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Mathematical Methods in Modern Risk Measurement:
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Alejandro Balbás

Abstract. In the last ten years we have been facing the development on new approaches in Risk
Measurement. The Coherent, Expectation Bounded, Convex, Consistent, etc. Risk Measures have been
introduced and deeply studied, but there are many open problems that will have to be addressed in forth-
coming research. The present paper attempts to summarize the achieved findings and the “State of the
Art”, as well as their relationships with other Mathematical Fields, with special focus on other usual
topics of Mathematical Finance.

Una panorámica sobre los métodos matemáticos de la moderna medición
de riesgos

Resumen. En los últimos diez años hemos asistido al desarrollo de nuevos enfoques en Medición de
Riesgos. Las Medidas de Riesgo Coherentes, Acotadas por la Media, Convexas, Consistentes, etc., han
sido introducidas y profundamente estudiadas, aunque siguen abiertos numerosos problemas que tendrán
que ser abordados en investigaciones futuras. El presente artı́culo sintetiza los logros alcanzados y “El
Estado Actual de la Cuestión”, ası́ como las relaciones con otros campos de la Matemática, con atención
especial a los temas clásicos de la Matemática Financiera.

1 Introduction
Perhaps the most important issues in Mathematical Finance are the Theory of Asset Pricing, the Theory
of Portfolio Choice and the Risk Management Theory. Obviously, the three topics are closely related and
those findings that are significant in a field have also interesting influence in the remaining ones. The risk
measurement is a critical point affecting all the major topics (pricing, hedging, portfolio optimization, risk
management, etc.). However, there is no a general method to measure the degree of risk of every financial
strategy. On the contrary, there are alternative approaches and the use of a concrete one mainly depends
on the specific problem we have to deal with. The risk study and measurement is also crucial in Actuarial
Sciences, where the Classical Risk Theory will always play a central role.

The recent growing development of the Financial and Actuarial sectors has provoked a new point of
view when measuring risk levels. The new approach must consider the necessities of regulators, who must
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A. Balbás

provide rules guaranteeing the stability of the system, supervisors, who must control that the industrial
activities respect the legal framework, and public or private companies, that must manage the wealth of
their customers. In the European Union the set of rules that the industry must respect are mainly contained
in Basle II (finance) and Solvency II (insurance). They provide the way that any corporation must follow in
order to compute its “capital reserves”, i.e., additional capital that will be devoted to overcome those periods
characterized by losses of the economic activity. The size of the appropriate reserve may be considered as
the risk level associated with the firm (or its activity). From a mathematical perspective this reserve will
be understood as a real-valued function on a Lp(Ω,F , µ) space, where p ∈ [1,∞], and (Ω,F , µ) is an
arbitrary probability space. The study of these functions, that we will call modern risk measures, is the
focus of the Modern Risk Measurement.

This survey tries to summarize the most important mathematical findings concerning the modern risk
measures. For the sake of brevity we will not be exhaustive, but we will try to provide the reader with a
general view about the current “State of the Art”. The modern measures of risk will merit our attention
for various reasons: Firstly, as said above, they are related to the current legal framework that affects the
financial companies. Secondly, they are far less known than more classical risk measures. Thirdly, they
present many open and interesting problems that may be addressed by young researchers interested in these
issues, and fourthly, they may apply in any financial or insurance problem as well as for every kind of risk
(market risk, credit risk or operational risk).

As already said there are several classical approaches about the risk measurement, and they are far of
being equivalent. Then we will also present a synthesis about the History of the (classical) Risk Measure-
ment, since this information may assist to understand the necessity of the new approach. For the sake of
simplicity we will concentrate our historical synopsis on the financial case, since presenting the actuarial
perspective would significantly enlarge the article.

Throughout the article we will attempt to draw on the economic intuition and interpretation. Of course,
many mathematical details will not be addressed. They may be found in the cited references, among many
other books and articles. Furthermore, the interested reader may also consult the web http://www.
gloriamundi.org, where a vast number of documents on risk measurement are available. For example,
many here cited references can be downloaded from this webpage.

The first, second, third and fourth sections of the paper will yield a general view about the History of
the Classical Risk Measurement in different financial markets (stock markets, fixed income markets and
derivative markets). Sections 5, 6, 7, 8 and 9 will deal with the modern viewpoint, and the last section
concludes the article.

2 Classical methods in risk measurement: Dispersion mea-
sures

Since the nineteenth century many authors significantly contributed the development in Mathematical Fi-
nance. However, in order to simplify this exposition, we will start our synopsis by summarizing the ideas
of Harry Markowitz, 1990 Nobel Laureate in Economics due to his “Portfolio Theory” and his analysis
if the Risk Measurement, amongst many other innovations. Indeed, Markowitz proved that normally and
log-normally distributed share returns make the return variance compatible with the usual utility functions
of Financial Economics (increasing and concave functions). Accordingly, he proposed his well-known
method in Portfolio Optimization, that consists in simultaneously maximizing the expected portfolio return
and minimizing the standard deviation of this return. Technical details may be found in [38] and [39].

Though he focused on the standard deviation as a risk measure, it is not difficult to extend his ideas so as
to show that other dispersion measures (the absolute deviation, for instance) also respect the classical utility
functions and, consequently, they can also be used in order to measure risk levels, despite the corresponding
portfolio optimization problem may become much more complex.

Markowitz was born in Chicago in 1927 and he devoted his research to the applications of Mathematics
in practical problems. For instance, the sentences below were written by himself:
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When it was time to choose a topic for my dissertation, a chance conversation suggested the
possibility of applying mathematical methods to the stock market. I asked Professor Marschak
what he thought. He thought it reasonable, and explained that Alfred Cowles himself had been
interested in such applications. He sent me to Professor Marshall Ketchum who provided a
reading list as a guide to the financial theory and practice of the day.

I left the University of Chicago and joined the RAND Corporation in 1952. Shortly there-
after, George Dantzig joined RAND. While I did not work on portfolio theory at RAND, the
optimization techniques I learned from George (beyond his basic simplex algorithm which I
had read on my own) are clearly reflected in my subsequent work on the fast computation of
mean-variance frontiers (Markowitz (1956) and Appendix A of Markowitz (1959)). My 1959
book was principally written at the Cowles Foundation at Yale during the academic year 1955-
56, on leave from the RAND Corporation, at the invitation of James Tobin. It is not clear that
Markowitz (1959) would ever have been written if it were not for Tobin’s invitation.

My article on ”Portfolio Selection” appeared in 1952. In the 38 years since then, I have
worked with many people on many topics. The focus has always been on the application of
mathematical or computer techniques to practical problems, particularly problems of business
decisions under uncertainty. Sometimes we applied existing techniques; other times we de-
veloped new techniques. Some of these techniques have been more ”successful” than others,
success being measured here by acceptance in practice.

Another important contribution in Portfolio Theory was simultaneously presented by Roy (see [51]).
He also maximized the expected return of a portfolio of stocks but the risk level was measured by the
probability of losing money. Nevertheless, since this probability is bounded from above by using variances
and the Tchebycheff inequality, in practical situations the variance becomes the risk measure once more.

William Sharpe (1964) —[55]— published the Capital Asset Pricing Model (CAPM), probably one
of the most important Equilibrium Models in Financial Economics. Parallel work was also performed
by Tobin ([56]), Treynor ([57]), Lintner ([36]) and others. The CAPM extended the Harry Markowitz’s
Portfolio Theory so as to introduce the notions of systematic (justified by “the market” or the “Market
Portfolio”) and specific (non justified) risk. Once again risk levels were measured with variances. For his
work on CAPM , Sharpe shared the 1990 Nobel Prize in Economics with Harry Markowitz and Merton
Miller.

Stephen A. Ross is famous for the invention of the Arbitrage Pricing Theory (APT), a key innovation in
Financial Economics that partially extends CAPM, in the sense that the role of “the market” is plaid by other
economic factors (inflation, interest rates, exchange rates, oil prices, etc.). He was awarded the Graham
& Dodd Prize for his distinguished research on such wide-ranging work in mathematical finance theory
as the theory of agency, the binomial model of option pricing, and the Cox-Ingersoll-Ross term structure
model of interest rates.

More authors dealt with the variance and generalized the contributions above by considering strictly
weaker assumptions about the asset returns behavior, the agents utility function or other involved economic
properties. The Stochastic Discount Factor (SDF) is a key notion developed from the Riesz Representation
Theorem (the isomorphism between a Hilbert Space and its Dual Space). The SDF leads to the Market
Portfolio of Sharpe and the CAPM and APT major formulas. The existence of the SDF is equivalent to the
fulfillment of the Law of One Price, necessary condition to guarantee the absence of arbitrage,1 and it also
connects with the theory by “Arrow-Debreu” about State Prices. In particular, the SDF generates “Pricing
Rules”, i.e., it provides linear functions enabling us to price new securities introduced in the market, such us
derivatives.2 The interested reader may consult, for instance, Chamberlain and Rothschild ([18]), Balbás,
Mirás and Muñoz ([9]) and Cochrane ([20]).

1In Financial Economics and Mathematical Finance an arbitrage is an investment strategy that never leads to capital losses and
may provide infinite returns under favorable scenarios. The existence of arbitrage is not compatible with the existence of equilibrium,
which implies that the arbitrage absence is usually imposed in theoretical approaches.

2A derivative security is an asset whose value depends on another asset called underlying security. Call and put options, as well as
forward and future contracts, are the most popular derivatives, though there are more examples.
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The ideas above were more recently addressed in models that incorporate transaction costs, portfolio
constraints and/or other market imperfections or frictions. Under the new assumptions authors still deal with
the variance (or other dispersion) as a risk measure and they attempt to find SDF, efficient strategies, the
Market Portfolio, Pricing Rules, etc. There are many open questions in this field since problems become far
more complex from a mathematical point of view. For instance, new separation theorems have been stated,
extending those that are more classical in Functional Analysis. Important papers are, among others, He and
Modest ([31]), Luttmer ([37]) and Jouini and Kallal ([33]).

Another question recently generating a growing interest is the compatibility between a Dispersion Mea-
sure and the “Second Order Stochastic Dominance” (SOSD).3 As said above, Markowitz justified the vari-
ance by showing that it is compatible with usual utilities, but he only dealt with normal and log-normal
distributions. Empirical studies are indicating that the presence of “asymmetries”, “heavy tails” and “ex-
treme values” is becoming more and more evident. In a Non-Gaussian world the arguments of Markowitz
do not work any more, and the variance is not an appropriate risk measure. Indeed, it is not compatible with
the SOSD, and minimizing the standard deviation one could find a portfolio that does not maximize any
rational utility function. Recent research has shown that this caveat may be overcome by using alternative
dispersion measures, such as the absolute deviation and semideviation, the standard semideviation etc. See
Ogryczak and Ruszczynski ([41, 42, 43]) for further details.

The introduction of new dispersion measures is making portfolio choice problems much more com-
plicated in practice. Another line of research addresses this topic. For example, Konno Akishino and
Yamamoto ([35]) incorporate frictions and fat tails and minimize the absolute deviation, and a more sophis-
ticated analysis may be found in Jouini and Kallal ([33]).

3 Classical methods: Sensitivities for fixed income securities

Seventy years ago Macaulay introduced the notion of “Duration” of fixed income securities or portfolios.
The idea is quite simple from a mathematical viewpoint. Indeed, the market price of every bond depends on
the interest rate level. If this level increases (decreases) then the price decreases (increases) and the “slope”
of this negative relationship indicates how much money the bondholder can lose due to the possible interest
rate growth.4 The same idea applies if we deal with a general strategy composed of fixed income securi-
ties, although the negative derivative does not necessarily hold if there are short positions (sold securities)
involved. This is the reason why Macaulay considered that the derivative of the portfolio price with respect
to the interest rate level may be understood as a risk measure. He also showed that this derivative is closely
related to “his duration”, a particular date that depends on the strategy and the interest rate level.

The ideas of Macaulay were later formalized in Fisher and Weil ([25]), where the authors showed that
a fixed income portfolio is “Immunized” with respect to the interest rate risk if and only if the duration
of assets equals the duration of liabilities. In other words, the portfolio is immunized if and only if the
derivative of the global portfolio price with regard to the interest rate vanishes.

However, in practice the interest rate is not constant and critically depends on the considered period,
arising the so called Term Structure of Interest Rates (TSIR). Furthermore, interest rate shifts are non-
flat, in the sense that they are also functions of time. This fact has motivated further extensions of the
Fisher and Weil approach. Some examples are Chambers, Carleton and McEnally ([19]), Elton, Gruber and
Michaely ([24]), Bowden ([16]), Paroush and Prisman ([44]), Barber and Copper ([12]) or Agca ([1]). All
of them deal with a non-flat TSIR and non-flat shifts, and they measure the portfolio risk by using partial
derivatives or differentials, that must vanish to prevent the existence of risk.

Fong and Vasicek ([28]) seems to be the first paper using a dispersion measure, called M -squared and
closely related to the variance, that may measure the risk level with respect to the TSIR modifications.

3See Yaari ([60]) for details about this notion.
4Notice that the interest rate growth will never be “too large” in practice (in a short period of time), so the function indicating the

bond price may be identified with its first order approximation.
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They also showed that M -squared is given by a mathematical derivative as well. Therefore, they esta-
blished some kind of relationship between a risk measure given by a derivative and a risk measure given
by a dispersion. As far as we know this is the first paper addressing this topic. The ideas of Fong and
Vasicek were empirically tested in many papers (for instance, Bierwag, Fooladi and Roberts, [14]), and
their theoretical contribution was significantly extended by Balbás and Ibáñez ([7]) and by Balbás, Ibáñez
and López ([8]), where the authors studied many properties connecting dispersions and derivatives for fixed
income strategies, as well as between dispersions and possible capital losses.

4 Sensitivities of derivative portfolios: “The Greeks”
Professor Robert C. Merton, Harvard University, Cambridge, USA and Professor Myron S. Scholes, Stan-
ford University, Stanford, USA, 1997 Nobel Laureate in Economics.

Robert C. Merton and Myron S. Scholes have, in collaboration with the late Fischer Black, developed a
pioneering formula for the valuation of stock options. Their methodology has paved the way for economic
valuations in many areas. It has also generated new types of financial instruments and facilitated more
efficient risk management in society.

As indicated in the lines above, Merton and Scholes were awarded 1997 Nobel Prize for their work in
collaboration with Black, who had already died in 1997.

The three authors proposed a continuous time approach to explain a stock price stochastic behavior, and
then they drew on the Ito’s Lemma in order to reach a second order partial differential equation that must
be satisfied by the price of any replicable derivative (see Black and Scholes [15]). By solving the equation,
along with terminal conditions that depend on the derivative to be analyzed, derivatives can be priced ad
hedged.

The Girsanov-Martin-Cameron theorem provides an alternative way since it gives the risk-neutral pri-
cing rule, i.e., it allows as to modify the real probability so as to obtain a new probability measure, called
risk-neutral, and such that it is equivalent to the initial one and the discounted market price become a
martingale under the risk-neutral measure. Thus, every derivative can be priced if we know the (risk-
neutral) distribution of its terminal price (or pay-off). Indeed, the pricing rule consists in computing the
expectation of the terminal price present value.

According to the Black and Scholes conclusions, the risk level generated by any derivative security
may be neutralized by trading δ units of the underlying asset, δ being the partial derivative (sensitivity) of
the derivative security price with respect to the underlying asset price. Thus, once again risk levels can be
measured by sensitivities. Since δ is dynamic and random (or stochastic), to hedge a long/short position in
a derivative agents must continuously rebalance the quantity of the underlying asset in the portfolio. But
practitioners cannot trade in a continuous time setting, which may lead to new sources of risk. So, the
usual Γ, the sensitivity of δ with respect to the underlying asset price, will also play an important role when
hedging derivative portfolios. Actually, if Γ is not close to zero then the value of δ is not stable, and the
portfolio must be rebalanced much more often.

In order to prevent discrepancies between the real market behavior and the model dynamic assumptions,
some more sensitivities must be “under control”. So, a perfect hedging of derivative portfolios implies that
the famous “Greeks” must (if possible) vanish. The Greeks are therefore very important risk measures.
They are:

Delta (δ). Sensitivity (or partial derivative) of the portfolio price with respect to the underlying asset price.

Gamma (Γ). Sensitivity of Delta with respect to the underlying asset price.

Theta (θ). Sensitivity of the portfolio price with respect to time.

Ro (ρ). Sensitivity of the portfolio price with respect to the riskless interest rate.

Vega (υ). Sensitivity of the portfolio price with respect to the underlying asset volatility.
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More recently some more Greeks have been introduced, though the basic ideas remain the same as
above.

During many years these properties have been extended to more complex stochastic frameworks (sto-
chastic volatility, Heston model, jumps in the volatility, interest rates stochastic models, currencies, volati-
lity-linked derivatives, etc.). This has motivated the development of the so called “Asset Pricing Theory”, a
very important topic in Mathematical Finance. Asset Pricing Theory is closely related to Risk Management
in both complete and incomplete markets,5 though things are far more complex in incomplete models. The
interested reader may consult, for instance, Back ([11]). “Abstract pricing models” have also deserved
the attention of many researchers. They do not impose any special assumption about the price behavior.
The price process is just a stochastic process, and, under suitable conditions, the absence of arbitrage is
characterized by the existence of an equivalent martingale measure.6 Moreover, the market is complete
if and only if the martingale measure is unique.7 The existence of martingale measures has also been
addressed under the existence of frictions (see Jouini and Kallal ([33]) or Schachermayer ([53]), amongst
many others). Further extensions of the Fundamental Theorems of Asset Pricing go on being studied in
both perfect or imperfect markets.

5 Recent measures: Capital requirements and risk functions

As illustrated above, the risk measurement critically depends on the securities we are dealing with, making
it rather complicated to introduce a global measure applying for different financial instruments and kinds of
risk.

On the other hand, along the twentieth century many financial crises provoked the investors lack of
confidence in financial institutions. It made rather convenient the introduction of margins and financial
requirements by regulators.

On June 26th, 1974, German Regulators forced Bank Herstatt into liquidation due to its level of losses.
This case and others motivated the group G-10 (Belgium, Canada, France, Germany, Italy, Japan, Nether-
lands, Sweden Switzerland UK and US) to create the Basle Committee on Banking Supervision, which
provided a minimal set of capital requirements in 1988.

In 1993 the European Union also integrated several systems of Capital Requirements, involving both,
Banks and other Financial Institutions. The system of provided rules was called Basle I. Later, the process
has been extended in many directions all around the world.

Two years ago the European Commission provided Basle II, a new complex set of rules that Banks
and other Financial Institutions must respect in order to compute their margins and Capital Requirements.
Basle II is much more sophisticated that Basle I because it incorporates the level of complexity of modern
capital markets, and it also allows the involved institution to develope particular risk measurement proce-
dures if they can be adequately justified with theoretical and practical arguments. The supervisor (the Bank
of Spain or Comisión Nacional del Mercado de Valores, in the Spanish case) must decide if the created
control system is correct. This new legal framework will cause competition between different financial
institutions, that must look for “cheap and efficient” ways to measure and control the degree of risk.

The European Commission will publish Solvency II in one or two years, quite similar to Basle II but
specially affecting the Insurance Firms.

5A pricing model is said to be complete if every terminal price (or pay-off) may be replicated by a self-financing portfolio, i.e.,
given a pay-off f paid at a future date T , there exists a stochastic portfolio that will not generate any pay-off before T and will pay f
at T .

6This is the First Fundamental Theorem of Asset Pricing. See Harrison and Kreps ([30]) for a simple version or Dalang, Morton
and Willinger ([22]) and Jacod and Shiryaev ([32]) for more complex versions under far weaker assumptions.

7Second Fundamental Theorem of Asset Pricing. See Harrison and Kreps ([30]), Dalang, Morton and Willinger ([22]) or Jacod
and Shiryaev ([32]).

210



Mathematical Methods in Modern Risk Measurement

Value at Risk

From an intuitive point of view the “Value at Risk” (VaR) is just a percentile. During the late 1980’s JP
Morgan developed a firm-wide VaR system, in order to integrate many types of risks and portfolios as well
as many capital requirements in a “single number”. They assumed normal distributions in order to estimate.

Actually, a correct definition of VaR that applies for every random variable y on the probability space
(Ω,F , µ) is

VaRµ0 (y) = − inf {α ∈ R : µ (y ≤ α) > µ0} ,

0 < µ0 < 1 being the confidence level.8 It is assumed that VaRµ0 (y) yields the capital reserve that the
manager must add in order to prevent losses. This margin or reserve will be effective unless we face the
100µ0% worst scenarios.

It is easy to see that VaR and the variance are closely related if we are dealing with normal distributions.
Indeed, in this case we have

VaRµ0 (y) = −m− σΦ−1 (µ0) (1)

m and σ denoting the expected value and the standard deviation of y, and

Φ (µ0) =
1√
2π

∫ µ0

−∞
e−

s2
2 ds

being the cumulative standard normal distribution. Thus, if (as usual) the confidence level is less that 50%,
then in a Gaussian world the maximization of the expected return and the simultaneous minimization of
VaRµ0 is almost equivalent to the Markowitz model.

6 Coherent measures of risk.
VaRµ0 is a risk measure that may present significant drawbacks in a non-Gaussian world, as we will in-
dicate. The coherent measures of risk were introduced in Artzner, Delbaen, Eber and Heath ([2]). These
authors pointed out that the initial capital requirement associated with a final random pay-off y may be mea-
sured by several functionals on the space of random variables y with finite expectation. Though in their first
approach they considered probability spaces with a finite number of events, consider a general probability
space (Ω,F , µ), fix p ∈ [1,∞], and a coherent risk measure is a function

R : Lp(Ω,F , µ) 7−→ R

such that:

• R (y + y0) = R (y)− y0 for every y ∈ Lp and every y0 ∈ R (translation invariance).9

• R (y + z) ≤ R (y) + R (z) for every y, z ∈ Lp (subadditivity).10

• R (y) ≥ R (z) for every y, z ∈ Lp with y ≤ z almost everywhere (monotonicity).11

• R (λy) = λR (y) for every y ∈ Lp and every λ ∈ R with λ > 0 (homogeneity).

Moreover, they also considered the axiom below, although it is not imposed to general coherent risk
measures:

8We are assuming that y represents a future price or pay-off, i.e., we are taking a financial perspective. If y represents losses
(actuarial perspective) then the correct definition becomes

VaRµ0 (y) = sup {α ∈ R : µ (y ≥ α) > µ0} .

9We write y0 ∈ R because we identify every real number with the obvious constant function of Lp(Ω,F , µ).
10Subbaditivity is imposed because portfolio choice problems should lead to very diversified portfolios.
11An agent receiving z will be richer than an agent receiving y, so the risk level of the first investor must be lower.
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• R (y) < 0 if µ (y ≥ 0) = 1 and µ (y > 0) > 0 (relevance).

The authors also defined “the acceptance set” associated with the measure R. It is given by

AR = {y ∈ Lp : R (y) ≤ 0} .

Since the translation invariance implies that R (y + R (y)) = 0, once the trader adds the quantity (cash)
R (y) to that investment paying y the global portfolio is acceptable.

All the properties above seem to be natural and present nice economic interpretations. Moreover, the
authors showed that VaR is not a coherent measure because it is not subadditive. It was illustrated with a
simple counterexample incorporating two digital options with the same underlying asset, maturity and ex-
piration date. Hence, using VaR in some portfolio choice problems might lead to non diversified strategies.

Consequently, other authors proposed different kind of risk measures (also called risk functions) non
necessarily subadditive. For instance, the paper by Goovaerts, Kaas, Dhaene and Tang ([29]) showed that
even superadditivity may be convenient for some kind of insurance problems. Anyway, Artzner, Delbaen,
Eber and Heath yielded several interesting examples of quantile-linked coherent measures. Some of them
are the Tail Conditional Expectation (TCE) and The Worst Conditional Expectation (WCE), that are defined
in their paper.12

It is worthwhile to mention that TCE is often called Conditional Value at Risk (CVaR) or Expected
Shortfall (ES). For instance, the articles by Rockafeller and Uryasev (2000) and (2002) provides a nice
comparison between the properties of VaR and CVaR. For normal distributions there is a simple relation-
ship between VaR, CVaR and standard deviations. Indeed, with the notations already introduced in (1),
Expressions

CVaRµ0 (y) = −m +
σ

µ0

√
2π

e
−

(
Φ−1 (µ0)

)2

2

and

CVaRµ0 (y) = −m +
σ

µ0

√
2π

e
−

(
VaRµ0 (y)+m

σ

)2

2

hold. Once again, in a Gaussian world the minimization of CVaR is almost equivalent to the Markowitz
model.

As we will see, risk measures may be quite useful in portfolio choice problems. In such a case it is
interesting to remark that VaR may underestimate the risk level. Indeed, according to the Artzner , Delbaen,
Eber and Heath results, under appropriate assumptions (a finite probability space, for instance) one has

VaRµ0 (y) = inf {R (y) : R coherent and R ≥ VaRµ0} .

7 Representation Theorems
Artzner , Delbaen, Eber and Heath gave very interesting representation theorems for their risk measures.
Mainly, since coherent risk measures are convex functions, they represented the measure by its subgradient,
given by a family of finitely-additive µ−continuous measures on F . Their ideas have been extended in
several directions and, for instance, Föllmer and Schied ([27]) used weaker axioms and introduced the
Convex Risk Measures, along with various representation theorems. For the sake of brevity we will not
present the representation theorems above with precision, and we will concentrate on the approach by
Rockafellar, Uryasev and Zabarankin ([48]). They defined an Expectation Bounded Risk Measure as a real
valued function on Lp that satisfies the translation invariance, homogeneity, subadditivity and, finally,

12Basically, these measures almost yield the expected losses if one faces the 100µ0% worst scenarios, i.e., if one loses more than
VaRµ0 . Whence, these measures are conditional mathematical expectations of y.
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R (y) > −
∫
Ω

y dµ, for every y ∈ Lp non constant (out of null sets) (mean dominating).
They do not draw on finitely-additive µ−continuous measures on F in order to represent R. They take

p < ∞ and use the duality (Lp, Lq) so as to state that for every Expectation Bounded Risk Measure R the
equality

R (y) = max
{
−

∫
Ω

yz dµ : z ∈ ∆R

}
(2)

holds for every y ∈ Lp, ∆R ⊂ Lq being the convex and σ (Lq, Lp)-compact set given by

∆R =
{

z ∈ Lq : −
∫

Ω

ỹz dµ ≤ R (ỹ) for every ỹ ∈ Lp

}
The authors also provided the subgradient ∆R of many expectation bounded risk measures. For instance, if
R = CVaRµ0 then p = 1, q = ∞, and

∆CVaRµ0
=

{
z ∈ L∞ : 0 ≤ z ≤ 1

µ0
and

∫
Ω

z dµ = 1
}

.

Finally, Rockafellar, Uryasev and Zabarankin showed that R is coherent if and only if ∆R is included
in positive cone of Lq.

Distortion functions

Another way to introduce risk measures (non necessarily coherent or expectation bounded) is the use of
“distorting functions”. So, according to the Wang ([58]) approach, if

g : [0, 1] → [0, 1]

is a non-decreasing function with g(0) = 0 and g(1) = 1, and p ∈ [1,∞], then many risk functions
Rg : Lp(Ω,F , µ) 7−→ R may be given by the heuristic Stieltjes integral

Rg (y) =
∫ 1

0

VaRt (y) dg (t) . (3)

This new method yields much more practical risk functions. Examples are the measure of Wang, that
appears if we fix p = 2 and a > 0 and take

g (t) = Φ
(
Φ−1 (t + a)

)
(4)

and the Dual Power Transform (p = 1), generated by

g (t) = 1− (1− t)a

where a > 1 is a fixed constant.13 Furthermore, many other measures may be represented by a distortion
function. For instance

g (t) =

{
0, t < µ0

1, t ≥ µ0

applies for VaRµ0 and

g (t) =

{
t/µ0, t < µ0

1 t ≥ µ0

for CVaRµ0 .
Wang showed that the corresponding risk function Rg in (3) may respect some properties related to the

SOSD and utility functions. Finally, Wang proved that the use of the risk function Rg given by (4) may
apply for pricing financial instruments. In particular, he showed that the classical CAPM and the Black and
Scholes model may be included into the pricing rules generated by his risk function.

13Let us remark that from an economic viewpoint it is possible to prove in both examples that the degree of risk aversion increases
if so does a.
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Pricing, hedging and portfolio choice problems

There is another line of research that provides new methods for hedging (and therefore pricing) in incom-
plete markets. In such a case a perfect hedging is not always available, and “a partial hedging” may be
addressed by minimizing the risk of final losses. The risk level is given by a general risk function and the
optimization problem consists in finding the appropriate (or optimal) dynamic self-financing portfolio. The
problem may be quite complex from a mathematical viewpoint, but under some general assumptions it may
be simplified, as pointed out in Föllmer and Leukert ([26]). Further extensions of this work were recently
given in Nakano ([40]) and Schied ([54]).

Besides, Portfolio Choice Problems may be also addressed by using general risk functions. As already
said, asymmetries, fat tails and capital requirements may make it convenient to abandon the variance and to
use alternative risk functions, since the compatibility with the SOSD must be retrieved and the optimal port-
folio must be related to the reserves to be added by the manager. The optimization of a general risk function
may be complex since, for instance, coherent and expectation bounded risk measures are non-differentiable,
and classical optimization methods may fail. Recent contributions to this issue have been given in Be-
nati ([13]), where the author optimizes the WCE, or in Rockafellar, Uryasev and Zabarankin ([49]) and
Ruszczynski and Shapiro ([52]), where more general optimization issues are analyzed. Balbás, Balbás and
Mayoral ([5]) draw on Expression (2) so as to introduce an alternative Linear Programming Problem in
General Banach Spaces that is equivalent to a (non linear and non differentiable) standard portfolio choice
problem. So, if R is a risk function, Y ⊂ Lp and we face the optimization problem{

minR (y)
y ∈ Y

then, by applying (2) we can consider the equivalent problem
min θ

θ +
∫
Ω

yz dµ ≥ 0, ∀z ∈ ∆R

θ ∈ R, y ∈ Y

(5)

whose decision variable is (θ, y) ∈ R × Lp. Regardless of the properties of R, notice that Problem (5)
becomes differentiable under “a reasonable” set of constraints Y , and the first constraint is C (∆R)-valued,
C (∆R) being the Banach space of continuous and R-valued functions on the compact space ∆R. Thus,
Lagrange and Karush-Kuhn-Tucker like conditions may apply, with multipliers belonging to M (∆R),
space of Radon measures on the compact ∆R and dual of C (∆R). Moreover, (5) will be often linear,
in which case Balbás, Balbás and Mayoral solve practical examples by adapting a simplex-like algorithm
for infinite-dimensional problems inspired in Balbás and Romera ([10]), where a hedging problem for the
interest rate risk is studied.

8 Vector and dynamic risk measures.

In a recent paper Jouini Meddeb and Touci ([34]) justified the use of vector risk functions. The authors
extended the ideas of Artzner, Delbaen, Eber and Heath and defined their “Coherent Vector Risk Measures”.
They are set valued functions

R : L∞(Ω,F , µ, Rn) 7−→ Rñ,

n, ñ ∈ N, n ≤ ñ, such that:

• R (y) is closed, contains zero and is not Rñ.

• R (y + y0) = R (y)− (y0, 1, ..., 1) if y0 ∈ L∞(Ω,F , µ, Rn) is constant (almost everywhere).
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• R (y + z) ⊂ R (y) + R (z), y, z ∈ L∞(Ω,F , µ, Rn).

• R (λy) = λR (y) if y ∈ L∞(Ω,F , µ, Rn) and λ > 0.

The authors showed that this is a genuine extension of the scalar case and justified the definition by
considering several kinds of risk. They provide a Representation Theorem by using finitely additive vector
measures on F . To prevent the use of some dual spaces they draw on the so called “Fatou Property”. The
paper ends by addressing which the authors called “Coherent Aggregation of Risk”.

An alternative approach is given in Balbás and Guerra ([6]). In this case the authors leave the set-valued
functions and consider a Vector Risk Measure as a function

R : Lp(Ω,F , µ,Y) 7−→ Z,

p ∈ [1,∞], and Y and Z being general Banach Lattices. They introduce the concepts of Deviation, Coherent
Risk Function and Expectation Bounded Risk Function, and for all of them they yield representation theo-
rems that extend (2). The paper ends by giving several practical examples and general methods to optimize
vector risk functions.

There are some more papers dealing with closely related issues. For instance, Burget and Rüschendorf
([17]) extend the concept of Consistent Risk Measure of Goovaerts, Kaas, Dhaene and Tang ([29]), in the
sense that they work with real-valued functions such that the argument belongs to Lp(Ω,F , µ, Rn). In the
same line Detlefsen and Scandolo ([23]) consider real valued functions whose arguments are stochastic pro-
cesses satisfying some required conditions. These authors point out the existence of relationships between
vector and dynamic risk measures.

Dynamic risk functions

There is no a consensus about how to define a dynamic risk measure. Since real capital markets are dynamic,
it seems to be clear that we need a dynamic approach to measure risk levels, but the problem is how we can
do that. Besides, regulators, supervisors and managers need a stable number to establish the risk level and
the capital requirements of a given corporation, so some researchers think that the use of dynamic measures
might not be so convenient.

An interesting approach was given by Cvitanic and Karatzas ([21]), who considered “static” risk mea-
sures, but they were computed by taking into account that the investor may rebalance her/his portfolio, i.e.,
he/she lives in a dynamic world. Since then this method has been frequently applied, and it is usual to deal
with a dynamic VaR or CVaR, amongst other risk functions. They are the same measures as we defined
above, but they do not apply to the final pay-off y of the present portfolio. Indeed, y is modified to ỹ, final
pay-off of some alternative strategies generated by possible modifications of the initial portfolio. These
modifications have to be constrained by adequate conditions.

Nevertheless, some authors have attempted to extend the risk measurement methods to a dynamic set-
ting, in the sense that a risk measure must be a stochastic process that must reflect the possible evolution of
the risk level in future dates.

More importantly, an alternative idea is to consider that the risk level is just a real number, but the
argument is not a random variable but a stochastic process, i.e., we do not consider the present portfolio
final price, but the whole stochastic portfolio that is not restricted except for the initial date (the present
portfolio). In this line Artzner, Delbaen, Eber, Heath and Ku ([3] and ([4]) define the coherent dynamic
risk measures in a discrete time framework, and provide representation theorems that extend their previous
work. However, it seems to be quite difficult to extend their approach to a continuous time setting, since
their representation theorem uses a tensor product of σ-algebras that seems to be hardly generalizable for
non-countable families.

As already said, Detlefsen and Scandolo ([23]) also addressed possible ways to introduce dynamic
measures. They are related to vector measures and, in some sense, also to the ideas of Artzner, Delbaen,
Eber, Heath and Ku.
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9 Integrating the approaches above
An open problem is the integration of the approaches above. There are partial results (the interested reader
may consult the provided references and websites) concerning the relationships between utilities, stochastic
dominance, sensitivities, dispersions and margin requirements. For instance, Rockafellar, Uryasev and
Zabarankin ([48]) have introduced the axioms that a “Deviation Measure” must satisfy, and they have
established the existence of a one to one correspondence between deviations and expectation bounded risk
measures. For instance, there exists an expectation bounded risk measure related to the standard deviation,
and the minimization of both functions is equivalent. Unfortunately, this expectation bounded risk measure
is neither coherent nor compatible with the SOSD, so it is not so good to reflect capital margins if skewness
and heavy tails are involved.

Several authors have been dealing with those properties guaranteeing that a risk function is compatible
with the SOSD. Amongst many others, Wirch and Hardy ([59]) have stated that the risk function Rg of (3)
is compatible with the SOSD if and only if g is strictly concave, in which case Rg is coherent too. Hence,
the Dual Power Transform and the measure of Wang are compatible with the SOSD, but the CVaR fails to
be. A complementary approach concerning the compatibility with the SOSD may be found in Pflug ([45]),
where the topic is also related to the possible representation of the risk function to be studied.

Despite the partial results above, and many others, a general analysis concerning the integration of the
presented approaches about the risk measurement has not been developed yet. At least, a much deeper study
on the relationship between classical (dispersions and sensitivities) and modern (capital reserves) risk func-
tions should be quite important, because the classical hedging methods and strategies still apply and will go
on applying for their associated problems, owing to the good reflected practical performance. The problem
is also important from the theoretical viewpoint, since it motivates deep mathematical developments and
may provide new ways to address pricing and hedging issues.

10 Conclusions
The measurement of risk levels is a major topic in Mathematical Finance. It is related to major classical is-
sues, like Hedging, Pricing and Portfolio Choice Problems, amongst others. In the past it has been addressed
by drawing on different approaches, all of them reflecting a complex mathematical development. We have
summarized some major findings, but for obvious reasons a lot of questions have not been addressed here.
Many theoretical and practical problems are still open. Functional Analysis, Measure and Probability Theo-
ry, Differential Equations, Stochastic Calculus, Mathematical Programming and other mathematical fields
play a crucial role, and they will go on playing a crucial role in future research.
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[17] Burget, C. and Rüschendorf, L., (2006). Consistent risk measures for portfolio vectors. Insurance: Mathematics
and Economics, 38, 289–297.

[18] Chamberlain, G. and Rothschild, M., (1983). Arbitrage, factor structure, and mean-variance analysis on large
assets. Econometrica, 51, 1281–1304.

[19] Chambers, D. R., Carleton, W. and McEnally, R., (1988). Immunizing default-free bond portfolios with a duration
vector. Journal of Financial and Quantitative Analysis, 23, 1, 89–104.

[20] Cochrane, J. H., (2001). Asset pricing, Princeton University Press.

[21] Cvitanic, J. Karatzas, I., (1999). On dynamic measures of risk. Finance & Stochastics, 3, 451–482.

[22] Dalang, R. C., Morton, A. and Willinger, W., (1990). Equivalent martingale measures and no-arbitrage in stochas-
tic securities market models. Stochastics and Stochastic Reports, 29, 185–201.

[23] Detlefsen, K. and Scandolo, G., (2005). Conditional and dynamic convex risk measures. Finance & Stochastics,
9, 539–561.

[24] Elton, E. J., Gruber, M. J. and Michaely, R., (1990). The term structure of spot rates and immunization. The
Journal of Finance, 65, 629–642.

[25] Fisher, L. and Weil, R., (1971). Coping with the risk of interest rates fluctuations, Journal of Business, 52, 51–56.
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