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1 Introduction 

In this paper we consider a nonlinear, time-varying, partially observable (PO) stochas
tic control system with state process {xd evolving according to the equation 

(1.1 ) 

where :IN := {O, 1, ... }, and observations {vd of the form 

(1.2) 

Assuming that the functions Ft and Ct converge pointwise to functions Foo and Coo, 
that is, as t ~ 00 

(1.3) 

for all (x, a) and x, respectively, we investigate the existence of optimal control policies 
for the limiting PO system 

(1.4) 

when the optimality criterion is the a-discounted cost (0 < a < 1). 

In fact, we present two main, different, results. In the first one, we consider a 
general PO system 

(1.5 ) 

in which the state space X and the observation set Y are Borel spaces (that is, Borel 
subsets of complete and separable metric spaces). Similarly, the state and observation 
disturbances ~t and TJt take values in Borel spaces S and S', respectively, whereas the 
control actions at are taken from a compact metric space A. In this setting, we give 
conditions for the existence of a-discount optimal policies, allowing the cost-per-stage 
to be possibly unbounded. (See Theorem 2.4.) 

In the second main result (Theorem 2.6), we consider the additive-noise case (1.1), 
(1.2) and the limiting system (1.4), on the spaces X = S = lRd

] and Y = S' = JRd2
• 

Assuming (1.3), we give conditions ensuring the existence of a control policy for (1.4). 
To prove these results we begin by writing (1.5) as a PO Markov control (or 

decision) process, also known as a controlled "hidden Markov model" [5]. In other 
words, we work with a general state transition law and a general observation kernel, 



3 

as in (2.10) and (2.11), respectively, which can be specialized in the obvious manner 
to (1.5), say. (See (2.12) and (2.13).) The formulation (2.10), (2.11) has, of course, 
technical advantages, but what is even more important is that it includes a class of 
models larger than (1.5). Namely, there are many applications in control of queues, 
fisheries, learning processes, and others (see [3, 5, 6, 10, 13, 16, 17]) described by 
"stochastic kernels" as in (2.10) and (2.11), on possibly finite or countable spaces, 
rather than by a "difference equation" model such as (1.5). Moreover, using (2.10), 
(2.11), our Theorem 2.6, when (1.3) holds, is easily related to results on either the 
approximation or the adaptive control of PO systems, or even for the completely 
observable (CO) case which results when Yt = Xt for all time index t; see [3, 4, 6, 7, 
10, 11, 12, 14, 18]. Similarly, in the non-controlled case (namely, when the control 
space A is a one-point set, say), our results on (1.1)-(1.4) can be seen as stating the 
convergence of filtering models - see Lemma 4.1. 

Our approach is somewhat related to the CO case considered in [12], but the 
technical requirements are quite different. This is due to the fact that the analysis of 
(1.5) requires to introduce an equivalent CO system with values in a set of probability 
measures (see (2.5)-(2.7)). Thus, for instance, some "pointwise" statements in [12], 
in our present setting turn out to be statements on the convergence of measures in 
some suitable sense. (See, in particular, the comments in §5 below.) 

The remainder of the paper is organized as follows. In §2 we state our assumptions, 
the control problems we are concerned ""ith, and our main results. Theorem 2.4 and 
Theorem 2.6. Their proofs are presented in §3 and §4, respectively. \Ve conclude in 
§5 with some general comments. 

2 The general PO system 

Vie begin with the following remark on the terminology and notation we shall use, 
and then proceed to state the optimal control problem we are concerned \vith. 

Remark 2.1. (a) Given a Borel space X, we denote by B(X) its Borel (J-algebra, 
and by JP(X) the family of probability measures on X, endowed with the usual weak 
topology (J(JP(X), Cb(X)), where Cb(X) stands for the Banach space of continuous 
bounded functions u on X with the sup norm I/ull := sUPx lu(x)l. Thus, a sequence 
{J1d in JP(X) is said to converge weakly to J1 if 

Ix UdJ1k -+ Ix udJ1 Vu E Cb(X). (2.1 ) 



4 

As X is a Borel space, so is lP(X). (See [1, 2, 19], for instance.) 

(b) Let X and Y be Borel spaces. A measurable function q : Y -+ lP(X) is called 
a stochastic kernel on X given Y, and we denote by lP(XIY) the family of all those 
stochastic kernels. Equivalently, q( dxly) is in lP(XIY) if q(. Iy) is a probability measure 
on X for each fixed y E Y, and q(BI·) is a measurable function on Y for each fixed 
B E B(X). If X = Y, then a stochastic kernel is called a Markov transition probability. 

Throughout the following we suppose: 

Assumption 2.2. All the stochastic processes considered below are defined on an 
underling probability space (D, F, P). In addition: 

(a) The sate space X, the observation set Y, and the disturbance spaces S and S' are 
all Borel spaces. 

(b) The control (or action) set A is a compact metric space. 

(c) The state and observation disturbances ~t and rJt, tEN, form independent se
quences of i. i. d. (independent and identically distributed) random variables with 
values in S and S', respectively. These sequences are also independent of the 
initial state Xo. We denote by p, E lP (5) and l/ E lP (S') the common distributions 
of ~t and rJt, respectively. 

(cl) The functions F(x, a, s) and G(x, s') in (1.5) are continuous. 

(e) The cost-per-stage function c : X x A -+ 1R is nonnegative and lower semicontin
uous. 

(f) There exists a constant C and a continuous function w > 1 on X such that 
c(x, a) ~ Cw(x) for all x E X and a E A. 

The PO control problem. Let Yt := O"(Yo, . .. ,yd be the O"-algebra generat
ed by the observations up to time t. By an admissible control policy (or simply a 
policy) we mean a sequence 7f = {ad of A-valued random variables such that at is 
Yt-measurable for each tEN. We shall denote by IT the set of all such policies. 
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Let 0' E (0,1) be a fixed "discount factor". For each policy 7f E IT and initial 
distribution rp E P(X) ( that is, rp is the a priori distribution of xo), the corresponding 
a-discounted cost is defined as 

00 

1I(7f, rp) := L at E; [c(Xt, at)] (2.2) 
t=o 

where E; denotes the expectation operator with respect to the probability measure 
P; induced by 7f and rp. Let 

lI*(rp):= infll(7f,rp), for rp E P(X), (2.3) 
11" 

be the optimal a-discounted cost. The PO optimal control problem is then to find an 
optimal policy 7f*, that is, a policy such that 

lI(7f*,rp) = lI*(rp) 'l/rp E P(X). (2.4) 

The CO control problem. To study the PO control problem we shall follow 
the standard procedure, in which the PO problem is transformed into a completely 
observable (CO) problem using the filtering process {rpt} in P(X) defined as follows: 
For each policy 7f E IT and initial distribution rp E P(X), 

<Po(B) := P;(xo E B) = rp(B), 

rpt(B) := P;(Xt E BIYt) for t 2: 1, 

(2.5 ) 

(2.6) 

which are defined for all B in 8(X). The filtering process depends, of course, on the 
policy 7f and the initial distribution rp, and so, strictly speaking, we should write rpt 
as, say, rpf,cp. However, we shall use the simpler notation in (2.5) and (2.6) unless we 
need to remark which 7f and rp are being used. 

To continue with the description of the PO problem, we use the well-known fact 
(see, for instance [1, 5, 21, 22] and Example 2.5 below) that there exists a measurable 
function H : P(X) x A x Y ~ P(X) such that (2.6) can be written as 

(2.7) 

with initial condition (2.5). (Note that, by the Remark 2.1(b), H is a stochastic 
kernel on P(X) given P(X) x A x Y.) Moreover, using the notation 

2(<p, a) := Ix c(x, a)<p(dx) for <p E P(X), a E A, (2.8) 
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we can rewrite the a-discounted cost in (2.2) as 

00 

V ( 7f, <p) = L at E; [c( <Pt, ad] . (2.9) 
t=o 

Finally, the CO problem is to minimize (2.9) over all7f E IT, subject to (2.5) and (2.6), 
and this problem is equivalent to the original PO one in the sense that an optimal 
policy for CO is optimal for po. 

Solution of the CO problem. To state our first main result in this section, we 
need some notation. Let P E 1P(XIX x A) and Q E 1P(YIX) be state transition law 
and the observation kernel corresponding to (1.5), that is, 

P(Blx, a) := Prob(Xt+l E Blxt = x, at = a) (2.10) 

and 

Q(Clx) := Prob(Yt E Clxt = x) (2.11) 

for each B E B(X), C E B(Y), x E X, a E A, and tEN. More explicitly, in view of 
(1.5) and Assumption 2.2(c), we have that 

and 

P(Blx, a) = Is lB [F(x, a, s)] p,(ds) 

Q(Clx) = r le [G(x, s')] v(ds'), 1st 

(2.12) 

(2.13) 

where lB denotes the indicator function of a set B. Moreover, for each C E B(Y), <P E 

1P(X), and a E A, consider the stochastic kernel 

i](CI<p, a) := Prob(Yt+l E CI<pt = <p, at = a), 

which using (2.10)-(2.13) can be written as 

(2.14) 

i](CI<p, a) = Ix Ix Q(Clx')P(dx'lx, a)<p(dx) (2.15) 

= r r r le [G(F(x, a, s), s')] v(ds')p,(ds)<p(dx). (2.16) 1x 1s 1st 



Finally, for each D E 8(1P(X)), <p E 1P(X), a E A, and tEN, let 

P(DI<p, a) := Prob(<pt+l E DI<pt = <p, at = a) 

be the transition law oJ the filtering process (2.7), which we can also write as 

P(DI<p, a) = i ID [H( <p, a, y)] q(dYI<p, a). 
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(2.17) 

(2018) 

Assumption 2.3. Let Hand w 2: 1 be as in (2.7) and Assumption 2.2(J), respec
tively, and define w: 1P(X) -+1R as W(<p):= Ix w(x)<p(dx). 

(a) H is continuous; 

(b) There is a number 1 :::; j3 < 1/ a such that 

r w(<p')P(d<p'I<p, a) :::; (HiJ(<p) V<p E JP(X), a E A. (2.19) 
ilP(x) 

Observe that the property "w 2: I" of w is inherited by W, because 

\\re shall denote by lBw(lP(X)) the (vector) space of all real-valued measurable fUIlc
tions 71 on 1P(X) such that 

Ilullw := sup IU(<p)I/w(cp) < 00. 
f{J 

\Ve can now state our first optimality result as follows. 

Theorem 2.4. IJ Assumptions 202 and 2.3 are satisfied, then: 

(a) The optimal cost function V*(cp) := inf7r V(7T, cp), with V(7T, cp) as in (2.9), is 
the unique solution in 1Bw (1P(X)) of the Bellman (or Dynamic Programming) 
equation 

V*(<p) = min [C(<P, a) + a r 1/* (<p')P(d<p'I<p, a)] (2.20) 
aEA ilP(x) 

for all cp E 1P(X). Moreover, 
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(b) ~1* is l.s.c., and 

(c) there exists a measurable function 1* : lP(X) --+ A that attains the minimum in 
(2.20), i.e., for all cp E lP(X) 

V*(cp) = 2(cp, j*(cp)) + a r V*(cp')P(dcp'lcp, j*(cp)), 
JlP(X) 

and 1* determines optimal control policy 7[* = {a;} given by 

a; := j*(cpd 'tit E N, 

where {cpd is the filtering process. 

(2.21) 

Theorem 2.4, which is proved in §3, is essentially standard except for the fact that 
we are aUO\ving a general PO system (1.5) and a possibly unbounded cost-per
stage c(x, a), as in Assumption 2.2(e), (f). To the best of our knowledge, the only 
case studied in the literature in which c(x, a) is unbounded is for the so-called LQG 
(Linear-Quadratic-Gaussian) PO systems. Furthermore, the existence of the "filter
ing function" H in (2.7) depends only of the state transition law and the observation 
kernel in (2.10) and (2.11), not on the particular PO model (1.5). This means, in 
other words, that Theorem 2.4 is valid for general PO systems on Borel spaces. and 
so, in particular, it includes systems on countable spaces, which are very common in 
applications; see [3, 5, 6, 10, 13, 16, 20]. 

V/e conclude this section with an example on an additive-noise system, which 
serves several purposes: it illustrates the concepts introduced above; it is an "in
troduction" to study the limiting system (1.4); and it gives conditions under which 
Assumption 2.3(a) is satisfied. 

Example 2.5 . Consider the PO additive-noise system 

(2.22) 

with X = 5 = lRd1
, Y = 5' = lRd2

, and A compact metric; see Assumptions 2.2(a), 
(b). In addition, the disturbances {~t} and {7]d are as in Assumption 2.2(c), except 
that now we also suppose: 
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Hypothesis A. The noise distributions 11, and 1/ are absolutely continuous, say 

fL(ds) = gdS)A} (ds) and l/(ds') = gr,(s'»dds'), (2.23) 

where Ai (i = 1,2) denotes the Lebesgue measure on R d
;, and, moreover, g~ and gTJ 

are continuous bounded density functions. 

In this case, the state transition law in (2.10), (2.12) becomes 

P(Blx, a) = i g~(s - F(x, a))A}(ds), 

and, similarly, the observation kernel in (2.11), (2.13) becomes 

Q(Clx) = i gTJ(s' - G(x))A2(ds'). 

(2.24) 

(2.25) 

On the other hand, as is well-known [3, 7, 11, 20, 21], the filtering function H in (2.7) 
is of the form 

H(l(!,a,y)(B) = a(l(!, a,y)(B)/a(l(!,a, y)(X) VB E B(X), (2.26) 

with 

a(~, a, y)(B) = r gT)(Y - G(.r')) r P(dx'lx, a)~(d:r) (2.27) la lx 
= Ix [igTJ(y-G(X'))P(dX'lx,a)] l(!(dx) 

= Ix [i gTJ(Y - G(x'))g~(x' - F(x, a))Al (dX')] l(!(dx), 

by (2.24). 

On the other hand, Assumption 2.2(d) reduces to: 

Hypothesis B. The functions F : X x A -+ X and G : X -+ Y are continuous. 

Vie can then see from the general Lemma 3.2, below, that H satisfies Assumption 
2.3(a). Indeed, let (l(!k, ak, yk) be a sequence in lP(X) x A x Y that converges to 
(l(!, a, y). Choose an arbitrary function u in Cb(X), and define 

vk(x) := Ix u(x')gTJ(yk - G(x'))g~(x' - F(x, ak))A}(dx')' (2.28) 
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v(X):= Ix u(X')g1)(Y - G(x'))g~(x' - F(x,a)>q(dx'). (2.29) 

Observe that, by Hypothesis A, {vk} is uniformly bounded by M := iiuiiiig1]ii. More
over, v k converges pointwise to v because, by Hypothesis Band Scheffe's Theorem 
(see, for instance, pp. 223-224 in [2]) 

ivk(x) - v(x)i ::; 2M Ix igdx' - F(x, ak)) - g~(x' - F(x, a)) i>'l (dx') 

--+ 0 as k --+ 00. 

A similar argument shows that each vk is continuous, and, therefore, {vk
} satisfies 

the conditions (a) and (b) in Lemma 3.2. Finally, observe from (2.27), (2.28) and 
(2.29) that, as Ij)k --+ Ij) weakly, Lemma 3.2 yields 

r u(x)a(v}, ak, yk)(dx) = r vk(x)lj)k(dx) 
Jx Jx 

--+ r v(x)lj)(dx) = r u(x)a(lj), a, y)(dx). 
Jx Jx 

This fact and (2.26) imply that 

H(lj)k,ak,yk) --+ H(Ij),a,y) weakly, 

and Assumption 2.3(a) follows. 

(2.30) 

The limiting PO system. For each n E N oo , consider the PO control system 

(2.31) 

where Fn(x, a) and Gn(x) are functions that satisfy (1.3). For n = 00, we have the 
limiting PO system (1.4). We will use a subindex "n" to indicate functions and 
probabilities corresponding to the model in (2.31). For instance, the a-discounted 
cost and the optimal cost function in (2.2) and (2.3) become 

00 

Vn(7r, Ij)) := L 0/ E~,'P [c(Xt, at)] 
t=O 

and 

respecti vely. 
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Theorem 2.6. Suppose that for each finite n E 1N, {2.31} satisfies Assumptions 
2.2, 2.3{b}, as well as the hypotheses Ai B in Example 2.5. Moreover, in addition to 
{1.3} we suppose that the limiting functions Foo(x, a) and Goo(x) are continuous, and 
also that for each pair (rp, a) in lP(X) x A, there exists a finite measure 'Y == 'Y'{J,a on 
B(lP (X)) such that 

(2.32) 

Then Theorem 2.4 holds for n = 00. Further, if the cost-per-stage c( x, a) is a continuous 
bounded junction, then the condition {2.32} can be omitted. 

Theorem 2.6 is proved in §4. 

3 Proof of Theorem 2.4 

Theorem 2.4 will follow from the results in §8.5 of [9] if we show that the CO model 
(2.7)-(2.9) satisfies the Assumptions 8.3.2,8.3.3 and 8.5.1 in [9]. (As we are assuming 
that c(x, a) is nonnegative, the continuity condition 8.5.3 in [9, p.66] is not required, 
and, moreover, the continuity of ilJ(rp) in condition 8.5.2 can be replaced with lower 
semicontinuity.) Thus in view of our current Assumptions 2.2 and 2.3, we only need 
to verify: 

(i) The function ilJ(rp) := Ix w(x)rp(dx) is l.s.c. on lP(X). 

(ii) The function 2(rp, a) in (2.8) is l.s.c. on lP(X) x A. 

(ii'i) The transition law P('lrp,a) in (2.17) is weakly continuous, that is, for each u 
in Cb(lP(X)), the function 

u(rp, a):= r u(rp')P(drp'lrp, a) 
jP(X) 

is continuous in (rp, a) E lP(X) x A. 

Parts (i) and (ii) are consequence of the following general result. 

Lemma 3.1. Let X be an arbitrary Borel space. Suppose that {rpn} is a sequence 
in lP(X) converging weakly to rp, and let {vn} be a sequence of nonnegative and l.s. c. 
functions on X such that 

liminfvn(x) 2: v(x) \;fx E X. (3.1 ) 
n-too 
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Then 

lim inf r vn(x)cpn(dx);::: r v(x)cp(dx). 
n-+oo ix ix (3.2) 

Proof. As each vn is nonnegative and I.s.c., for each n there is a sequence {un,d in 
Cb(X) such that Un,k t vn as k -t 00. Therefore, for all n, k, and m :::; n 

Ix vn(x)cpn(dx) ;::: Ix un,k(x)cpn(dx) 

;::: r inf Uj,k(x)cpn(dx) ix J?m 

Hence, as infj?m Uj,k(· ) is in Cb(X) and cpn -t cp weakly, we get 

lim inf r vn(x)cpn(dx);::: r inf Uj,k(x)cp(dx). 
n-+oo ix ix J?m 

Finally, letting m -t 00, and then k -t 00, monotone convergence yields 

liminf r vn(x)'Pn(dx);::: r liminfvn(x)'P(dx), 
n-+oo i xix n-+oo 

and so (3.2) follows from (3.1). _ 

In Lemma 3.1, the case vn(. ) == v(· ) is well-known; see, for instance, statement 
(12.3.37) in p.225 of [9J. In particular, we get: 

Proof of (i). Take vn (- ) == w(·) in Lemma 3.1. _ 

We also have the following. 

Proof of (ii). Let (cpn, an) be a sequence in JP(X) x A that converges to (cp, a). We 
wish to show that 

that is, by (2.8), 

lim inf r c(x, an)'Pn(dx);::: r c(x, a)'P(dx). 
n-+oo ix . ix 

This, however, follows from Lemma 3.1 with vn(x) := c(x, an) and v(x) := c(x, a). _ 

To prove (iii) we first note the following general fact. 
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Lemma 3.2. Let X be an arbitrary Borel space, and let {un} and {f-Ln} be sequences 
in Cb(X) and JP(X), respectively, such that: 

(a) {un} is uniformly bounded, that is, Ilun 11 :s; M for some constant M; 

(b) Un --t u pointwise; and 

(c) f-Ln --t f-L weakly. 

Then 

(3.3) 

Proof. By (a) and (b), the nonnegativesequence vn := un+Jl1 satisfies the hypotheses 
of Lemma 3.1. Thus, by (c) and (3.2), we obtain 

lim inf r undf-Ln 2: r udf-L. 
n--+oo ix ix 

Finally, applying the latter inequality to -Un we get 

lim sup r undf-Ln::; r udf-L, 
n--+oo ix ix 

and (3.3) follows .• 

Vve next use Lemma 3.3 to show that the stochastic kernels in (2.10)-(2.18) are 
all continuous. 

Lemma 3.3. Under Assumption 2.2(d), the stochastic kernels P(·lx, a), Q(·lx), and 
q(·I'P, a) are weakly continuous. Hence, under the additional Assumption 2.3(a), 
P(·I'P, a) is also weakly continuous, that is, (iii) holds. 

Proof. If u is in Cb(X), it follows from (2.12) that 

Ix u(x')P(dx'lx, a) = Is u[F(x, a, s)Jf-L(ds) , 

which, by bounded convergence, is continuous in (x, a). Similarly, if v is in Cb(Y), it 
follows from (2.13) that 

1 v(y)Q(dylx) = r v[G(x, s')]v(ds') 
y iSI 
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is continuous in x. Moreover, from (2.15), taking again v in Cb(Y), 

r v(y)q(dyl'P, a) = r r r v(y)Q(dylx')P(dx'lx, a)'P(dx) 
}y }x}x}y 

= Ix v'(x, a)'P(dx), 

where 

v'(x, a) := Ix J v(y)Q(dylx')P(dx'lx, a) 

is a continuous function on X x A, bounded by Ilvll. Now let ('Pn, an) -+ (ip,a). Then, 
applying Lemma 3.2 to un(-) := v'(·, an) and /-Ln = 'Pn, we conclude that 

(3.4) 

Finally, if U is in Cb(lP(X)), (2.18) gives 

and so the weak continuity of P follows from (3.4), Assumption 2.3(a) and Lemma 
3.2 .• 

To summarize, the conditions (i), (ii), (iii) at the beginning of this section yield 
Theorem 2.4 .• 

4 Proof of Theorem 2.6 

For each finite n E N, the Bellman equation (2.20) becomes 

(4.1 ) 

To verify Theorem 2.4 for n = 00 it suffices to show that V~ satisfies (4.1)' i.e., 
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because then the uniqueness of solutions to (4.2) in 1Bw (P(X)), as well as parts (b) 
and (c) in Theorem 2.4, follow from Theorem 8.3.6 and statement (8.5.3) in [9]. 

Now, to prove (4.2)' let 

~('P) := lim inf1/;('P), and u('P):= lim sup V;('P). 
n-too n-too 

We wish to show that 

(4.3) 

To prove this, let us first note the following. 

Lemma 4.1. As n ----+ 00, 

(a) Ilqn(·I'P, a) -qoo(·I'P, a)IITv ----+ 0 for each ('P, a) in P(X) x A, where II·IITV denotes 
the total variation norm. 

(b) IIHn(<P, a, y)(.) ----+ Hoo('P, a, y)(- )IIT'· ----t 0 for all (<p, a, y) in P(X) x A xY, where 
Hn is the filtering function in {2.26}, {2.27}. 

(c) Pn(·I<p, a) ----t Poo(·I<p, a) weakly for each (<p, a). 

Proof. (a) For each n E N oo , let Pn(-Ix, a) and Qn(-Ix) be as in (2.24) and (2.25), 
that is, 

and 

Qn(Clx) = fc 9T}(S' - Gn(x))A2(ds'). 

As 9~(s-Fn(x, a)) ----+ 9~(s-Foo(x, a)) for all (x, a, s), it follows from Scheffe's Theorem 
(see, for instance, pp. 223-224 in [2]) that 

IIPn(·lx, a) - Poo(·lx, a)IITV ----t 0 V(x, a) E X x A. ( 4.4) 

Similarly, as 9T}(S' - Gn(x)) ----+ 9T}(S' - Goo(x)), we have 

(4.5) 
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Therefore, by (2.15), i.e., 

qn(·lcp, a) = Ix Ix Qn(·lx')Pn(dx'lx, a)cp(dx), 

a straightforward calculation using (4.4) and (4.5) yields (a). 

(b) By (2.26) and (2.27), to prove (b) it suffices to show that, for all (cp, a, y), 

(In(<P, a, y)(B) = Ix [.Is 91)(Y - Gn(x'))Pn(dx'lx, a)] <p(dx) 

converges to (J 00 (<p, a, y)( B) in the total variation norm. To do this observe that, for 
all B E B(X), 

Il 91)(Y - Gn(x'))Pn(dx'lx, a) -l 91)(Y - Goo(x'))Poo(dx'lx, a)1 

:::; 1191) II IlFn (- lx, a) - P oo( ·Ix, a) IITV + Ix 191)(Y - Gn(x')) - 91)(Y - Goo(x')) IF oo(dx'lx, a) 

-7 0 as n -7 00, 

and the latter convergence is, of course, uniform in B E B(X). This clearly implies 

II(Jn(<P, a, y)(- ) - (Joo(<p, a, y)(- )IITV -7 0 as n -7 00, 

and (b) follows. 

(c) Choose an arbitrary function u in Cb(lP(X)). Then, by (2.18), 

r u(CP')Pn(dcp'ICP, a) = r u [Hn(CP, a, y)] qn(dylcp, a). (4.6) 
jP(X) jy 

Now observe that the integrand u[Hn(CP, a, y)] is bounded by lIull for all n. On the 
other hand, (a) and (b) imply the weak convergence of qn(·lcp, a) to qoo(-I<p, a), and 
of Hn(<P, a, y)(-) to Hoo(<p, a, y)(.). Thus (c) follows from (4.6) and Lemma 3.2 .• 

We now go back to the proof of (4.3). First take the lim inf in both sides of (4.1). 
Then, by Lemma 4.1(c) and Lemma 3.1, we obtain 

1£(CP) 2: min [2(cp, a) + 0: r 1£(CP')Poo (dcp'lx, a)]. 
aEA Ip(x) 

(4.7) 
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Therefore, by a standard dynamic programming argument (see, for instance, Lemma 
4.2.7 in [8]) 

(4.8) 

To complete the proof of (4.3), we next show that 

u(tp) ::; V~(tp) 'lftp E JP(X), (4.9) 

which together with (4.8) yields (4.3). To obtain (4.9) we see from (4.1) that 

(4.10) 

for all (tp, a) in JP(X) x A. Furthermore, by the hypothesis (2.32) and Lemma 4.1(c), 
Pn(·ltp, a) converges setwise to p(xlltp, a) for each (tp, a); see, for instance, Lemma 
4.1(ii) in [15]. In addition, the sequence V;(tp) is uniformly bounded by CW(y)j(l
a(3), where C and (3 are the constants in Assumptions 2.2(f) and 2.3(b), respectively; 
see p.52, inequality (8.3.33), in [9]. It follows that the Extended Fatou Lemma 8.3. 7(b) 
in [9] is applicable to (4.10), so that taking the lim sup as n ---7 00 we get 

(4.11) 

This implies that 

which in turn, by Lemma 4.2.7 in [8], for instance, yields (4.9). 

This completes the proof of (4.3), and hence of (4.2), when the cost-per-stage 
function c satisfies Assumption 2.2(e), (f). Finally, if c is continuous and bounded 
on X x A, it follows from Lemma 3.3, together with Theorem 2.8 in [7, p.23], that 
{V;, n E 1N} is a uniformly bounded sequence of continuous functions on JP(X). 
Hence, from Lemma 3.1 with an obvious change, we can obtain (4.11) directly from 
(4.10), without using (2.32) .• 
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5 Concluding remarks 

As was already mentioned, the results in Theorem 2.4 are essentially well known ex
cept for the fact that c(x, a) is allowed to be unbounded and for the generality of the 
PO system (1.5). However, to our knowledge, the proof itself is new. In fact, even 
the Lemmas 3.1 and 3.2 are new. Similarly, parts (a) and (b) in Lemma 4.1, which 
concern the total variation norm, seem to be new. 

In fact, observe that Lemma 3.1 is a significant extension of the standard Fatou's 
Lemma, namely, 

liminf r vn(x)cp(dx) ~ r [liminfvn(x)] cp(dx), 
n-too ix ix n-too 

in which vn is a sequence of nonnegative measurable functions, as well as an exten
sion of the Extended Fatou Lemma 8.3.7 in [9], in which (3.2) holds for a sequence of 
probability measures cpn converging setwise to cp. Similarly, Lemma 3.2 is an extension 
of the standard Bounded Convergence Theorem, in which the measures /-Ln == /-L are 
fixed. 

On the other hand, Theorem 2.4 includes the important case in which the state 
space X and the observation set Y are countable, as occurs in many applications [3, 5, 
6, 13, 16, 17, 20, ... J. In such a case, the filtering function H turns out to be similar 
to (2.26), with 

(J(cp, a, y)(x') = Q(ylx') L P(x'lx, a)cp(x) 
x 

(compare with (2.27)), and so Assumptions 2.2 and 2.3 can be simplified in the obvious 
manner. 

References 

[1 J D .P. Bertsekas and S.E. Shreve, Stochastic Optimal Control: The Discrete Time 
Case, Academic Press, New York, 1978. 

[2J P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968. 

[3] T.E. Duncan, B. Pasik-Duncan and L. Stettner, "Adaptive control of a partially 
observed discrete time Markov process", Appl. Math. Optim. 37 (1998), 269-293. 



19 

[4] P.K. Dutta, M.K. Majumdar and R.K. Sundaram, "Parametric continuity in 
dynamic programming models", J. Econ. Dyn. Controll8 (1994), 1069-1092. 

[5] R.J. Elliott, L. Aggoun and J.B. Moore, Hidden Markov Models: Estimation and 
Control, Springer-Verlag, New York, 1994. 

[6] E. Fernandez-Gaucherand, A. Arapostathis and S.L Marcus, "Analysis of an 
adaptive control scheme for a partially observed Markov chain", IEEE Trans. 
Autom. Control 38 (1993), 987-993. 

[7] O. Hernandez-Lerma, Adaptive Mar'kov Control Processes, Springer-Verlag, New 
York, 1989. 

[8] O. Hernandez-Lerma and J.B. Lasserre, Discrete-Time Markov Control PTocess
es: Basic Optimality Criteria, Springer-Verlag, New York, 1996. 

[9] O. Hernandez-Lerma and J.B. Lasserre, Further Topics on Discrete-Time Markov 
Control Processes, Springer-Verlag, New York, 1999. 

[10] O. Hernandez-Lerma and S.l. Marcus, "Adaptive control of Markov processes 
with incomplete state information and unknown parameters", J. Optim. Theory 
Appl. 52 (1987), 227-241. 

[11] O. Hernandez-Lerma and S.L Marcus, "Non parametric adaptive control of 
discrete-time partially observable stochastic systems", J. Math. Anal. Appl. 137 
(1989), 312-334. 

[12] N. Hilgert and O. Hernandez-Lerma, "Limiting optimal discounted-cost control 
of a class of time-varying stochastic systems." Syst. Control Lett. (To appear.) 

[13] D.E. Lane, "A partially observable model of decision making by fishermen", 
Oper. Res. 37 (1989), 240-254. 

[14] H.-J. Langen, "Convergence of dynamic programming models", Math. Oper. Res. 
6 (1981), 493-512. 

[15] J.B. Lasserre, "On the setwise convergence of sequences of measures", J. Appl. 
Math. Stoch. Anal. 10 (1997), 131-136. 

[16] J .A. Loewe, Markov Decision Chains with Partial Information, Ph.D. Thesis, 
Department of Mathematics and Computer Science, Leiden University, 1995. 



20 

[17] G.E. Monahan, "A survey of partially observable Markov decision processes: 
theory, models, and algorithms", Manage. Sci. 28 (1982), 1-16. 

[18] A. Miiller, "How does the value function of a Markov decision process depend 
on the transition probability?", Math. Oper. Res. 22 (1997), 872-885. 

[19] K.R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, 
New York, 1971. 

[20] W.J. Runggaldier and L. Stettner, Approximations of Discrete Time Partially 
Observed Control Problems, Applied Mathematics Monographs CNR 6, Giardini, 
Pisa, 1994. 

[21] C. Striebel, Optimal Control of Discrete Time Stochastic Systems, Lecture Notes 
Econ. Math. Syst. 110, Springer-Verlag, Berlin, 1975. 

[22] A.A Yushkevich, "Reduction of a controlled Markov model with incomplete data 
to a problem with complete information in the case of Borel state and control 
spaces", Theory Probab. Appl. 21 (1976), 153-158. 



WORKING PAPERS 1999 

Business Economics Series 

99-01 (01) 

99-06 (02) 

99-07 (03) 

99-17(04) 

99-18 (05) 

99-30 (06) 

99-33 (07) 

99-35 (08) 

99-39 (09) 

99-40 (10) 

99-41 (11) 

99-46 (12) 

99-47 (13) 

99-61 (14) 

Jaime Ortega 
"Power in the firm and managerial career concerns" 

Sandro Brusco 
"Short-term ism as optimal experimentation policy" 

A. BalMs, I.R. Longarela y J. Lucia 
"How Does Financial Theory Apply to Catastrophe-Linked Derivatives? 
An Empirical Test of Several Pricing Models" 

Ashish Arora, Andrea Fosfuri and Alfonso Gambardella 
"Markets for technology (why do we see them, why don't we see more of them, and 
why we should care" 

Marfa Jose Alvarez and Jaime Rivera 
"An integrated typology of green manufacturing profiles" 

Sandro Brusco and Giuseppe Lopomo 
"Collusion via Signalling in Open Ascending Auctions with Multiple Objects and 
Complementarities" 

Margarita Samartfn 
"Costly Financial Crises" 

Angel Pardo, Alejandro Balbas and Vicente Meneu 
"On the effectiveness of several market integration measures. An empirical analysis" 

Ester Martfnez-Ros and Josep A. Trib6 
"R&D and Debt Financing" 

Carolina Manzano 
"Integratin versus segmentation in a dealer market" 

Elizabeth F. Cabrera and Angel Cabrera 
"The State of Strategic Human Resource Measurement in Spanish Banks" 

Angel Cabrera, Elizabeth F. Cabrera and Sebastian Barajas 
"Organizational culture as a determinant of technology assimilation" 

Elizabeth F. Cabrera and Angel Cabrera 
"Rethinking utility analysis: A strategic focus" 

Cm·los Larrinaga , Francisco Carrasco, Carmen Correa, Francisco Javier Caro and 
Jose Marfa paez. 
"The Role of Environmental Accounting in Organizational Change: An Exploration 
of Spanish Companies" 


