n 2 F1 and the ar
-length parametrizations gijmnk : [0; l℄ �! X and 
ijmnk : [0; l0℄ �!X . We observe �rst that (
2) gives l0 � l = LX(
ijmnk)�LX(gijmnk) � diamXn(�inm) + diamXn(�jnk) �2k2LX(gijmnk) = 2k2l. Therefore we 
on
lude l0=l � 1 + 2k2, and symmetri
ally l=l0 � 1 + 2k2.Lemma 10. Let us 
onsider an absolute 
ontinuous and bije
tive fun
tion between two intervalsu : I �! J with 
�1 � ju0j � 
, and an (a; b)-quasigeodesi
 g : J �! X. Then g Æ u : I �! X is an(a
; b)-quasigeodesi
.Proof. We have that 
�1jt� sj � ju(t)� u(s)j � 
jt� sj, and hen
ea�1
�1jt� sj � b � a�1ju(t)�u(s)j � b � d(g(u(t)); g(u(s))) � aju(t)�u(s)j+ b � a
jt� sj+ b : �Lemma 11. Let us 
onsider two geodesi
s 
1 : [0; l1℄ �! X and 
2 : [0; l2℄ �! X in a Æ-�nespa
e X, with d(
1(0); 
2(0)) � 
 and d(
1(l1); 
2(l2)) � 
. Then d(
1(t); 
2(l2t=l1)) � 2Æ + 7
, fort 2 [0; l1℄.See the proof of Lemma 11 in Se
tion 3.



17We 
onsider the reparametrization gijmnk(lt=l0) : [0; l0℄ �! X of gijmnk; re
all that l0=l; l=l0 � 1 +2k2. Using these lo
al reparametrizations, if G3 : J0 �! X and G4 : I0 �! X are ar
-lengthparametrizations of T3 and T4 (respe
tively), we 
an 
onstru
t a global bije
tion u : I0 �! J0 (infa
t, a 
ontinuous juxtaposition of straight lines) with (1 + 2k2)�1 � ju0j � 1 + 2k2. Sin
e G3 Æ u andG4 are de�ned over the same interval I0, if (G3 Æ u)(t0) is a vertex in T3, for some t0 2 I0, we 
ande�ne G4(t0) as its 
orresponding vertex in T4. Lemmas 9 and 10 give that if g3 = (G3 Æ u)jI , is aside of T3, for some interval I , then g3 is a ((1 + k2)(1 + 2k2); k1 +16k6)-quasigeodesi
. Observe thatg4 := G4jI is an ar
-length parametrization of the side of T4 
orresponding to g3. Sin
e we have (b),Lemma 11 gives that dX(g3(t); g4(t)) � 8k6 + 7k1, for every t 2 I . Then, Lemma 6 implies that g4 isa ((1 + k2)(1 + 2k2); 15k1 + 32k6)-quasigeodesi
. Consequently we obtain the following result.Lemma 12. Ea
h side of T4 is a ((1 + k2)(1 + 2k2); 15k1 +32k6)-quasigeodesi
 with its ar
-lengthparametrization. Furthermore, ea
h 
onne
ted 
omponent of T4 \Xn is a geodesi
 in Xn, if n 2 F1.If T4 is Æ4-thin, then T3 is (Æ4 + 14k1 + 16k6)-thin.Proof. We have proved the �rst two statements. In order to prove the last one we only need toremark that for every point in any side of T3 there is another one in the 
orresponding side of T4whi
h is at distan
e 7k1 + 8k6 at most; the same result is true if we 
hange the roles of T3 and T4.� Let us observe that if T � Xn, with n 2 F2, then T4 = T .So far, we have modi�ed the original triangle in X to obtain a new one T4 whi
h 
an now be easilytransformed into a triangle T5 in Y by repla
ing 
ijmnk � Xn by hijmnk � Yn. We take the 
anoni
alparametrization f ijmnk(
ijmnk(t)) in hijmnk, where t is the ar
-length parameter for 
ijmnk.Lemma 13. Ea
h side of T5 is a (d1; d2)-quasigeodesi
 with its 
anoni
al parametrization, whered0 := (1 + k2)(1 + 2k2)k4, d1 := d0(1 + k2)(1 + 2k2) andd2 := max�k1 + (1 + k2)k5; k4(15k1 + 32k6) + k5; d�10 (17k1 + 32k6) + 2(k1 + k5) + (1 + 2k2)�1k5	 :In fa
t, the proof of Lemma 13 (see Se
tion 3) gives the following result.Corollary 4. For any x; y 2 T4 with 
orresponding points x0; y0 2 T5, we have that dX (x; y) �d0 dY (x0; y0) + 2k1 + d0(2(k1 + k5) + (1 + 2k2)�1k5).By Lemma 13, the sides of T5 are (d1; d2)-quasigeodesi
s. By (b) and the 
onstru
tion of T5, wehave that an end point of any side of T5 has an end point of another side at distan
e less or equal thank1. Sin
e Y is Æ0-hyperboli
, Lemma 4 gives that T5 is Æ5-thin with Æ5 := 4Æ0+k1+2H(Æ0; d1; d2+2k1).Now Corollary 4 gives that T4 is Æ4-thin, with Æ4 := d0Æ5 + 2k1 + d0(2(k1 + k5) + (1 + 2k2)�1k5).Lemma 12 gives that T3 is Æ3-thin with Æ3 := Æ4 + 14k1 + 16k6. By Lemma 8, we have that T1is Æ1-thin with Æ1 := maxfÆ3 + k1; Æ�g, where Æ� = 3k1=2 + 4k6 + 2H(k6; 2maxf1; k2g; 4k1 + 2k3).Theorem 2 is now a 
onsequen
e of Lemma 5, and we have Æ := 4(Æ1 + 16k6), sin
e Æ1 � 2k6 (in fa
t,Æ1 � Æ3 � 16k6). �



18 Proof of Proposition 1. Firstly we prove that the in
lusion i : Xn �! X is a (k7; k�17 (2k1+k8))-quasi-isometry.Given x; y 2 Xn, we have that dX(x; y) � dXn(x; y), sin
e there are more 
urves joining x and y inX than in Xn. In order to prove the other inequality, let us 
onsider a geodesi
 g in X joining x andy. If g � Xn, then dX (x; y) = dXn(x; y). In other 
ase, we have for some m; k; i; j;dX(x; y) � dXn(x; �inm) + dX(�inm; �jnk) + dXn(y; �jnk)� dXn(x; �inm) + k�17 dXn(�inm; �jnk) + dXn(y; �jnk)� k8k�17� k�17 �dXn(x; �inm)+ diamXn(�inm)+ dXn(�inm; �jnk)+ diamXn(�jnk)+ dXn(y; �jnk)� 2k1 � k8�� k�17 dXn(x; y)� k�17 (2k1 + k8) :Hen
e, sin
e X is Æ-hyperboli
, then Xn is k7�4Æ+ k�17 (2k1+ k8)+2H(Æ; k7; k�17 (2k1+ k8))�-thin (see[GH, p.88℄). �Proof of Proposition 2. Given x; y 2 Xn, we have thatdX(x; y) � dXn(x; y) � dX(x; y) + diamXn([mi�inm) � dX (x; y) + k7 :If we denote by (x; y)w and (x; y)w;n the Gromov produ
ts in X and Xn respe
tively, the last inequal-ities give for any x; y; w 2 Xn(x; y)w;n � k7 � (x; y)w � (x; y)w;n + k7=2 :Then, we dedu
e for any x; y; z; w 2 Xn, that(x; z)w;n � (x; z)w � k7=2 � minf(x; y)w; (y; z)wg � Æ � k7=2� minf(x; y)w;n � k7; (y; z)w;n � k7g � Æ � k7=2 � minf(x; y)w;n; (y; z)w;ng � Æ � 3k7=2 :Hen
e, Xn is (Æ + 3k7=2)-hyperboli
. �x3. Proof of te
hni
al lemmasLemma 5. For ea
h point z in one side of T , we denote by A = A(z) the union of the two othersides of T . If we are in 
ase 3:4 we have dX(z; A) � 18k6. In other 
ase, we have either:(1) dX(z; A) � 12k6, or(2) there exists a point z1 2 T1 with dX (z; z1) � 8k6, and besides z and z1 are in 
orrespondingsides.Moreover, for ea
h point z1 in one side of T1 there exists a point z 2 T with dX(z; z1) � 8k6, andfurthermore z and z1 are in 
orresponding sides.Consequently, if T1 is Æ1-thin, then T is Æ0-thin, with Æ0 := maxfÆ1 + 16k6; 18k6g.Proof. Re
all that if n 2 F2, then T1 \ Xn = T \ Xn. Consequently, we 
an assume that theverti
es of T belong to [n2�nF2Xn, sin
e in other 
ase the argument is easier.If z =2 �a [ �b [ �
, then z 2 T1 and we have (2) with z1 = z. In other 
ase we 
an assume thatz 2 �a. We 
onsider now the same 
ases in the 
onstru
tion of T1 in the proof of Theorem 2.



19Case 1. We have that �a � Xn only 
ontains a vertex of T . Let us denote by a1; x01; x02 theinternal points of the geodesi
s [x1; x2℄; [a; x2℄; [a; x1℄ in Xn respe
tively. We have �a1 := [x1; x2℄ =[x1; a1℄ [ [a1; x2℄ � Ta. Sin
e Ta is 4k6-�ne in Xn by the hypothesis and Theorem A, if z 2 [x1; x02℄then there exists z1 2 [x1; a1℄ with dX (z1; z) � dXn(z1; z) � 4k6, and if z 2 [x01; x2℄ then there existsz1 2 [a1; x2℄ with dX(z1; z) � 4k6; then, we have (2). If z 2 [a; x01℄, we 
an take w 2 [a; x02℄ withdX(z; w) � 4k6; z 2 [a; x02℄, we 
an take w 2 [a; x01℄ with dX(z; w) � 4k6; then, we have (1).Case 2. We have now that b 2 �a and 
 =2 �a.Case 2.1. We 
onsider the situation dXn(x2; v1) < dXn(x2; u1). We denote by u01 the point in[a; v3℄ � [a; b℄ with dXn(a; u1) = dXn(a; u01).(i) If z 2 [x1; u3℄ � [x1; a℄, then there exists z1 2 [x1; a1℄ su
h that dX(z; z1) � 4k6.(ii) If z 2 [u01; v3℄, then there exists z1 2 [a1; b1℄ su
h that dX(z; z1) � 8k6, sin
e the triangles Taand Tb are 4k6-�ne.(iii) If z 2 [x2; v2℄ � [x2; b℄, then there exists z1 2 [b1; x2℄ with dX(z; z1) � 8k6.In these three 
ases we have (2).(iv) If z 2 [a; u3℄, then there exists w 2 [a; u01℄ su
h that dX(z; w) � 8k6.(v) If z 2 [a; u01℄, then there exists w 2 [a; u3℄ su
h that dX(z; w) � 8k6.(vi) If z 2 [b; v3℄, then there exists w 2 [b; v2℄ su
h that dX(z; w) � 4k6.(vii) If z 2 [b; v2℄, then there exists w 2 [b; v3℄ su
h that dX(z; w) � 4k6.In these four 
ases we have (1).Case 2.2. We 
onsider the situation dXn(x2; v1) � dXn(x2; u1). Let us re
all that a1 = b1. Wedenote by v01 the point in [a; u3℄ � [a; x1℄ with dXn(a; v1) = dXn(a; v01) and by u01 the point in[v2; x2℄ � [b; x2℄ with dXn(x2; u1) = dXn(x2; u01).(i) If z 2 [x1; u3℄ � [x1; a℄, then there exists z1 2 [x1; a1℄ su
h that dX(z; z1) � 4k6.(ii) If z 2 [x2; u01℄ � [x2; b℄, then there exists z1 2 [b1; x2℄ with dX(z; z1) � 8k6.In these two 
ases we have (2).(iii) If z 2 [a; v01℄, then there exists w 2 [a; v3℄ su
h that dX(z; w) � 8k6.(iv) If z 2 [a; v3℄, then there exists w 2 [a; v01℄ su
h that dX (z; w) � 8k6.(v) If z 2 [b; v3℄, then there exists w 2 [b; v2℄ su
h that dX(z; w) � 4k6.(vi) If z 2 [b; v2℄, then there exists w 2 [b; v3℄ su
h that dX(z; w) � 4k6.(vii) If z 2 [u3; v01℄, then there exists w 2 [v2; u01℄ � [b; u01℄ su
h that dX (z; w) � 8k6.(viii) If z 2 [v2; u01℄, then there exists w 2 [v01; u3℄ � [a; u3℄ su
h that dX(z; w) � 8k6.In these �ve 
ases we have (1).Case 3. We have now that b; 
 2 �a.Case 3.1. We 
onsider the situation dXn(x1; s3) < dXn(x1; u2) and dXn(x2; v3) < dXn(x2; u1).We denote by u02 the point in [b; s1℄ � [a; b℄ with dXn(b; u2) = dXn(b; u02), and by u01 the point in[b; v2℄ � [b; 
℄ with dXn(b; u1) = dXn(b; u01).(i) If z 2 [x1; s2℄ � [x1; a℄, then there exists z1 2 [x1; a1℄ su
h that dX(z; z1) � 8k6, sin
e thetriangles Ta and Tb are 4k6-�ne.(ii) If z 2 [s1; u02℄, then there exists z1 2 [a1; b1℄ su
h that dX(z; z1) � 8k6.



20 (iii) If z 2 [u01; v2℄, then there exists z1 2 [b1; 
1℄ su
h that dX (z; z1) � 8k6.(iv) If z 2 [x2; v1℄ � [x2; 
℄, then there exists z1 2 [
1; x2℄ with dX(z; z1) � 8k6.In these four 
ases we have (2).(v) If z 2 [a; s2℄, then there exists w 2 [a; s1℄ su
h that dX (z; w) � 4k6. We have a similar result ifz 2 [a; s1℄.(vi) If z 2 [b; u02℄, then there exists w 2 [b; u01℄ su
h that dX(z; w) � 12k6. We have a similar resultif z 2 [b; u01℄.(vii) If z 2 [
; v2℄, then there exists w 2 [
; v1℄ su
h that dX (z; w) � 4k6. We have a similar resultif z 2 [
; v1℄.In these three 
ases we have (1).Case 3.2. We have the situation dXn(x1; s3) � dXn(x1; u2) and dXn(x2; v3) < dXn(x2; u1). Wedenote by u02 the point in [x1; s2℄ � [x1; a℄ with dXn(x1; u2) = dXn(x1; u02), by u01 the point in [b; v2℄ �[b; 
℄ with dXn(b; u1) = dXn(b; u01), and by s03 the point in [b; v2℄ � [b; 
℄ with dXn(b; s3) = dXn(b; s03).(i) If z 2 [x1; u02℄ � [a; 
℄, then there exists z1 2 [x1; a1℄ su
h that dX(z; z1) � 8k6.(ii) If z 2 [u01; v2℄ � [b; 
℄, then there exists z1 2 [b1; 
1℄ su
h that dX(z; z1) � 8k6.(iii) If z 2 [x2; v1℄ � [a; 
℄, then there exists z1 2 [
1; x2℄ with dX(z; z1) � 8k6.In these three 
ases we have (2).(iv) If z 2 [a; s2℄, then there exists w 2 [a; s1℄ su
h that dX(z; w) � 4k6. We have a similar resultif z 2 [a; s1℄.(v) If z 2 [b; s1℄, then there exists w 2 [b; s03℄ su
h that dX(z; w) � 12k6. We have a similar resultif z 2 [b; s03℄.(vi) If z 2 [
; v2℄, then there exists w 2 [
; v1℄ su
h that dX(z; w) � 4k6. We have a similar result ifz 2 [
; v1℄.(vii) If z 2 [u02; s2℄, then there exists w 2 [u01; s03℄ su
h that dX(z; w) � 12k6. We have a similarresult if z 2 [u01; s03℄.In these four 
ases we have (1).Case 3.3 is similar to 3.2.Case 3.4. We have the situation dXn(x1; s3) � dXn(x1; u2) and dXn(x2; v3) � dXn(x2; u1). Withoutloss of generality we 
an assume that dXn(b; v3) � dXn(b; s3), sin
e the other 
ase is similar. We denoteby v03 the point in [b; u2℄ � [b; x1℄ with dXn(b; v3) = dXn(b; v03), by v003 the point in [x1; s2℄ � [x1; a℄with dXn(x1; v03) = dXn(x1; v003 ), and by s01 the point in [b; v2℄ � [b; 
℄ with dXn(b; s1) = dXn(b; s01).(i) If z 2 [a; s2℄, then there exists w 2 [a; s1℄ su
h that dX(z; w) � 4k6. We have a similar result ifz 2 [a; s1℄.(ii) If z 2 [b; s1℄, then there exists w 2 [b; s01℄ su
h that dX(z; w) � 12k6. We have a similar resultif z 2 [b; s01℄.(iii) If z 2 [
; v2℄, then there exists w 2 [
; v1℄ su
h that dX(z; w) � 4k6. We have a similar result ifz 2 [
; v1℄.(iv) If z 2 [v003 ; s2℄, then there exists w 2 [v2; s01℄ su
h that dX(z; w) � 12k6. We have a similarresult if z 2 [v2; s01℄.



21(v) In other 
ase, z 2 [v003 ; v1℄ � [a; 
℄. We have that LX([v003 ; v1℄) = dX(v003 ; v1) � 12k6; 
onsequentlydX(z; fv003 ; v1g) � 6k6 and dX (z; A) � 6k6 + 12k6 = 18k6.This �nishes the proof of the �rst part of the lemma. The proof of the se
ond one follows a similarargument and is easier, sin
e there is no di
hotomy.Finally, let us see that T1 is Æ1-thin in X implies that T is Æ0-thin in X . We 
onsider z 2 T ; if zsatis�es (1), there is nothing to prove. In other 
ase, there exists z1 2 T1 su
h that dX(z; z1) � 8k6 andz and z1 are in 
orresponding sides. Sin
e T1 is Æ1-thin in X , there exists w1 2 T1 with dX(z1; w1) � Æ1and w1 in the union of the two other sides. The se
ond part of the lemma gives that there existsw 2 A with dX(w1; w) � 8k6. Therefore dX(z; A) � dX(z; w) � Æ1 + 16k6. �Lemma 7. Ea
h side of T1 is a (1; 16k6)-quasigeodesi
 with its ar
-length parametrization. Fur-thermore, ea
h 
onne
ted 
omponent of T1 \Xn is a geodesi
 in Xn, if n 2 � n F2.Proof. We 
an assume that the verti
es of T belong to [n2�nF2Xn, sin
e in other 
ase the argumentis easier.The se
ond statement is a dire
t 
onsequen
e of the 
onstru
tion of T1. This �rst one is a 
onse-quen
e of Lemma 6 and the 
onstru
tion of T1:If g : J �! X is a geodesi
 side of T , Lemma 6 gives that it is enough to 
he
k that there exists asubinterval I � J su
h that g1 : I �! X is the ar
-length parametrization for the 
orresponding sidein T1 of g, and that dX(g(t); g1(t)) � 8k6 for every t 2 I .We 
onsider now the same 
ases in the 
onstru
tion of T1 in the proof of Theorem 2.Case 1. If [x1; x02℄ � g, then we substitute this interval for [x1; a1℄ in order to obtain g1, and thenwe have dX (g(t); g1(t)) � 4k6 in these ar
s, sin
e Ta is 4k6-�ne. The 
ase [x2; x01℄ � g is similar.Case 2. If [x1; u3℄ � g, then we substitute this interval for [x1; a1℄ in order to obtain g1, and thenwe have dX(g(t); g1(t)) � 4k6 in these ar
s. The 
ase [x2; v2℄ � g is similar, with 
onstant 8k6, sin
eTa and Tb are 4k6-�ne.Case 2.1. If g = [a; b℄, then [u01; v3℄ � g and g1 = [a1; b1℄. We have dX(g(t); g1(t)) � 8k6 in g1.Case 2.2. If g = [a; b℄, then a1 = b1 and g1 is this unique point.Case 3.1. If [x1; s2℄ � g, then we substitute this interval for [x1; a1℄ in order to obtain g1, and thenwe have dX (g(t); g1(t)) � 8k6 in these ar
s. The 
ase [x2; v1℄ � g is similar.If g = [a; b℄, then [s1; u02℄ � g and g1 = [a1; b1℄. We have dX(g(t); g1(t)) � 8k6 in g1. If g = [b; 
℄,then [u01; v2℄ � g and g1 = [b1; 
1℄. We have dX (g(t); g1(t)) � 8k6 in g1.Case 3.2. If g = [a; 
℄, we have [x1; u02℄ [ [x2; v1℄ � g, and then we substitute these intervals for[x1; a1℄[ [x2; 
1℄ (respe
tively) in order to obtain g1; then we have dX (g(t); g1(t)) � 8k6 in these ar
s.If g = [b; 
℄, then [u01; v2℄ � g and g1 = [b1; 
1℄. We have dX(g(t); g1(t)) � 8k6 in g1.If g = [a; b℄, then a1 = b1 and g1 is this unique point.Case 3.3 is similar to 3.2; we do not 
onsider 3.4 sin
e in this 
ase we do not have T1. �Lemma 9. Ea
h side of T3 is a (1+k2; k1+16k6)-quasigeodesi
 with its ar
-length parametrization.Furthermore, ea
h 
onne
ted 
omponent of T3 \Xn is a geodesi
 in Xn, if n 2 F1.



22 Proof. We 
an assume that the verti
es of T belong to [n2F1Xn, sin
e in other 
ase the argumentis easier.The se
ond statement is a dire
t 
onsequen
e of the 
onstru
tion of T3 and Lemma 7. In orderto see the �rst one, let us 
onsider an ar
-length parametrization g1 : [0; l℄ �! X of one side ofT1. Without loss of generality we 
an assume that g1(0) = a2 and g1(l) = b02. g1 is a (1; 16k6)-quasigeodesi
 by Lemma 7. We 
onsider now an ar
-length parametrization g3 : [0; l0℄ �! X of theside of T3 
orresponding to g1. If g3 = g1, there is nothing to prove.In other 
ase, if s; t 2 [0; l0℄ there exist s� 2 (t2i�1; t1i ℄ and t� 2 (t2j�1; t1j ℄ su
h that s = s��Pi�1k=1(t2k�t1k), t = t� �Pj�1k=1(t2k � t1k), g3(s) = g1(s�) and g3(t) = g1(t�). Provided that i = j, we have thatdX (g3(t); g3(s)) = dX(g1(t�); g1(s�)) � jt� � s�j = jt� sj ;dX (g3(t); g3(s)) = dX(g1(t�); g1(s�)) � jt� � s�j � 16k6 = jt� sj � 16k6 :Otherwise, we 
an assume that i < j. Then we have thatdX(g3(t); g3(s)) = dX(g1(t�); g1(s�)) � t� � s� = t� s+ j�1Xk=i(t2k � t1k) ;dX(g3(t); g3(s)) = dX(g1(t�); g1(s�)) � t� � s� � 16k6 � t� s� 16k6 :Observe that (
2) gives t1k+1 � t2k � k�12 (t2k � t1k). This fa
t implies thatt� s � j�2Xk=i(t1k+1 � t2k) � k�12 j�2Xk=i(t2k � t1k) :This inequality and (b) givedX(g3(t); g3(s)) � t� s+ j�2Xk=i(t2k � t1k) + t2j�1 � t1j�1 � (1 + k2)(t� s) + k1 : �Lemma 11. Let us 
onsider two geodesi
s 
1 : [0; l1℄ �! X and 
2 : [0; l2℄ �! X in a Æ-�nespa
e X, with d(
1(0); 
2(0)) � 
 and d(
1(l1); 
2(l2)) � 
. Then d(
1(t); 
2(l2t=l1)) � 2Æ + 7
, fort 2 [0; l1℄.Proof. Without loss of generality we 
an assume that l1 � l2. We 
onsider the geodesi
 quadri-lateral Q = f
1(0); 
1(l1); 
2(l2); 
2(0)g and the geodesi
 triangles T1 = f
1(0); 
1(l1); 
2(0)g (withinternal points p1 2 
1, p2 2 [
1(l1); 
2(0)℄, p3 2 [
1(0); 
2(0)℄) and T3 = f
1(l1); 
2(l2); 
2(0)g (withinternal points q1 2 [
1(l1); 
2(0)℄, q2 2 
2, q3 2 [
1(l1); 
2(l2)℄).Let us 
all q01 the point in 
1 with d(
1(l1); q01) = d(
1(l1); q1) = d(
1(l1); q3) =: v1, and p02 thepoint in 
2 with d(
2(0); p02) = d(
2(0); p2) = d(
2(0); p3) =: u2. We de�ne u1 := d(
1(0); p1) =d(
1(0); p3), and v2 := d(
2(l2); q2) = d(
2(l2); q3). Observe that d(
1(0); 
2(0)) = u1 + u2 � 
 andd(
1(l1); 
2(l2)) = v1 + v2 � 
.We 
an assume that u1 + v1 � l1 = L(
1), sin
e the another 
ase is simpler; this fa
t impliesu2+ v2 � l2 = L(
2). Sin
e T1 and T3 are Æ-�ne, we have that d(
1(t+u1); 
2(t+u2)) � 2Æ, for everyt 2 [0; l1 � u1 � v1℄.



23Observe that d(
1(t); 
2(t)) � 2Æ + 
, for every t 2 [0; l1 � u1 � v1℄:d(
1(t); 
2(t)) � d(
1(t); 
1(t+ u1)) + d(
1(t+ u1); 
2(t+ u2)) + d(
2(t+ u2); 
2(t))� u1 + 2Æ + u2 � 2Æ + 
 :If t 2 [l1 � u1 � v1; l1℄, we have thatd(
1(t); 
2(t)) � d(
1(t); 
1(l1 � u1 � v1)) + d(
1(l1 � u1 � v1); 
2(l1 � u1 � v1))+ d(
2(l1 � u1 � v1); 
2(t))� u1 + v1 + 2Æ + 
+ u1 + v1 � 2Æ + 5
 :Then we have d(
1(t); 
2(t)) � 2Æ + 5
, for every t 2 [0; l1℄.The same argument with parametrizations whi
h reverse the orientation, gives d(
1(t); 
2(t+ l2 �l1)) � 2Æ + 5
, for every t 2 [0; l1℄.Observe now that t � l2t=l1 � t+ l2 � l1, and l2 � l1 � 2
. Consequently we haved(
1(t); 
2(l2t=l1)) � d(
1(t); 
2(t)) + d(
2(t); 
2(l2t=l1)) � 2Æ + 5
+ l2 � l1 � 2Æ + 7
 : �Lemma 13. Ea
h side of T5 is a (d1; d2)-quasigeodesi
 with its 
anoni
al parametrization, whered0 := (1 + k2)(1 + 2k2)k4, d1 := d0(1 + k2)(1 + 2k2) andd2 := max�k1 + (1 + k2)k5; k4(15k1 + 32k6) + k5; d�10 (17k1 + 32k6) + 2(k1 + k5) + (1 + 2k2)�1k5	 :Proof. Let us 
onsider a side g4 : I �! X in T4 with its ar
-length parametrization, and its
orresponding side g5 in T5 with its 
anoni
al parametrization.Given s; t 2 I , let us 
hoose a geodesi
 
 in Y between g5(s) an g5(t).By hypothesis, 
 meets at most a �nite number of �inm's. Let us assume �rst that 
 does not meet[n;m;i�inm. Then 
 � Yn, for some n 2 �, and we have by (
3) and (
4)dY (g5(t); g5(s)) = dYn(g5(t); g5(s)) � k�14 dXn(g4(t); g4(s))� k5 � k�14 dX(g4(t); g4(s))� k5 :Let us assume now that 
 meets [n;m;i�inm. Our goal is to split 
 into some 
urves joining two
losed sets �inm and �jnk in Yn, so that we 
an relate them with the geodesi
s 
ijmnk � Xn joining �inmwith �jnk mentioned in (
3) for n 2 F1; if n 2 F2 we 
an take as 
ijmnk any geodesi
 joining �inm with�jnk. If 
 : [�; �℄ �! Y , let us de�nev11 := minf� � v � � : 
(v) 2 [n;m;i�inmg :There exists this minimum sin
e 
 is a 
ontinuous fun
tion in a 
ompa
t interval and 
 \ ([n;m;i�inm)is a 
ompa
t set: ea
h �inm is a 
losed set and 
 meets at most a �nite number of �inm's.Then 
(v11) 2 �i1n1m1 , for some n1;m1; i1, and we de�nev21 := maxf� � v � � : 
(v) 2 �i1n1m1g :In a similar way, we de�ne re
ursivelyv1j := minfv2j�1 < v � � : 
(v) 2 [n;m;i�inmg ;



24if 
(v1j ) 2 �ijnjmj , for some nj ;mj ; ij , we takev2j := maxfv2j�1 < v � � : 
(v) 2 �ijnjmjg :We 
an 
ontinue this 
hoi
e for 1 � j � r. We have thatdY (g5(t); g5(s)) = LY (
) = � � � � v11 � �+ rXk=2(v1k � v2k�1) + � � v2r :Given �ik�1nk�1mk�1 and �iknkmk , we have nk�1 = nk, nk�1 = mk, mk�1 = nk or mk�1 = mk.Sin
e �inm = �imn, by simpli
ity in the notation we 
an assume that mk�1 = nk and that the 
urvef ik�1iknk�1nkmk Æ 
ik�1iknk�1nkmk joining �ik�1nk�1mk�1 and �iknkmk , is 
ontained in Ynk . If 
ik�1iknk�1nkmk : [�k; �k℄ �!Xnk (k = 2; : : : ; r), then (
3) and (
4) give thatk�14 dXnk �
ik�1iknk�1nkmk(�k); 
ik�1iknk�1nkmk (�k)�� bik�1iknk�1nkmk� dYnk �f ik�1iknk�1nkmk(
ik�1iknk�1nkmk (�k)); f ik�1iknk�1nkmk(
ik�1iknk�1nkmk(�k))� :By (
2), dYnk �f ik�1iknk�1nkmk(
ik�1iknk�1nkmk (�k)); f ik�1iknk�1nkmk(
ik�1iknk�1nkmk (�k))�� diamYnk ��ik�1nk�1mk�1�+ dYnk ��ik�1nk�1mk�1 ; �iknkmk�+ diamYnk ��iknkmk�� (1 + 2k2) dYnk ��ik�1nk�1mk�1 ; �iknkmk� :Consequently we havev1k � v2k�1 � dYnk ��ik�1nk�1mk�1 ; �iknkmk�� (1 + 2k2)�1dYnk �f ik�1iknk�1nkmk(
ik�1iknk�1nkmk (�k)); f ik�1iknk�1nkmk(
ik�1iknk�1nkmk (�k))�� (1 + 2k2)�1�k�14 dXnk �
ik�1iknk�1nkmk (�k); 
ik�1iknk�1nkmk(�k)�� bik�1iknk�1nkmk�:We have that 
([�; v11 ℄) � Yn1 or 
([�; v11 ℄) � Ym1 , and 
([v2r ; �℄) � Ynr or 
([v2r ; �℄) � Ymr . Bysimpli
ity in the notation, we 
an assume that 
([�; v11 ℄) � Yn1 and 
([v2r ; �℄) � Ynr . Then Remark 6before Theorem 2 givesv11 � � � dYn1 �g5(s); �i1n1m1� � k�14 dXn1 �g4(s); �i1n1m1�� k1 � k5 ;� � v2r � dYnr �g5(t); �irnrmr� � k�14 dXnr �g4(t); �irnrmr�� k1 � k5 :Consequently we havedY (g5(t); g5(s)) � v11 � �+ rXk=2(v1k � v2k�1) + � � v2r� k�14 dXn1 �g4(s); �i1n1m1�� k1 � k5 + k�14 dXnr �g4(t); �irnrmr�� k1 � k5+ (1 + 2k2)�1 rXk=2�k�14 dXnk �
ik�1iknk�1nkmk(�k); 
ik�1iknk�1nkmk(�k)�� bik�1iknk�1nkmk�� k�14 dXn1 �g4(s); �i1n1m1�+ k�14 dXnr �g4(t); �irnrmr�� 2(k1 + k5)� (1 + 2k2)�1k5+ (1 + 2k2)�1k�14 rXk=2 dXnk �
ik�1iknk�1nkmk(�k); 
ik�1iknk�1nkmk(�k)�:



25Now we want to obtain a 
ontinuous 
urve 
0 in X joining g4(s) with g4(t).By (
2) we 
an 
hoose geodesi
s 
k in Xnk+1 (2 � k � r � 1) joining 
ik�1iknk�1nkmk (�k) with
ikik+1nknk+1mk+1(�k+1), su
h thatLXnk+1 (
k) = dXnk+1 �
ikik+1nknk+1mk+1(�k+1); 
ik�1iknk�1nkmk(�k)�� k2 dXnk+1 �
ikik+1nknk+1mk+1(�k+1); 
ikik+1nknk+1mk+1(�k+1)�:By (b) we 
an 
hoose a geodesi
 
1 in Xn1 joining g4(s) with 
i1i2n1n2m2(�2), su
h thatLXn1 (
1) = dXn1 �g4(s); 
i1i2n1n2m2(�2)� � dXn1 �g4(s); �i1n1m1�+ k1 ;and a geodesi
 
r in Xnr joining 
ir�1irnr�1nrmr (�r) with g4(t), su
h that LXnr �
r� � dXnr �g4(t); �irnrmr�+k1.We 
onsider now the 
ontinuous 
urve 
0 in X joining g4(s) with g4(t) obtained by the juxtapositionof the geodesi
s f
kgrk=1 and f
ik�1iknk�1nkmkgrk=2.On the one hand, these fa
ts givedX (g4(t); g4(s)) � LX(
0) � dXn1 �g4(s); �i1n1m1�+ k1 + dXnr �g4(t); �irnrmr�+ k1+ (1 + k2) rXk=2 dXnk �
ik�1iknk�1nkmk(�k); 
ik�1iknk�1nkmk (�k)�� 2k1 + d0(2(k1 + k5) + (1 + 2k2)�1k5) + d0�k�14 dXn1 �g4(s); �i1n1m1�+ k�14 dXnr �g4(t); �irnrmr�+ (1 + 2k2)�1k�14 rXk=2 dXnk �
ik�1iknk�1nkmk(�k); 
ik�1iknk�1nkmk (�k)�� 2(k1 + k5)� (1 + 2k2)�1k5�� 2k1 + d0(2(k1 + k5) + (1 + 2k2)�1k5) + d0 dY (g5(t); g5(s))(re
all that d0 := (1 + k2)(1 + 2k2)k4); then we have Corollary 4, sin
e so far we have not used thatg4(s) and g4(t) belong to the same side of T4.On the other hand, Lemma 12 gives(1 + k2)�1(1 + 2k2)�1jt� sj � 15k1 � 32k6 � dX(g4(t); g4(s)) :Consequently we havedY (g5(t); g5(s)) � d�10 (1 + k2)�1(1 + 2k2)�1jt� sj � d�10 (17k1 + 32k6)� 2(k1 + k5)� (1 + 2k2)�1k5 :In order to see the other inequality, we 
onsider the domain I of g5 and s; t 2 I , with s < t.If g5([s; t℄) does not interse
t with any �inm, then g5([s; t℄) � hijmnk, for some m;n; k; i; j. This fa
t,(
3) and (
4) give dY (g5(t); g5(s)) � dYn(g5(t); g5(s)) � k4dXn(g4(t); g4(s)) + k5 :In other 
ase, we 
an split the interval [s; t℄ into a union of intervals [u0; u1℄[ (u1; u2℄[ � � � [ (ul�1; ul℄,with l � 1, su
h that g5((ur�1; ur℄) � hirjrmrnrkr � Ynr (1 � r � l), u0 = s and ul = t. We have thatg5(ur) is an end point of hirjrmrnrkr ; we denote by g5(ur�1+) the other end point of hirjrmrnrkr .



26 By (b) and (
2) we have that dYnr+1 �g5(ur+); g5(ur)� � k2 dYnr+1 �g5(ur+1); g5(ur+)� (1 � r �l� 2), and dYnl �g5(ul�1+); g5(ul�1)� � k1. These fa
ts, (
3), (
4) and Lemma 12 givedY (g5(t); g5(s)) � l�1Xr=0 dYnr+1 �g5(ur+1); g5(ur+)�+ l�2Xr=1 dYnr+1 �g5(ur+); g5(ur)�+ dYnl �g5(ul�1+); g5(ul�1)�� k1 + (1 + k2) l�1Xr=0 dYnr+1 �g5(ur+1); g5(ur+)�� k1 + (1 + k2) l�1Xr=0 �k4 dXnr+1 �g4(ur+1); g4(ur+)�+ br�� k1 + (1 + k2) k5+ (1 + k2) k4 l�1Xr=0 jur+1 � urj � (1 + k2) k4jt� sj+ k1 + (1 + k2) k5 :Consequently we have the result. �Referen
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